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For many years, cell-surface glycans (in particular, Tumor-Associated Carbohydrate
Antigens, TACAs) have been the target of both passive and active anticancer
immunotherapeutic design. Recent advances in immunotherapy as a treatment for a
variety of malignancies has revolutionized anti-tumor treatment regimens. Checkpoint
inhibitors, Chimeric Antigen Receptor T-cells, Oncolytic virus therapy, monoclonal
antibodies and vaccines have been developed and many approvals have led to
remarkable outcomes in a subset of patients. However, many of these therapies are
very selective for specific patient populations and hence the search for improved
therapeutics and refinement of techniques for delivery are ongoing and fervent research
areas. Most of these agents are directed at protein/peptide epitopes, but glycans–based
targets are gaining in popularity, and a handful of approved immunotherapies owe their
activity to oligosaccharide targets. In addition, nanotechnology and nanoparticle-derived
systems can help improve the delivery of these agents to specific organs and cell types
based on tumor-selective approaches. This review will first outline some of the historical
beginnings of this research area and subsequently concentrate on the last 5 years of work.
Based on the progress in therapeutic design, predictions can be made as to what the
future holds for increasing the percentage of positive patient outcomes for
optimized systems.

Keywords: tumor-associated carbohydrate antigens, nanoparticles, immunotherapy, polysaccharide, polymers,
size, tumor microenvironment, vaccine
1 INTRODUCTION

During the 21st century, major changes in the way we detect, treat and prevent disease have been
developed and put into practice. This has been highly evident when it comes to cancer therapy:
Novel and innovative directions in discovery have resulted in modalities to treat various
malignancies in more selective and “personalized” ways (1). Three new advances that have led
the way when examining the past 20 years of discovery come immediately to mind: 1) The ready
availability of cancer genome sequences after unraveling the human genome at the turn of the
century (2), 2) The advent of targeted therapy for cancer (3) and 3) The development of biologics,
primarily in the various forms of immunotherapies (4) to fight disease. All of these advances, to
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varying degrees, embody what we now refer to as “personalized”
medicine, where the ability to look deeply into the biology of
individual tumors helps to define disease-relevant genetic
mutations, biomarker expression or immunological signatures
and tailor a particular therapeutic regimen to those modifications
for optimized outcomes. In the past several years, researchers
and clinicians alike have looked upon this concept as the “future”
of medicine and medicinal chemistry, where the use of broadly
non-selective acting cytotoxins and radiation treatments can be
replaced with individualized (less cytotoxic and more effective)
care. For many cases, this has been realized and lives have been
saved or prolonged with high quality when this mode of
treatment is successful. Some of the more notable success
stories since 2001 are:

1) Starting in 2005, the development of The Cancer Genome
Atlas (TCGA) has produced a compilation of cancer genomes
from hundreds of different tumors for individualized
biomarker discovery. These “Omic” studies have defined
relevant cancer-specific genes that can be targeted by
specialized therapy.

2) The development of the first anticancer targeted therapy to the
Bcr/Abl gene product, a fusion protein that produces a
constitutively active non-receptor tyrosine kinase that drives
proliferation of Chronic Myelogenous Leukemia (CML) cells.
Gleevec (Glivec), now called imatinb, was considered the first
targeted therapeutic drug likened to what Paul Ehrlich
referred to as a specific “bullet” that kills these (as well as
some other) tumors (3, 5). Many derivatives of imatinib that
target other driver kinases have been developed since that
time, as well as a variety of small molecules targeted to other
biomarkers determined from the work outlined in point #1.

3) The discovery that the human immune system can be
harnessed to eradicate certain cancers, primarily through
the inhibition of tumor-associated immunosuppressive
mechanisms. So-called checkpoint inhibitors have been
developed and FDA approved. These studies have paved the
way for a host of monoclonal antibody therapies against these
checkpoints, followed by the development of engineered T-
cells from individual patient sera where a tumor-specific
biomarker-binding molecule can direct these T-cells to a
malignancy and exert a “dialed-in” cytotoxic effect on
tumor cells (Autologous T-Cell therapy and Chimeric
Antigen Receptor-T cells, or CAR-T cells) (6–8)
Abbreviations: ADCC, Antibody-Dependent Cellular Cytotoxicity; AuNPs, Gold
nanoparticles; BCG, Bacille Calmette-Guérin; CAR-T cells, Chimeric Antigen
Receptor-T cells; CML, Chronic Myelogenous Leukemia; CRS, Cytokine Release
Syndrome; CTL, C-type Lectin Receptor; DC-SIGN, Dendritic Cell-Specific
Intercellular Adhesion Molecule-3-Grabbing Non-Integrin; GM-CSF,
Granulocyte-Macrophage Colony Stimulating Factor; MAP, Multiple Antigen
Peptide; MDSCs, Mononuclear-Derived Suppressor Cells; MGL, Macrophage
Galac tose-Type Lec t in ; PAMAM, Poly (amidoamine) ; SPIONs ,
Superparamagnetic Iron Oxide NanoParticles; TACAs, Tumor-Associated
Carbohydrate Antigens; TAMs, Tumor-Associated Macrophages; TCGA, The
Cancer Genome Atlas; TDM, Trehalose 6,6′-DiMycolate; TLR, Toll-
Like Receptor.
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These three concepts have led to a series of newly approved
drugs that have kept cancer at bay for thousands of patients
whose disease course may otherwise would have been fatal.
References to some success stories for cancer genomic studies
can be found at the webpages for TCGA (9–14) at the Human
Genome Research Institute of the NIH (https://www.genome.
gov/Funded-Programs-Projects/Cancer-Genome-Atlas) and the
National Cancer Institute webpage https://www.genome.gov/
Funded-Programs-Projects/Cancer-Genome-Atlas). Targeted
therapy has also seen a boon in approved agents, mostly
derived from inhibition of driver tyrosine kinases that are
overexpressed in various tumors (3, 15, 16). Couple the
successful identification of tumor biomarkers by the TCGA
with high throughput screening of drug candidates and
optimization for specific protein binding sites and many
additional tumor-targeted therapies will be available in the
years to come. Cancer immunotherapy research has perhaps
seen the steepest growth in the past decade. Approvals for new
antibody and CAR-T therapies continue a remarkable pace, and
refinement of molecular parameter such as the type of binding
and regulatory proteins used to construct the T-Cell itself has
helped to reduce off target effects and lower the threshold of
activation necessary for optimal therapeutic efficacy.

However, as with all successes come setbacks and
unanticipated factors that can continually be improved. For
immunotherapy, these can be due to a host of factors, many
that stem from a post-treatment overdriven immune system
(cytokine release syndrome, activation of co-inhibitory pathways
leading to T-cell exhaustion and effector cell neurotoxicity
caused by overactive cytokine release in the cerebral spinal
fluid) (17–19). Often, the immunotherapy is not enough to
overcome the tumor immunosuppressive environment, led by
tumor-associated macrophages and other lymphocytes that
secrete cytokines that trigger the production of checkpoint
molecules like PD-1 and PD-L1 (20–23). These drawbacks,
however, have not dampened the enthusiasm for continued
research to determine ways of more effectively utilizing the
immune system to ward off tumor growth.

While most of the tumor-associated biomarkers, or
“antigens” for CAR-T cell therapy are protein-derived, there is
a separate family of molecules that are uniquely different on the
surface of tumor cells compared to normal cells. These are the
oligosaccharide structures that make up the various surface
glycans that are present on every mammalian cell. Cell-surface
glycans have distinct structural compositions on normal cells
that dramatically change on transformed malignant cells. The
aberrant structures are important partners in protein and cell
binding events that lead to more aggressive tumor phenotypes. In
addition, they are recognized by the immune system as “non-
self”-like presentations and hence have been the basis of many
tumor vaccine strategies. Tumor-associated carbohydrate
antigens (TACAs) have been targets of therapeutic design in
the fields of both anti-adhesive and immunotherapy for decades.
Until relatively recently, TACAs had taken a back seat to protein
antigens in cancer immunotherapeutic design, but there are now
numerous reports on TACA-based drug and vaccine design as
March 2022 | Volume 13 | Article 852147
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options in developing active or passive immune therapies to
combat cancer.

Combined with targeting tumor-bearing carbohydrate
structures, a valid strategy to both develop new entities for
more selective delivery and overcome some of the other
drawbacks of immunotherapy is to use platforms derived from
various nanostructures. Nanotechnology in biomedicine has also
seen and incredible boon during the last decades of personalized
medicine. There is a plethora of novel platforms that have been
developed both for delivery, targeting, self-degradation and
tissue-selective targeting. Due to the heated scientific interest
in the areas, there are also many recent reviews that have been
published on these subjects, both separate and together (24–35).
Thus, this review will first introduce the field and subsequently
concentrate on the advances gained in the past 5 years. In a final
discussion, an attempt will be made to critically assess the various
platforms new available and offer opinions as to which are the
most promising for future development.
2 A BRIEF HISTORY OF CANCER
IMMUNOTHERAPY

Many treatises about the history of cancer therapy have been written
and trace back the beginnings of cancer immunotherapy thousands
of years (36). This is quite remarkable as these accounts detail
spontaneous tumor regressions after some type of microbial (viral
or bacterial) infection. The accompanying high fever and
undoubtedly inflammation caused by the infection led to a strong
immune response and subsequent remission of the invading
neoplasm. This was the basis for several experiments performed
by William Coley in the late 19th century, where he capitalized on
case studies of patients who were cured of their tumors when
infected with a streptococcal bacterium that causes the skin
infection erysipelas (36). Inoculation of cancer patients with a
combination of two separate attenuated bacterial strains caused
remarkable remission rates compared to many of the medical
treatments available at that time. Thus, “Coley’s Toxin”, which
was a combination of both gram-negative and gram-positive
bacteria could arguably be considered the first “adjuvanted”
vaccine to treat tumors. Many of the immune-stimulatory
molecules that are used today in vaccine adjuvants come from the
cell walls of these bacteria, which serve to kick-start the immune
system, most likely leading to the activation of stimulatory signals
and the production of various immune cells, modulators and
cytokines. Unfortunately, the use of bacterial toxins as (immuno-
)’therapy” was quickly frowned upon, especially since the
mechanism of tumor regression was not well understood at the
time. Other modalities, such as radiation and newly developed small
molecule drugs remained the fashion until almost 100 years later
and the discovery of interferon and other cytokine immune
stimulants like Interleukin-2 (IL-2) (37–41). While IFN and IL-2
were initially touted as game changers in tumor therapy, they came
crashing to unceremonious endings based on unexpected toxicities
and paradoxical immune-suppression mechanisms in the clinic.
The end of the 20th century saw several other milestones in cancer
Frontiers in Immunology | www.frontiersin.org 3
immunotherapy, such as the discovery of first dendritic cells (42)
and then natural killer cells (43); the theory of tumor
immunosurveillance; the use of the Bacille Calmette-Guérin
(BCG) tuberculosis vaccine to be used against tumors in mice
(44), and the first cancer vaccine composed of an adjuvanted tumor
lysate as early as 1959.

While this smattering of advances could be thought of as highly
promising, little follow up and hence a lack of actual developed
products left most clinicians disinterested. Fast forward to the 21st

century and a revolution has now taken hold with a multitude of
studies anointing cancer immunotherapy as the “fourth horsemen”
of antitumor therapy along with (now more highly precise) surgery,
chemotherapy and radiation (45). By the 2000’s it was well known
that the immune system can have a powerful effect on tumor growth
and dissemination. But perhaps the two discoveries, or re-
discoveries as it may be considered, that brought the concept
back to the forefront of cancer biology were: 1) unraveling the
details of the immunosuppressive tumor microenvironment and
that countering that immunosuppression is a viable therapeutic
strategy and, 2) that a patient’s own T-cell population could be
tailored to fight their tumor by reengineering these cells ex-vivo
followed by reintroduction into the patient. Figure 1 shows a
schematic of “then and now” in cancer immunotherapy.

Point #1 magnifies the difficulties faced by a patient’s immune
system in eradicating a tumor entirely. Tumors are not isolated
islands unto themselves but are bathed in an environment that
contains components that can be beneficial to tumor growth and
hostile to any antitumor immune response (the tumor
microenvironment). Various phenotypes such as Regulatory T-
cells, M2 macrophages and mononuclear-derived suppressor cells
(MDSCs) send out negative signaling to suppress the immune
response and lead to the “exhaustion” of the T-cell response that
would otherwise be antitumor (46). In normal tissue, these serve to
halt an immune response that may proceed unchecked, essentially
“putting the brakes” on a system which when dysregulated could
cause detrimental pathologies such as autoimmune disease. In the
tumor microenvironment, engagement and signaling through these
checkpoints serve to allow proliferation and tumor invasion to
proceed; hence the idea that inhibition of these would “remove the
brakes” on the antitumor immune response. This has been realized
with approved antibody therapies against regulatory proteins such
as CTLA-4 (Ipilimumab) (47), PD-1 (Nivolumab) (48) or its ligand
PD-L1 (Atezolizumab) (49). These approvals ignited several novel
studies into either inhibition of the tumor suppressive environment
or enhancing a natural antitumor immune response. Subsequent
work on Point #2 above led to the discovery that, engineering a
patient’s own T-cells with a binding molecule (antibody fragments
such as an ScFv) to a tumor-specific antigen (a so-called neoantigen)
and linking this to signaling domains that promote T-cell
proliferation after neoantigen engagement, could eliminate certain
tumors. The ScFv portion denoted as a Chimeric Antigen Receptor
(CAR) spawned an entire new field of study and the development of
many new therapies called CAR-T cells (7, 50). These can be
specifically tailored to mutated or overexpressed antigens on a
tumor and have, to date, been highly successful against particular
subsets of tumors, especially lymphomas. CAR-T’s against the CD-
March 2022 | Volume 13 | Article 852147
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19 protein have been approved for acute lymphoblastic leukemia
(ALL, Kymriah) (51, 52) or other types of B-cell lymphomas
(Yescarta) (53). Along with all the benefits of these therapies, they
also come with (perhaps not unexpected) drawbacks. Ever since the
amazing results obtained by Coley’s Toxin, adverse effects (AEs)
have been a serious issue with immunotherapy. By turning off
regulatory mechanisms, the immune system can go into overdrive
causing issues such as Cytokine Release Syndrome (CRS)—an
inflammatory process that can cause high fever and sometimes
organ failure (18, 50, 54). This is part of what is sometimes referred
to as a “cytokine storm” reaction to a pathogen or in the present
discussion, CAR-T or checkpoint inhibition therapy, where a
marked dysregulation of cytokine production can lead to fatal
outcomes (18). This has been seen in the recent severe cases of
SARS-CoV-2. An informative review of cytokine storm and CRS
was recently reported by Fajgenbaum and June (55).

Even with the possibility of severe adverse effects, CAR-T and
anti-checkpoint therapy have become standard for a select group
Frontiers in Immunology | www.frontiersin.org 4
of tumor types (primarily hematological), but researchers and
clinicians alike are working feverishly to design these agents with
lower risk of AE’s and increase their effectiveness in solid tumor
immunotherapy. With regards to cancer vaccines however, while
many designs have shown a degree of clinical effectiveness, the
success of specific platforms has been much more difficult to
realize (56, 57). To date, there are only a small handful of cancer
vaccines that are used clinically, and these are split between
therapeutic and preventative vaccines. Preventative vaccines are
active against specific microbes (bacteria or viruses) that are the
cause of or have a role in the development of a specific
malignancy. The BCG vaccine described above that was
originally developed against tuberculosis, is used in the
treatment of bladder cancer (58–63). HEPLISAV-B is a vaccine
against hepatitis B virus, whose infection leads to many
hepatocellular carcinomas (liver tumors) (64, 65). Gardasil and
Cervarix are vaccines against the Human Papilloma Virus (HPV)
which is known as the causative agent in cervical cancer (66–68).
FIGURE 1 | In the late 19th century, injection of Coley’s toxin (green beads, top left) caused an inflammatory immune response (center drawing, red man with
immune cells attacking tumor) that helped tumor regression. Modern day immunotherapy (lower drawings, left to right) shows injection of CAR-T cells (green spiked
ball) and/or checkpoint inhibitor antibodies (IgG figure) results in a similar effect without the use of toxic bacteria.
March 2022 | Volume 13 | Article 852147

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Barchi Glycoconjugate Nanoparticle-Based Systems in Cancer Immunotherapy
Gardasil comes in two different polyvalent formulations which
are each active against several different serotypes of HPV (69–
71). Cervarix is active against the most common forms type 16
and 18 (71, 72). Sipuleucel-T (Provenge) is a therapeutic vaccine
that is approved to treat metastatic castration-resistant prostate
cancer (73). It is the only approved dendritic cell vaccine that
uses the patient’s own cells, re-engineered to overexpress
prostatic acid phosphatase (PAP), an antigen on prostate
cancer cells , and an immune stimulating cytokine,
Granulocyte-Macrophage Colony Stimulating Factor (GM-
CSF). Although FDA approved as a therapy, Provenge
increases survival of prostate cancer patients by only 4 months.
The only other therapeutic vaccine, Talimogene laherparepvec
(T-VEC) is a hemolytic virus formulation that infects tumors
and causes subsequent lysis. A herpes simplex virus was
reengineered where two genes were deleted (Infected Cell
Proteins (ICP) 34.5 and 47) and one for GM-CSF was added
(74, 75). This allows the attenuated virus to infect tumors and
still remain replication competent; after replication in tumors,
those cells burst, thereby killing the cell and in the process
releasing tumor antigens that can be processed and presented to
T-cells. T-VEC is the only oncolytic virus therapy formally
approved for cancer treatment, but only in specific instances of
inoperable melanoma. The vaccine is injected intratumorally,
that is, directly into the tumor tissue itself, since these are
uniquely difficult to treat malignancies.

It is obvious that the last 20 years has seen a great increase in
advances in tumor immunotherapy, with some relatively
astounding results. In addition, CAR-T cell and checkpoint
therapy are being continually approved for different tumor
types and on clinical trials are being designed at a rapid pace.

Work is continuing to refine how to best design CAR-T cells
with lower AE’s, better selectivity and higher efficacy in solid
tumors. Reprogramming of the immunosuppressive tumor
microenvironment is also an area ripe for further investigation.
Lastly, progress in appropriate vaccines where agents can
advance past Phase III trials has so far been what could be
considered unsuccessful (76, 77), and hence a much more
focused research effort to advance this this form of active
immunotherapy is desperately needed.

The remainder of this review will focus on how
nanotechnology and novel nanoparticle platforms can inform
the future success of vaccine and immunotherapeutics in cancer.
This will be discussed in the context of using TACAs and other
glycans as targets for immune stimulation, presentation and
delivery systems. The preparation of glycoconjugates in
nanoparticle design will also be discussed.
3 GLYCOCONJUGATES, ANTITUMOR
THERAPY AND NANOTECHNOLOGY

Cellular glycans are ubiquitous in all living organisms and it
follows that they would be involved in a variety of important
functions. This invariably includes the immune response and its
modulation: Certain signaling pathways are mediated through
Frontiers in Immunology | www.frontiersin.org 5
the expression and interactions of specific glycan structures on
cells of the innate and adaptive immune systems. They serve to
both initiate disease states such as autoimmune diseases, cancer
and those caused by microbial infections. They can also
subsequently contribute to the progression of these states, such
as cancer metastasis and advanced stage rheumatoid arthritis. As
mentioned above, TACA’s and tumor cell surface glycans on
glycolipids, glycoproteins and proteoglycans are all aberrantly
expressed relative to a normal cell phenotype. This imparts
alternate cellular properties to tumors relative to normal cells
such as different adhesive, migration, and signaling abilities.
Thus, cellular glycans, and as it would follow, the proteins that
interact with these structures (lectins, such as the Selectins,
Galectins and Siglecs) have been targets of anticancer therapy
for many years (78–81).

TACAs are considered antigens since the immune system
mounts a response to them, even though they are “self” glycans.
Carbohydrates are considered T-cell independent antigens since
the standard immunological response to these structures alone is
humoral with no stimulatory signals that can promote T-cell
production and expansion. Foreign carbohydrate antigens on
bacteria and viruses are recognized by immunoglobulin
receptors on B-cells to initiate antibody production usually
through non-class-switched, low-affinity IgM production.
Based on this model, carbohydrate-based vaccines (in
particular those to bacterial capsular and cell-surface glycans)
have traditionally been designed as conjugates to carrier proteins
whose primary sequences encode T-cell epitopes to help foster a
cell-mediated response through presentation by Major
Histocompatibility Complexes (MHC), primarily CD4+ helper
T-cells. Most vaccines against various bacterial infections are
constructed in this way, with proteins such as tetanus toxoid or
the non-toxic mutant of diphtheria toxin, CRM197, used as T-
cell epitope “carriers” (82, 83). Not surprisingly, this design
strategy has been coopted for the construction of cancer
vaccines to tumor glycan-based antigens (80, 82–97). However,
glycopeptides derived from cell surface proteins containing
TACAs (or other immunogenic glycans) can also be presented
to T-cells and the sugar can either contribute or detract from
MHC binding (85, 98–110). Discovered about 25 years ago,
another set of MHC-II-like antigen presenting molecules, the
CD1 family (CD1a-CD1e), has been shown to present cellular
and foreign glycolipid antigens to either gdT-cells or Natural
Killer T-cells (NKT cells). The marine derived a-galactosyl
ceramide was initially identified as a ligand for CD1d, and this
discovery has spawned an entire research direction to define the
features of and discover new glycolipid molecules that can be
used as adjuvants in vaccine design (83, 111–114). More recently,
the discovery of zwitterionic polysaccharides (ZPSs) from certain
bacteria as polymers that can be presented to T-cells and elicit a
cell-mediated response has shifted the paradigm of saccharide
immunity (100, 115–117). Data in the last decade has shown that
processing of ZPSs is through pathways similar to protein
presentation, with breakdown of the polysaccharide after
endocytosis and processing by MHC-II to present to CD4+ T-
cells. ZPSs are part of the innate immune response after the
March 2022 | Volume 13 | Article 852147
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discovery that they interact with and agonize toll-like receptor-2
(TLR2) signaling (118–120). The immunogenicity of certain
TACAs has been enhanced by conjugation to ZPSs (121–123).

The citations in the previous paragraph clearly show that the
use of TACAs and other tumor-associated glycans is a very active
area of research and will continue to contribute to advances in
immunotherapeutic against many tumor types. The problems of
appropriate antigen design, tumor-selective biomarker selection
and delivery systems for appropriate efficacy remain conceptually
difficult to overcome. A direction that the field has followed for
almost two decades now is to use nanotechnology (particles,
polymers, colloids, carbon allotropes, etc., with individual core
particle sizes in the 1-100 nm range) in its various forms to solve
some of these issues. This can manifest itself in many ways, such as
(Figure 2): 1) the use of different nanoparticles as (targeted) drug
or antigen carriers, 2) taking advantage of nanoparticle size or
shape to selectively home to tumors, 3) employ the multivalent
presentation that nanoparticles can facilitate to enhance a
particular response or 4) encapsulate therapeutic materials in a
nanoshell for protection from degradation or metabolism before
Frontiers in Immunology | www.frontiersin.org 6
reaching an intended target tissue/cell. In the past few years, there
have been may reviews written on the subjects contained in this
manuscript, i.e., cancer immunotherapy and the use of
nanotechnology in this quest. A search of the Web of Science
using the terms “Cancer” “Immunotherapy” and “Review” reveals
more than 17,000 articles, with >30 of them to be published in the
year 2022 (the year after this review is being written()!… These
references are relevant to this review (124–140)). The purpose of
this review is thus to concentrate specifically on what may be the
most useful technology developments in the last 5-7 years,
focusing only on the use of nanoparticles in tumor
immunotherapy approaches, as opposed to simple drug delivery
and nano-platform development.
4 GLYCO-NANOTECHNOLOGY AND
CANCER IMMUNOTHERAPY

As alluded to above, in 2021 there is no shortage of reviews
published on the cancer immunotherapy, with or without the use
FIGURE 2 | Nanoparticle-mediated targeted drug delivery to cancer cells (center, darker pink circles). Nanoparticles (blue box) containing targeting moieties bind to
cancer cell (CC) markers on tumors to inhibit/agonize signaling or protein binding and/or deliver therapeutic drugs (red jagged spheres; e.g., small molecules or
antibodies). Linkers are important components of the design for distance and physiochemical property requirements.
March 2022 | Volume 13 | Article 852147
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of nanotechnological platforms. An attempt will be made here to
outline the latest advances in the use of glycoconjugate
nanoparticles and nanosized-polymeric systems in cancer
immunotherapy while highlighting unique details of each with
regards to innovation and future therapeutic potential.

Nanoparticles (NPs) have now been used in the design of new
medicinal agents for more than two decades. There are both
advantages and disadvantages to using nanoparticles over
monomeric and single agent materials as a drug/vaccine, where
it can be argued that their benefits outweigh their shortcomings.
Figure 3 illustrates some of the most widely used platforms in the
past 20 years, highlighting some of their plusses and minuses for
use in generic drug delivery or immunotherapy. Nanoparticles in
immunotherapy have primarily been used in two related ways: 1)
as drug delivery agents and 2) as vaccine platforms for the
delivery of antigens and/or adjuvants to specific immune cells.
The major advantages to using nanotechnology in therapy are
the following: 1) NPs change both pharmacokinetic and
pharmacodynamic properties of whatever entity they carry,
leading to altered metabolism and often protection from
degradation; 2) This added protection coupled with targeted
delivery will improve the likelihood that the NPs go where they
are supposed to and present antigens and adjuvants to specific
immune cells and 3) the combination of (1) and (2) will reduce
off- target effects. While there are many examples of the use of
Frontiers in Immunology | www.frontiersin.org 7
NPs in immune therapy, only a small percentage of those relate
directly to glycoconjugates or the use of carbohydrates as
antigens or ligands in the potential therapy.

As shown in Figure 3, certain families of NPs have distinct
properties that are highly relevant to the interaction of glycans
with their receptors. Paramount of these features is the inherent
multivalent nature of NPs. NPs have a high surface area and
multiple copies of carbohydrate ligands and/or antigens can be
attached to different particle types. As alluded to in the figure,
polymeric and dendrimeric particle surface density can be
controlled and adjusted with high accuracy, as compared to,
for example, inorganic nanoparticles where this ligand density
could be more random and difficult to alter. It is a well- known
property of carbohydrate-protein(lectin) binding that
multivalency (the “Velcro” effect) is critical for high avidity
binding and the elicitation of a subsequent biological effect
(141). Thus, the use of nanosystems for immunization or
ligand binding to lectins holds an inherent advantage to single
molecule strategies.

4.1 Vaccines: Delivery Platforms
As alluded to earlier, many TACAs and glycolipid glycans have
been the subject of anticancer vaccine development going back to
the 1970’s starting with George Springer (142, 143). He
discovered that the Thomsen nouveau (Tn, GalNAc-a-O-
FIGURE 3 | Various nanoparticles used in antitumor therapy design and selected advantages (up arrow) and disadvantages (down arrow).
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Serine/Threonine) and Thomsen Friedenreich (TF, Gal-b-1,3-
GalNAc-a-O-Serine/Threonine) antigens were actually TACAs
and that the body raised an immune response to them. A vaccine
preparation of depleted red blood cells carrying the TF antigen
that he developed was used by his 32 patients, where over half
survived after 5 year and 7 survive over 10 years (144). Some
patients had late-stage disease that at the time would not have
lasted more than a few months. While cell preparations are in the
micron size range and thus not “nano” (1-100 nm), this still
could well be considered the beginning of particle-based
glycoconjugate vaccine anticancer therapy. The following
discussion will highlight some of the specific systems that have
been successful in tumor immunotherapy.

4.1.1 Liposomes
Nanosystem vaccine preparations to TACA’s and other glycans
have a rich history dating back about 20 years. In 2005, the Boons
group at the University of Georgia prepared a 3-component
vaccine comprised of the Tn antigen, a T-cell epitope from
poliovirus and a Toll-Like Receptor-2 (TLR2) agonist Pam3Cys
lipopeptide linked covalently into one combined molecule (145).
Incorporation into liposomes (constituting a “nano”vaccine) and
immunization of mice revealed a robust humoral immune
response. Refinement of this design strategy over the next
several years showed that addition of a MUC1 peptide-
conjugated Tn antigen dramatically increased the antibody
titers (146–148); use of a 2,6-sialyl-Tn antigen also showed
robust immune response to this antigen (149) and replacement
of the poliovirus T-cell epitope with a longer MUC1-derived
glycopeptide containing specific epitopes could also elicit a T-cell
response similar to the original design (150). Other liposomal
preparations have also been used in this context. One strategy
showed that addition of galactosyl ceramide (vide supra) into the
liposome could potentiate the immune response to a MUC1
glycopeptide (151). A recent interesting study by Shiga, et al.,
examined the effect of adding trehalose 6,6′-dimycolate (TDM)
to a cationic liposomes on the antitumor immune response
toward various cancers. TDM is a component of the cell wall
of the bacterium BCG (also, vide supra) that is used as a
treatment for bladder cancer (152). The idea was to use a
subunit of that bacterium in place of the whole microbe as a
non-toxic replacement that can be incorporated into various
nano-formulations. This construct proved to be as or more active
than BCG in mouse models of several cancers. This effect was
reduced in knockout mice depleted in CD8+ cells and the C-type
lectin Mincle, a receptor for TDM, suggesting interaction with
Mincle was a prerequisite to biological activity. This simplified
design may be useful in future vaccine constructs bearing tumor-
associated antigens. An interesting study was reported by
Yanigahara, et al., where a b1,3-b1,6-branched b-glucan called
Aquab, chemically-derivatized containing pH sensitive glutaric
acid esters were incorporated into liposomes (via conjugation of
a percentage of the glutaric acid moieties with decyl amine
groups) loaded with model antigen (OVA) (153). The strategy
entailed interaction of these nanoparticles with C-type lectins or
TLR proteins on the surface of APCs that bind b-glucans, such as
Dectin-1 or TLR2, which leads to endocytosis and cross
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presentation of protein antigen to elicit a cell-mediated (CD8+)
immune response. The response was greater with the branched
polysaccharide relative to similarly-modified linear curdlan
derivatives. The study suggests that b-glucans can be heavily
derivatized and still maintain their APC activating properties.

The reader is referred to the following reviews for more
information on the use of glycan-modified liposomes in
immunotherapy (24, 154–156).

4.1.2 Inorganic Nanoparticles
The use of metal-based 3-dimensional self-assembled
monolayers and other inorganic particles has been a mainstay
of tumor immunotherapy for several years. In particular, gold
and iron oxide glyconanoparticles have been used as both
diagnostic and therapeutic agents in a variety of antitumor
research studies. The reader is referred to recent reviews
concerning the use of glyconanotechnology in cancer therapy
(24, 26, 28, 29, 31, 32, 34, 157).

4.1.2.1 Gold Nanoparticles
Along with use as a novel drug delivery platform, gold
nanoparticles alone can act as an immune stimulant and
adjuvant for other immune-based therapies. Over the past 15
years, a series of papers were published by the Dykman group
whose work established the immune functions of naked and
neutral-passivated AuNPs (158–161). A review by this group in
2010 (160) seems to establish the concepts that, 1) colloidal gold
could act as a carrier of various immunogens, including small
molecules haptens to stimulate an antibody response, and 2)
That colloidal gold nanoparticles can act as adjuvants on their
own, but there is also contradictory reports on whether or not
AuNPs themselves are actually harmful or offer some benefit to
an organism through stimulation of immune cell proliferation.

Gold Glyco-NPs (AuGNPs) were developed over 20 years ago
by the Penades group (162, 163), and we (164) and others (165)
had contributed to the preparation of vaccine construct based on
AuGNPs bearing either a single TACA or glycopeptides from cell
surface mucins bearing TACAs. With a focus on work performed
since ~2015, there have been some successful applications of this
design as a tumor immunotherapy. An excellent review by
Ferrando, et al., has recently been published (166) that outlines
the use of AuGNPs as vaccines against bacterial and viral
infections as well as cancer. Some of the most important
heavily glycosylated tumor-associated antigens studied today
are Mucins, and of those MUC1 is arguably the most heavily
researched. The tandem repeat (TR) sequence of human mucins
is a repeating segment of between 16-24 amino acids that extend
out from the cell surface. These motifs are replete with serine and
threonine residues that are mostly O-glycosylated (“Mucin-type”
glycosylation) with different core structures. In tumors, these are
truncated to 1-3 saccharide units comprising the aforementioned
Tn, TF and sialyl-Tn/TF structures. These have been the subject
of tumor vaccine studies for over 25 years. While the individual
glycans were thought as the actual antigenic structures and
originally used as conjugates to carrier molecules, it has
become widely accepted that the context of the saccharide in
the mucin environment—i.e., covalent attachment to the peptide
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backbone and presentation amidst other TRs—is the structure
that more closely resembles the actual presentation on the cell
surface. Thus, we and others pursued tumor/mucin-associated
glycopeptides as the appropriate haptens for immunization.

The Kunz group has pioneered the synthesis and vaccine
preparations of TR mucin glycopeptides from both MUC1 and
MUC4 (104, 106, 167–170). Working with the Westerlind group,
these researchers have reported on the immune evaluation of
selected MUC1 glycopeptides coated on AuNPs (171). The
unique design of their system, somewhat akin to that of
Cameron, is shown in Figure 4.

Polyethylene Glycol (PEG) units functionalized with thiols at
one terminus and amines or carboxylates at the other, were first
used to passivate 13 nm AuNPs. A combined MUC1 glycopeptide/
CD4+ helper sequence (P30 from Tetanus Toxoid) was synthesized
by solid phase peptide synthesis with a C-terminal thiol. Addition of
a NHS/maleimido heterobifunctional linker to the pegylated AuNP
appended a maleimide unit that could be conjugated by the thiol-
terminated P30-MUC1 glycopeptide. Immunization with complete
Freund’s adjuvant and evaluation of the antisera showed IgG that
react with the glycopeptide immunogen. Immunization with the
combined peptide alone without the AuNP carrier was about 10-
fold less potent. While the titers were albeit relatively low, and only
three mice were used per immunization, the design may be useful
for further development.

Our own recently published work showed that preparation of
AuNPs with b-glucans (immune stimulating polysaccharides
from fungal and cereal cell walls) and the MUC4 glycopeptide
discovered in previous work elicited a strong immune response
in animals with antibody titer up to 300,000 (172). A T-cell
mediated response was also evident from a EliSpot assay where
cytokine secretion showed evidence of glycopeptide presentation
to T-cells through an MHC-II-dependent process.

4.1.2.2 Iron Oxide Particles
Iron oxide NPs are easily constructed and can act as either carriers
of various molecular families, similar to AuNPs, as well as act as
contrast agents in Magnetic Resonance Imaging (MRI)-based
diagnostic studies. They are often called Superparamagnetic Iron
Oxide NPs (SPIONs) due to their specific properties such as
nanometer size- and temperature -dependent magnetic
Frontiers in Immunology | www.frontiersin.org 9
fluctuations and the ability to be magnetized to high magnetic
susceptibility from an external source. The Huang group pioneered
the preparation and use of “glyco”-based SPIONs with a 2010 report
that showed hyaluronic acid-coated SPIONs can maintain their
CD44 binding properties while also being able to bind to and enter
macrophages, allowing imaging of these cells. In 2015, this same
group prepared lipopeptide-coated SPIONs also coated with
TACAs for delivery to the immune system. In a unique design,
they prepared SPIONS coated with functionalized oleic acid and
MUC1 glycopeptides terminated by a phosphatidylethanolamine
that “intercalated” into the hydrophobic SPIONs. These particles
were able to activated dendritic cells in the presence of the TLR4
agonist monophospholipid A (MPLA). Immunization of mice
elicited a strong IgG antibody response where the antisera could
bind MUC1-presenting MCF-7 breast cancer cells and cause
complement dependent cytotoxicity of these cells. This only
occurred with the nanoparticles and not the glycolipopeptide
alone. The authors speculated that the as-designed amphiphilic
nature of the nanoparticles help them traffic to lymph nodes and
hence trigger a better response. Nativi’s group synthesized standard
ferromagnetic iron oxide nanoparticles as well as dextran-coated
IONs displaying a mimetic of the Threonine-linked Tn antigen
(173). These particles were able to trigger TNF-a gene expression in
mouse macrophages with the same potency as LPS. Treatment of
PBMCs with the dextran particles triggered the secretion of IL-6 and
IL-10, similar to treatment with LPS. This activity only occurred
when using the multivalent display on the nanoparticles and not
with the monovalent mimetic.

4.1.3 Virus-Like Particles
Virus-Like Particles (VLPs) are basically viruses that are devoid
of genetic material and hence are replication incompetent. They
can be isolated from naturally sources or prepared in different
ways such as self-assembly through recombinant technologies.
Capsid proteins and other can be used for their construction, but
they can be produced in different organisms. Hence, VLPs come
in a variety of “flavors” and are derived from a wide variety of
virus families, including bacteriophages. The protein coats on
their surfaces have several reactive functional groups exposed,
such as amines and thiols, that can be conjugated with antigenic
molecules (Figure 5).
FIGURE 4 | Design of Westerlind, et al., of PEGylated AuNPs with covalently-linked TACA glycopeptide coupled to the Tetanus Toxoid T-cell motif P30 (reprinted
from reference 163).
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The Huang group again has done some pioneering work in
this area. They initially showed in 2013 that a simple monomeric
Tn molecule displayed on the surface of bacteriophage Qb can
stimulate a powerful immune response to the GalNAc-
glycoamino acid with antibody IgG titers close to 1,000,000
(174). the strength of the response was dependent on the dose
of the vaccine as well as the density of antigen presented on the
VLP. A glycan microarray analysis of the antisera showed that it
was specific for Tn-containing structures.

A follow up to this work was published in 2019 that used the
TF and Sialyl-Tn antigens as glycans coupled to the same MUC1
peptide sequence followed by attachment to Qb (175). Again,
incredibly high titers [>>10 (6)] were generated in ELISA assays
to the constructs conjugated to BSA. The sera from the TF-
conjugated glycopeptides recognized multiple MUC1 isoforms,
weas cytotoxic to MUC1-bearing tumor cells and protected mice
from tumor challenge post vaccination. Thus, the possibility of a
preventative vaccine derive from these bacteriophage particles is
a distinct future possibility. A final study with similar
experimental details looked at the b-Threonine-linked TF
glycopeptides as a possible solution to the inherent instability
of the natural a-threonine-linked to endogenous glycosyl
hydrolases (176). Similar antibody titers elicited for this
construct in a MUC transgenic mouse model , and
interestingly, these sera cross-reacted with the a-linked TF
glycopeptides and recognized tumor cells with natural a-linked
TF antigen. This “mimetic” design may prove very useful, as the
b-linked molecules could be considered “foreign” in a tumor
microenvironment setting. A study by Sartorius, et al., used
variation on this theme by attaching an adjuvant – the
aforementioned a-GalCer – to a VLP and examined the
st imulat ion of invariant NKT (iNKT) cel l s (177) .
Bacteriophage loaded with a-GalCer stimulated activation of
iNKT cells in vitro and in vivo. If these VLPs were programmed
Frontiers in Immunology | www.frontiersin.org 10
to display an immunogenic OVA peptide and then coated with
a-GalCer they were found to stimulate CD8+ cell production
and also protect mice form B16 melanoma. Given the success of
bacteriophage particles in some of these studies, it is highly
encouraging that the combination of adjuvant/antigen can be a
successful strategy to construct a therapeutic vaccine. This may
be useful with the MUC1 or other mucin-derived glycopeptides
to avoid admixing of adjuvant and antigen. We used a similar
strategy in our original AuNP vaccine design (164).

4.1.4 Polymeric Nanoparticles
Since the two most abundant organic materials on earth are
polymers of carbohydrates (cellulose and starch), it is no wonder
that the study of the chemistry and potential biological
applications of these types of molecules would encourage
fervent research in this area. Glycopolymers in biomedicine
also have a rich history, with a broad array of uses as targeting
agents, lectin inhibitors and drug delivery systems.
Glycopolymers can be synthetic from bottom-up processes
(such as Reversible Addition−Fragmentation chain-Transfer
po lymer i za t ion , RAFT; or Atom trans f e r rad i ca l
polymerization, ATRP) or naturally occurring polymers that
are used as is or modulated to enhance or modulate their
properties (178–180). Glycopolymers have played major roles
in the fields of general glycobiology and chemistry, as well as
medicinal glycoscience. There are, obviously, many naturally
occurring glycopolymers and a host of synthetic molecules that
have been studied in a wide variety of contexts. Many natural
polymeric materials have unique self-assembled properties and
folds that categorize them as “nanoparticles”. A relevant example
is the group of nanocellulose structures (nanocrystals, nanofibrils
and bacterial nanocellulose) derived from different sources and
where each have been employed in a wide range of applications,
including those in biomedicine (181). Other polysaccharides
A B

FIGURE 5 | (A) Rendered crystal structures of different VLPs with color-coded rendered subunits. (B) Depiction and micrograph of Qb and one example of how the
surface may be modified with a bifunctional linker (with permission from “Therapeutic vaccines for chronic diseases: successes and technical challenges” 2011, 366,
2815-2822, DOI: 10.1098/rstb.2011.0103).
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such as starch, dextran, pullulan and chitin can all form
nanostructures under appropriate conditions (182–184). The
following brief discussion will outline select studies on these
nanostructures and the reader is referred to the previous reviews
(refs. 172-174) for details of glycopolymers in immunotherapy.

Natural polysaccharides are ideal platforms for biomedical
applications: They are biodegradable, biocompatible and mostly
non-toxic. Designing delivery or biologically active systems from
these structures can hence be more predictable and perhaps more
easily approved for clinical use if sufficiently efficacious.
Chitosan, prepared by the partial deacetylation of chitin (a
polymer of b-1,4-linked N-acetylglucosamine), is perhaps most
promising, as it is considered safe by the FDA its structure and
properties can be modulated by controlled deacetylation. An
interesting application was reported by Shi, et al., who designed a
mannose-coupled chitosan nanoparticle in a whole tumor cell
lysate-based vaccine preparation (185). The authors were able to
prepare chitosan nanoparticles that were loaded with tumor cell
lysates from B16 melanoma cells. To this was coupled a
mannose-alginate conjugate for targeting the mannose receptor
Frontiers in Immunology | www.frontiersin.org 11
on immature dendritic cells. The “dual-sugar”-based vaccine
preparation promoted antigen uptake by and maturation of
bone-marrow-derived dendritic cells, enhanced the CD8+
response in vivo which led to a potent reduction of tumor
burden in a mouse melanoma model. In another application,
an ingenious nanoparticle derived from a glycol-modified
chitosan particle was used for low temperature hyperthermal
treatment of tumors and simultaneous immunomodulatory
effects (186). A glycol-chitosan derivative was covalently linked
to a polyaniline scaffold to create an amphiphilic polymer
containing a conductive polymer (polyaniline) for efficient
photothermal conversion when applied intratumorally.
Addition of the TLR7/8 agonist, R848 (Resiquimod) allowed
for self-assembly where a biocompatible polymer encased a small
organic molecule within its hydrophobic core. When injected
into murine CT26 colon carcinoma tumors, this material allowed
for photoablation while also affecting immune stimulation via
the TLR agonist. A potent immune memory was generated since
re-challenge with CT26 tumors after initial therapy protected
mice form tumor further growth. The design and outline of
FIGURE 6 | Design of photo-ablative and immunomodulating chitosan-based nanoparticles based on the activity of polyaniline and R848. Reprinted with permission
from Elsevier (186).
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experiments are shown in Figure 6. These constructs were
compared to “empty” nanoparticles (those without R848) and
the authors showed a potent synergistic effect of using the
“loaded” particle as opposed to the one simply bearing the
thermo-conductive polymer. Multifaceted designs such as these
have a strong potential for clinical use if starting with
biocompatible and non-toxic polymers.

The nanoparticles that can be produced from starch, cellulose,
alginates of chitosan can all have effects on the immune response
when they are used to treat various immune cells. This is actually
a fascinating feature of many natural polysaccharides: Size, shape
and even minor forms of modification can dramatically affect the
types of cytokine gene expression that they trigger in the
presence of various types of monocytes or dendritic cells. For
example, when Torres, et al., compared microfilms of potato
starch (100’s of microns long) (187) to nanoparticles prepared
from starch of the same potato family (40-60 nm) (188), a very
different cytokine profile was generated by each treatment.
Differential results are also obtained when using various forms
of chitosan, carrageenan and alginate particles when after
treatment of various immune cells (see Torres (184), and
references therein for more information)

4.1.5 Dendrimers
Dendrimers are perhaps one of the more mature technologies for
the preparation of multivalent glycan-based systems.
Dendrimers are “treelike” (from the word Dendron) structures
that can grow from only 2-4 functional groups to many, usually
in multiples of 2 (189). Poly(amidoamine), or PAMAM
dendrimers are the most common, comprised of amine and
amide functionalities that begin with ethylene diamine reacting
in a Michael fashion with methyl acrylate. This creates a tetra-
carboxyl core that can double in size with subsequent additions
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of the diamine to form amine-terminated amides. Double
addition to acrylate continues the process (Figure 7). Each
addition is called a “generation” (0, 1, 2, 3….) and most of
these are now commercially available. While the word dendrimer
usually conjures up a “spherical” arrangement as shown in the
right of Figure 7, it also can refer to any tree-like projection of
multiple functional groups, such as one tetrameric branch of the
16-mer structure on the left of Figure 7.

As one can imagine, a dendrimer can be terminated with
ether amines or a variety of other functional groups that may be
used for 1) ligand conjugation chemistry, 2) display of charge to
facilitate ionic interactions (such as adhesion of nuclei acids to
polycationic amine-terminated dendrimers) or 3) encapsulation
of metals (so-called metallo-dendrimers). Glycans are one such
molecular family that have been attached to dendrimers for
application such as lectin binding, cell-targeting and inhibition of
cell adhesion. Arguably, the field of glycodendrimer technology
was pioneered by the Roy group in Montreal beginning more
than 25 years ago (190). His group have attached many tumor
antigens and other carbohydrates to dendrimers for a variety of
applications, including 1) defining density and molecular
arrangement in lectin-sugar interactions (191, 192), 2)
inhibiting these interactions in infectious disease (193) and 3)
as antitumor vaccine platforms (25, 33, 194, 195). Dendrimers
have now emerged as bona fide scaffolds for vaccines against
many diseases, including cancer. As with many of the concepts
described above, there is no shortage of recent reviews on this
subject alone (25, 196–205). Thus, in the spirit of this review, the
next paragraph will highlight some intriguing research of the last
few years.

As mentioned above, dendrimers can come in different
“flavors” that can nucleate different topologies depending on
the number of branches and the specific chemistry used to create
FIGURE 7 | Basic synthetic scheme for construction of a PAMAM dendrimer (left). Schematic representation of a 24-mer dendritic structure.
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the structures. An early iteration was developed by Tam where he
attached a lysine protected with a Boc group at both the a- and e-
nitrogen atoms to a b-alanine loaded resin (206). Deprotection
and addition now of 2 similarly-protected lysine residues
continued the growing cycle. He called these “multiple antigen
peptide” (MAP) systems where an antigenic peptide would be
synthesized on each of the nitrogen atoms of the dendritic
structure. This system was utilized by Bay, et al., to attach both
a Tn antigen TACA tripeptide and a CD4+ T-cell epitope as a
vaccine against breast cancer (194). They showed that antisera
from mice immunized with their construct could kill Jurkat cells
by antibody-dependent cellular cytotoxicity (ADCC).
Commendable on the author’s part is their conformational
analysis of the peptides on the dendrimer by NMR. They
found mostly a random coil distribution but some enhanced
stiffening around the glycosylation sites. They attributed the
enhanced activity of the multivalent system over the monomer
to the possible clustering of the MGL receptor on APC’s caused
by interaction with multiple copies of the TACA glycopeptide. A
slight twist to this dendrimeric design is the formation of
cyclopeptide-based scaffolds. A recent example of this was
presented by Renaudet and co-workers who prepared a system
containing both the Tn and TF TACAs on hexadecavalent
cyclopeptide system (207). In a synthetic strategy that used a
convergent approach to orthogonally protect different branches
of the system, they were able to mix and match addition of the TF
and Tn antigens for a heterogeneous display of the TACAs.
Binding to a Tn-specific antibody showed a distinct preference
for specific arrangements on the MAP system. The same group
has prepared similar systems bearing the sialyl-Tn TACA (208)
as well as Tn conjugated in a natural linkage to serine and one
replaced with an oxime unit, where they showed that the oxime-
linked Tn had superior immunotherapeutic properties in
vivo (209).

In a recent report, Sharma et al., showed that attachment of
simple sugars (glucose, galactose and mannose) to hydroxyl-
terminated dendrimers through a click chemistry approach,
allows crossing of the blood-brain barrier into the Tumor Micro-
Environment (TME) of glioblastomas to target overexpressed sugar
transporters due to the Warburg effect to help internalize the
dendrimer into Tumor-Associated Macrophages (TAMS) and
microglial cells. This enhanced delivery to brain tumors should
allow for delivery of small molecules drugs directly to difficult-to-
access tumors. While not technically a “glycodendrimer”, an
interesting report by Shi and coworkers has shown that a
dendrimer entrapped AuNP can reduce T-cell exhaustion in vivo
through the delivery of siRNA against the immune checkpoint
molecule PD-1 (I consider nucleic acids part of the “glyco” family)!
(210). This group has pioneered the use of these dual nanoparticle
constructs since the AuNP core imparts altered conformational
properties to the ligand presentation on the dendrimer (211). The
ingenious design is based on the use of both 1,4,7,10-
tetraazacyclododecane-N,N′,N″,N′″-tetraacetic acid (DOTA) and
1,3-propane sultone in subsequent additions to a dendrimer to
create a ligand for gadolinium based MRI imaging and a
zwitterionic cap where siRNA can be ionically trapped facilitating
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its delivery (Figure 8). In a more carbohydrate-based application,
they have also use cyclodextrin-coated dendrimer-AuNPs to deliver
siRNA to glioblastoma cells (212).

Finally, the use of dendrimers has been commercialized in the
formation of companies to develop these platforms for clinical
use. One company that is trying to market glycodendrimers is
GlycoVax in Montreal. Based on technology of Professor Roy,
Glycovax (https://glycovax.com/) is developing vaccines based
on glycan-decorated dendrimers against COVID-19.

4.2 Reprogramming the Tumor
Microenvironment (TME)
The immunosuppressive tumor microenvironment is a
challenging obstacle to overcome when attempting to develop
effective immunotherapies. A primary feature of the TME is the
presence of immunosuppressive and tumor-promoting M2-
polarized tumor-associated macrophages (TAMs). These are
characterized by an anti-inflammatory cytokine profile that
favors proliferation and tissue regeneration. Alternatively, the
M1 phenotype is pro-inflammatory and antitumor, with high
production of IL-12, nitic oxide, and reactive oxygen species
(ROS). M2 TAMs release high amounts of IL-4 and IL-10, as well
as upregulate C-type lectin receptors such as Dectin-1 and the
Mannose receptor (MR) (213). Polarization between these two
subtypes is dynamic and regulated by a series of cell-surface
receptors, signaling pathways and pathogen-associated
molecules such as LPS and other TLR agonists. Many signaling
pathways such as those associated with IRK/STAT, GM-CSF,
oxygen/ROS levels (hypoxia), various micro RNAs and
carbohydrate receptors have been shown to be involved in the
programing of either the M1 or M2 state, where the specific
physiological milieu can swing this in one direction or the other.
Better understanding of these processes and the ability to
reprogram the M2 phenotype toward M1 has been an
innovative strategy in recent tumor checkpoint-based
immunotherapy (214).

Thus, it is perhaps not surprising that a variety of strategies have
been employed to use nanomaterials, especially glycopolymer-based
systems, where targeting of either TLR’s or CLR’s may direct
polarization of one state or the other. Recent work by
Weissleder’s group has shown that delivery of Resiquimod, R848
(vide supra) encased in b-cyclodextrin-based nanoparticles could
repolarize M2 macrophages to M1 and enhance tumor suppressive
mechanisms (215). Combination therapy with anti-PD-1
checkpoint antibodies was synergistic in shrinking MC38 mouse
colon adenocarcinomas. Slightly outside the sphere of
nanotechnology, microparticles coated with mannose and
metformin, a diabetes drug that has been also shown to
reprogram TAMs, were able to reprogram M2 macrophages and
boost antitumor immunity (216). In a separate indication, what
were considered “glycocalyx-mimicking” polymeric nanoparticles
displaying different monosaccharide ligands for CLR’s were
prepared in a block-copolymer fashion and self-assembled onto
polystyrene beads. The nanosystems displaying fucose, mannose or
galactose were all able to repolarize M2 macrophages to M1 both in
vitro and in vivo (217). The same group showed similar results with
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anti-PD-L1 checkpoint inhibition synergy with polymers prepared
by RAFT polymerization with galactose and mannose units. An
application of microRNA delivery was studied where miR-125b was
delivered specifically to a pancreatic ductal adenocarcinoma
(PDAC) model using a self-assembled hyaluronic acid/PEG/
polyethyleneamine nanosystem to affect repolarization in both in
vitro and in vivomodels of these PDACs (218). Finally, it was shown
that a b-1,6 linked glucan from the fruiting body Amillariella
Mellea, an edible fungus used in traditional Chinese Medicine can
skew IL-4 induced M2 macrophages to M1 through a TLR2-
mediated mechanism (219).

There are many other nanosystems that can also repolarize
M1 to M2 that are not carbohydrate-based (220–229).

4.3 Ligand Chemistry, Number and Density
As mentioned above, many biological processes, and in
particular ones that involve cellular glycans, involve binding of
multiple copies of a “ligand” with a “receptor”. Multivalency is
nature’s way of potentiating the effect of a specific interaction,
such as an aspect of a specific signaling pathway or the adhesion
of a cell to a protein or another cell. There is no universal method
for determining coverage of any particular glyconanosystems
since the chemistry used to prepare each entity, along with the
morphology of shape and size of each system varies widely.
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There have been some standard carbohydrate analysis methods
that have been used along with other more underdeveloped ways
of approaching this question. Yan and coworkers have used the
colorimetric anthrone/sulfuric acid method to determine
carbohydrate content by a standard curve calibration method
(230). We have used the phenol/surfuric acid system for
determining polysaccharide coverage for our b-glucan AuNPs
(172) Soledad Penades whose group pioneered the use of AuNPs
in biomedical applications used quantitative 1H NMR to
determine percentages of carbohydrate and linkers in hybrid-
conjugated AuNPs (231). Yan has used quantitative 19F NMR to
quantitate carbohydrate that were photochemically attached to
perfluorinated aromatic residues on silica nanoparticles (232).
Thermogravimetric analysis can also be used by determining
elemental content of the organic matter attached to the particle
(233). This is useful for nanoparticles that are homogeneously
coated with glycans.

It is difficult to quantitate the proper arrangement and ligand
placement that may be optimum for a specific biological response.
As has been alluded to, multivalency is highly important in
carbohydrate-macromolecule interactions, and many times, the
adage “the more the merrier” holds true, especially when
comparing multivalent displays with a monomeric sugar.
However, a recent review sums this up nicely in the abstract of
FIGURE 8 | Schematic diagram of design of the dendrimer-encased AuNP from Shi et al. (A) Sequential coupling of DOTA and 1,3-propane sultone followed by
AuNP formation and Gadolinium ligation. (B) Capping with PD-1 siRNA, followed by delivery to a T-cell results in reduced PD-1 expression and restoration of T-cell
antitumor activity.
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the article. After stating that many studies have been performed on
ligand density, multivalent binding, cell internalization and size/
shape considerations, the following sentence states: “Although such
experimental studies are very insightful, information is limited and
confounded by numerous differences across experimental systems”
(234). Although this manuscript was not directed at
glyconanoparticles, many of same features may hold true for
sugar based systems. In fact, sugar-based constructs may even
offer more complexity since high affinity/avidity carbohydrate-
protein binding requires multivalency. There are however several
examples of nanoparticle design where density and distance
requirements are key to simple protein binding or stimulation of
a biological response. The following section expands on this
to morphology.

4.4 Size and Shape?
The previous paragraph begs the question of how the
morphological properties of nanoparticles affect their biological
activity, especially with respect to immune cell targeting, cell
penetration, vaccine effectiveness and cytokine release profiles.
There have been a handful of useful studies that make
predictions as to what type of shape and/or size will be taken
up more efficiently by various mammalian cells. Early work by
Albanese and Chan showed that different size AuNPs of either
spherical or rod-like shape with different aspect ratios can be
taken up differentially by Hela cells. Their work was with “naked”
citrate-stabilized AuNPs so the uptake was affected by non-
specific protein binding of each particle. Later work by Odom
showed that 50 nm AuNP spheres and 40 nm gold nanostars
coated with siRNA were taken up more efficiently into
endosomes of U87 glioblastoma cells than 13 nm AuNPs
(235). Recent work by Xie, et al., compared gold stars, rods
and triangles for uptake by the RAW264.7 macrophage cell line.
They prepared uniform nanoparticles in all three shapes coated
with methylpolyethylene glycol (mPEG) to stabilize the particles,
reduce protein binding and maintain biocompatibility. All the
nanoparticles were non-toxic to the cells up to 40 ug/ml
concentrations. Triangles were the winner, and it was shown
that each shape used a different endocytic pathway to enter the
cells (236). In the same year, the group of Kikkeri in Pune
prepared gold nano spheres, rods and stars and tested their
toxicity and biodistribution in zebrafish (237). The nanoparticles
were coated with simple a combination of short PEG units
terminated by a fluorescein derivative and another molecule
containing the same PEG chain but now terminated by an a-
mannose unit, making this study more relevant to the glycol-
nanotechnology field. All particles were also non-toxic to the
animals and their biodistribution was examined by Inductively-
Coupled Plasma Mass Spectrometry (ICP-MS). The data showed
that rod shape particles were rapidly taken up by various organs
but also cleared faster (48h), where star shaped particles
remained in the organs for much longer periods of time.
Increased uptake in the digestive tract was attributed to
mannose receptors such as dendritic cell-specific intercellular
adhesion molecule-3-grabbing non integrin (DC-SIGN) in this
organ as well as the heart. The authors postulated that the slower
clearance of the star shaped particle may make them more useful
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as a therapeutic delivery system. The same authors have recently
posted a preprint of a similar study that is much more
appropriate to the subject of this review. They prepared sphere,
rod and star-shaped AuNPs coated with a trivalent Tn-bearing
glycopeptide from MUC1 (238). They used the TLR9-agonist
CpG-deoxyoligonucleotide as a co-surface molecule on the
nanoparticles as an added adjuvant. They examined the effect
of shape and adjuvant coating to 1) cellular uptake by murine
dendritic cells, 2) Cytokine production in a DC/T-cell model
and, 3) antibody production in vivo. Quite interestingly, they
showed that uptake and immune response are “decoupled”, as
rod-shaped particle were taken up by cells more efficiently but
generated the weaker immune responses related to both cytokine
stimulation and antibody titers. Although this paper has not yet
been peer- reviewed, this would be the first study that offers a
guide of to how more efficiently design gold nanoparticles
vaccines with immunologically-relevant TACA glycopeptides,
based on shape and adjuvant selection.

There are many other reports and nanoparticle systems that
have been used to target glycan binding proteins or constructed
of carbohydrates/polysaccharides that are too numerous to
mention in this review. Provided here is a recompilation (not
comprehensive)! of reviews only from 2021 that directs the
reader to some of this work (24–27, 78, 82, 110, 239–246).
5 CONCLUSIONS AND FUTURE OUTLOOK

There are few disagreements today of the importance of cellular
glycans in a host of biological processes. Carbohydrate structures
that are displayed in various different ways on a cell, all contribute to
that cell’s proper and sometimes awry functions. Understanding the
molecular mechanisms of how these structures interact with cells,
proteins, lipids or other carbohydrates will allow researchers to
develop probes, agonists and inhibitors of processes that are
important to control proper cellular function that are propagated
through glycan-based mechanisms. In tumors, the role of TACAs
and other tumor-associated sugars has been elucidated for many
systems, and researchers have made defined inroads into
modulating these pathways to better treat neoplastic disease. This
treatise also highlights nanotechnology in these roles, where, I
believe, the development and eventual approval of glyco-
nanosystems to reprogram and inhibit tumor signaling pathways
is the future of glycan-based anticancer medicine. Three areas that
have been discussed here and are high priority for future design are:
1) Vaccines. With the success at least up to early clinical trial,
vaccines have the potential to revolutionize the cancer therapy
landscape. One of the main issues, I believe, is antigen selection. The
immunogen must be not only highly tumor selective, but truly
needs to mimic the tumor-specific presentation of the molecules.
That is, the use of techniques such as CryoEM and mass spec
imaging may offer clue as to how some of these antigens are
presented on a molecular level, and hence structural similarities
can be closely mimicked through the use of chemical or
chemoenzymatic synthesis. 2) Inhibitors of glycan-protein
interactions. There are many relevant binding events that are
glycan-mediated that contribute to tumor aggressiveness and
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Barchi Glycoconjugate Nanoparticle-Based Systems in Cancer Immunotherapy
better inhibitors that are well defined and selective can prolong life
and prevent tumor metastasis. Nanoparticles can contribute greatly
to the design of more potent and selective inhibitors that may be
appropriately formulated for drug approval. Being a new area of
therapy, regulatory agencies like the FDA are still formulating their
guidelines for the proper requirements that a nanotechnology
system must meet to progress to the stage of an “investigational
new drug” (IND). Finalizing these guidelines will accelerate future
approvals. The nanotoxicology program at the FDA is an important
center for help with this endeavor. At the same time, researchers
need to improve their formulations and toxicological evaluations
prior to submission for an IND. 3) The development of glycan and
glycopeptide-based CAR-T cell therapy. The success of CAR-T
therapy to this point makes development of glycan-based CAR-T
cells evenmore relevant, since I believe as was intimated in point #1,
the antigens that the CAR-T cells target can be made more resemble
tumors even more closely with proper glycan and peptide
combinations. So far, there have been a handful of CAR-T cells
directed at glycans or MUC1 glycopeptides, and their potential
seems promising (46, 78, 243, 246, 247).

Ultimately, it seems clear that glycoconjugate/glycan/
polysaccharide-based nanoparticles for therapeutic intervention in
Frontiers in Immunology | www.frontiersin.org 16
cancer immunotherapy, either alone or in combination with
recently approved checkpoint inhibitors, has a bright future ahead.
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