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Gaseous flow through 
heterogeneous, partially  
connected networks of pipes
Yves Bernabé

Simulations of flow of an ideal gas through heterogeneous simple cubic pipe networks with different 
pipe radius distributions and variable bond coordination numbers were performed. Networks with 
monomodal and bimodal radius distributions were constructed. A very wide range of Knudsen 
numbers was achieved. Flow simulations of purely viscous gases and incompressible liquids were also 
carried out for comparison. The permeability to gas in the purely viscous regime was larger than the 
permeability to an incompressible liquid. Based on a variety of computational tests, this result was 
likely not a numerical artifact. The simulated macroscopic flow behavior differed from the underlying 
single pipe model, depending on the radius distribution, network connectivity and magnitude of the 
externally applied pressure gradient, and was compatible with the Klinkenberg analysis only when the 
maximum Knudsen number used in each simulation was lower than 1. In this condition, the Klinkenberg 
coefficient was nearly proportional to the inverse of the network hydraulic radius while the effect of the 
radius distribution was weak and that of the network connectivity essentially negligible. The bimodal 
simulations displayed a typical percolation behavior, with the Klinkenberg coefficient remaining 
constant as long as the large pipe population was connected.

Gas flow through pipes and ducts has been a problem of great interest to physicists for nearly 150 years1. It was 
early recognized that, at high gas pressures, gas flow obeys identical laws as liquid flow, although the compressibil-
ity of gas is much higher than that of liquids. But gas flow appeared utterly different at low gas pressures. Careful 
experiments showed that, with all other variables being held constant, the apparent transmissivity of long pipes 
increased with decreasing mean gas pressure. Moreover, the magnitude of this effect was observed to increase 
when thinner pipes were used.

Analysis of the experimental evidence demonstrated that gas flow depends on the dimensionless Knudsen 
number Kn = λ/R, where R is the pipe radius and λ = (μ/p) (πRgT/2)1/2 the mean free path of the gas molecules, 
with p denoting the gas pressure, μ the viscosity, Rg the specific gas constant and T the temperature. Two extreme 
flow regimes can be described depending on Kn. At very high gas pressures or, equivalently, very low Kn, λ is 
infinitesimally small and the gas motion is controlled by the collisions of gas molecules among themselves. In 
this limit, the gas can be described as a viscous fluid subject to the usual equations of continuum fluid dynamics, 
supplemented with a no-slip boundary condition along the internal pipe wall. For long pipes, the mass flow rate 
is derived from the compressible Poiseuille flow formula:
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where L is the pipe length, Z the gas compressibility factor (Z = 1 for ideal gases), p  the mean gas pressure and Δp 
the pressure difference driving the flow.

At very low gas pressures (i.e., very large Kn), λ is many times greater than the pipe radius, intermolecular col-
lisions are essentially inexistent and the gas motion is controlled by the collisions of gas molecules with the inter-
nal pipe wall. In these conditions, continuum fluid dynamics and the concept of viscosity become inapplicable. 
The proper description is instead provided by Boltzmann’s equation, which can be shown to reduce to a diffusion 
equation where the independent variable is gas pressure2. This flow regime is usually called free molecular or 
Knudsen diffusion. In long pipes, the Knudsen diffusion mass flow rate is expressed as3:
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One implication of equation 2 is that, for ideal gases, Knudsen diffusion is insensitive to the mean gas pressure.
The limits of the viscous flow regime and Knudsen diffusion are usually estimated to be Kn < 0.001 and 

Kn > 10, respectively. The problem is to discover what happens in the transition range, 0.001 < Kn < 10. It was 
early realized that, for Kn slightly greater than 0.001, the concept of viscosity and the Navier-Stokes equation can 
be retained. The net effect of the increasing number of molecule-wall collisions is merely to change the gas veloc-
ity boundary condition along the internal pipe wall (see Klinkenberg4 and references therein). The finite tangen-
tial gas velocity developing along the internal pipe wall can be expressed based on the kinetic theory of gases as:

= −
− σ
σ

λ
∂
∂=

=

u u
r

2 ,
(3)

r R
r R

where σ, the tangential momentum accommodation coefficient (TMAC), is the fraction of wall-colliding mol-
ecules that undergo diffusive (as opposed to specular) reflections. The TMAC is usually assumed equal to 1, 
although lower values have been inferred from experimental data and numerical simulations5–9. By application 
of a perturbation method and equation 3 to long cylindrical pipes10, the mass flow rate is found to be equal to:
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where Kn is the Knudsen number evaluated at the mean gas pressure (for simplicity, the mean Knudsen number 
will be denoted Kn hereafter). Equation 4 describes the so-called slip flow regime and is normally deemed to hold 
only up to Kn ≈ 0.1, although the Klinkenberg analysis, which is based on the slip flow concept, is often used for 
much higher values of Kn.

How to model the transitional gas flow regime, i.e., for 0.1 < Kn < 10, is not totally settled at present. According 
to one school of thought, mK is negligible in comparison to mV  when Kn approaches zero while the reverse is true 
for very high values of Kn. Thus, the sum + m mV K approaches the correct limits at high and low Knudsen num-
bers and can be assumed to provide an estimate of the mass flow rate with relatively small errors for any value of 
Kn in the transitional flow regime11. This notion is theoretically justified if viscous flow and molecular diffusion 
can be considered to be independent and uncoupled12. A number of variations of this model were used to study 
gas flow in porous media3,13–17.

An alternative idea for modeling transitional flow is to note that the right-hand side of equation 3 can be 
viewed as the first term of a Taylor expansion in λ or, equivalently, Kn. The idea is then to model transitional flow 
by adding higher-order terms18. A variety of second-order slip models have been proposed in recent years1,8,9,19,20. 
Among them, the Beskok and Karniadakis’s model7 (BK) is presently receiving the most attention21–25. According 
to the BK model, the mass flow rate is given by:
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In the BK original work, the ideal gas law and total momentum accommodation were assumed, implying 
Z = 1 and σ = 17. The function F defined by equation 6 was then empirically determined by comparison with 
experimental and numerical simulation data7. The empirical values bBK = −1, α0 = 6/5, α1 = 4 and α2 = 2/5 were 
inferred from the Loyalka and Hamoodi’s computational data26. With these values, the function F can be approx-
imated by

= + + π +F K K O K1 4 48/5 ( ),n n
7/5

n
8/5

when Kn approaches zero, while it becomes asymptotically linear with a slope equal to 6, when Kn grows to 
infinity. Although the value of α0 mentioned above provides the best fit to the Loyalka and Hamoodi’s data26, it is 
not consistent with the Knudsen diffusion limit. Civan22 proposed to use α0 = 64/15π instead (he also modified 
the first factor in the right-hand side of equation 6 to avoid the ArcTan function). This change of α0 only causes 
minor changes to F in the low Knudsen number limit (i.e., the leading terms are unchanged) and produces a 
steeper slope (32/3) in the large Knudsen number limit. The BK input values (including Z = 1 and σ = 1) will be 
used hereafter.

According to Klinkenberg4, the ratio of the gas permeability to the intrinsic permeability of porous media, 
kg/k, is a linear function of 1/p of the form, kg/k = 1 + bK/p, where the Klinkenberg coefficient bK is a positive con-
stant. Since =  F m m/T V  for a single pipe is analogous to kg/k, it is interesting to assess how different F is from the 
Klinkenberg linear model, which, in the case of F, can be rewritten as F = A + B Kn, where A should be equal to 
unity. I constructed discrete representations of F spanning intervals of Knudsen numbers reaching higher and 
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higher maximum values Kmax as shown in Fig. 1 (I used the log-log scale for a better visibility of the low Kn 
region). Straight lines did fit these discrete sets of data-points very well in all cases (the goodness-of-fit R2 coeffi-
cients were all equal to 0.9999 or better), but, as can be expected from the non-linearity of equation 6, A and B 
varied with Kmax. The intercept A was always lower than 1, increasing with decreasing Kmax and asymptotically 
reaching 1 only when Kmax dropped below 1. The slope B decreased with Kmax, presumably approaching 4, the 
value predicted by equation 4, for vanishing values of Kmax (Fig. 1). These observations suggest that standard lin-
ear regression analysis applied to limited discrete datasets cannot easily detect the slight upward curvature of F 
even for Kn as high as 100. The implication is that the Klinkenberg linear extrapolation of experimental gas per-
meabilities to zero inverse gas pressure 1/p may lead to significant underestimation of the intrinsic permeability 
k in porous media with a behavior analogous to that expressed by equation 6. The obvious solution to this prob-
lem is, of course, to measure the intrinsic permeability directly by performing gas flow tests at very high gas 
pressures, i.e., in conditions where equation 1 applies. But this method cannot work in practice owing to the 
deformability of real porous media and the ensuing pressure sensitivity of intrinsic permeability.

One problem of major interest is to extend the single pipe models discussed above to general porous media. 
Among many possible approaches, one of the most popular is to follow the equivalent channel model (ECM) 
method27,28. According to ECM, the complex features of the pore space can be lumped into a few parameters 
characterizing a single representative pore channel (e.g., volume fraction, cross-sectional size and tortuosity fac-
tor). If the equivalent channel is idealized as a simple cylindrical pipe, it is easy to demonstrate that the intrinsic 
permeability is given by27,28:

=
φ

τ
k R

8
, (7)

H
2

where φ denotes the porosity, τ the tortuosity (i.e., ratio of the pipe length to its projection in the nominal flow 
direction) and the characteristic pipe radius is defined as the hydraulic radius RH (i.e., twice the volume-to-surface 
ratio of the pore space). Note that φ and RH can be physically measured in most porous media, while τ is not 
directly accessible. Variations of the ECM approach have been frequently used to model gas flow, sometimes 
in combination with numerical simulations of gas flow through three-dimensional reconstructions of the pore 
space1,14,20,22–24,29. The main drawback of the ECM approach is that it does not account for the very large variability 
in pore shape and size typical of most porous media. One simple and versatile alternative approach is to simulate 
gas flow through heterogeneous networks of pipes by incorporating the single pipe models discussed above in the 
Kirchoff equations3,15–17. Imperfectly connected networks can also be constructed, allowing investigation of the 
effect of pore connectivity on gas flow17.

Figure 1.  Three discrete representations of the function F spanning intervals of Knudsen numbers reaching 
a maximum value Kmax equal to 74 (black dots), 7.4 (blue dots) and 0.74 (red dots). The diagram shows the 
function F multiplied by 10 (blue) and 100 (red) for better visibility. The straight lines best fitting these discrete 
sets of data-points are indicated as solid curves (the curvature is a result of the log-log scale) in matching colors. 
The intercept A is clearly lower than 1, increased with decreasing Kmax and asymptotically reached 1 when Kmax 
dropped below 1.
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Numerical Procedures
The aim of this work is not to verify/falsify the single pipe models mentioned above, but to investigate their exten-
sion to heterogeneous and partially connected porous media. The network simulation approach is most certainly 
indicated for this purpose. Since the BK model has received greater support from experimental and numerical 
simulation data than other contending models, I elected to use it (i.e., equations 5 and 6) in my network simula-
tions. The numerical procedures employed here are based on the Bernabé et al.’s30 workflow template for studying 
liquid flow and ionic conduction through heterogeneous networks. The numerical procedures followed in the 
present study are briefly sketched below (more details about the Bernabé et al.30 procedures can also be found in 
previous related papers17,31).

Construction of network realizations.  Two kinds of network realizations were constructed, correspond-
ing to monomodal and bimodal radii distributions. In monomodal realizations, the radii Ri of individual pipes 
were randomly assigned according to log-uniform distributions such that the hydraulic radius of the network RH 
honored pre-selected values (note that the mean pipe radius is not equal to the hydraulic radius; see Bernabé et al.30  
for details). Since the Knudsen number depends on pore size, I considered five values of RH, namely 30, 10, 3, 1 
and 0.3 10−6 m (the pipe length was L = 10 RH). The coefficient of variation of the distribution, CV, is a convenient 
measure of the pore size variability. Here, I prepared network realizations ranging from nearly homogeneous 
(CV = 0.05) to extremely heterogeneous (CV = 1.05). I also varied pore connectivity by randomly removing a 
fraction of the pipes and thus decreasing the coordination number z (mean number of connected pipes per nodes 
in the network). The coordination numbers considered here ranged from 3 to 6, corresponding to half and fully 
filled SC networks, respectively. The critical coordination number zc at the percolation threshold is approximately 
equal to 1.5 in all three-dimensional networks32. For all combinations of RH, CV and z, multiple 12 × 12 × 12 and 
16 × 16 × 16 network realizations were constructed. For the bimodal realizations, two populations of pipe with 
very narrow radii distributions (CV = 0.05) were considered. The set of large pipes had a hydraulic radius ten 
times greater than that of the small pipes (the pipe length was equal to ten times the hydraulic radius of the large 
pipes population). Five combinations of large and small hydraulic radii was used, i.e., 30/3, 10/1, 3/0.3, 1/0.1 and 
0.3/0.03 10−6 m. In each realization, the individual pipes were randomly assigned one or the other distribution as 
specified by pre-selected number fractions of large and small pipes, wL and wS = 1 − wL. The pipe radii were then 
accordingly drawn. No pipes were removed, implying z = 6 in all bimodal realizations. However, the separate 
coordination numbers of large and small pipes, zL and zS, varied between 0 and 6 depending on wL.

Gas flow simulations.  Simulating fluid flow through pipe networks consists in solving the Kirchoff equa-
tions, i.e., to impose local conservation of mass at each node i as ∑ αma i  = 0, where the subscript α refers to the 
nodes connected to i and the mass fluxes can be expressed using the appropriate one among equations 1–5 (note 
that, for the sake of simplicity, pure Poiseuille flow was assumed and entrance flow corrections were not included 
in the Kirchoff equations; the pipe length was generally chosen long enough to validate this assumption). One 
important difference of gas and incompressible liquid flow is that the laws of transport through individual bonds 
are non-linear in the case of gas flow, whereas they are linear for incompressible liquids. As a consequence of the 
non-linearity, the Kirchoff equations are much harder to solve for gas than liquid flow simulations. Limitations in 
computer power prevented me from utilizing the high-performance, parallelized, successive over-relaxation 
(SOR) iterative solver of Li et al.17. Instead, I implemented a simple, basic version of the relaxation method. The 
slowness of my iterative non-linear solver imposed strong restrictions on the number and size of the simulations 
that I could be run in a realistic time frame. In particular, I could not carry out the Bernabé et al.30 technique of 
using different types of networks (i.e., simple cubic, BCC and FCC) to test the generality of the results. Only sim-
ple cubic simulations were performed here (note that Li et al.17 obtained results from BCC and FCC simulations 
quite consistent with the simple cubic ones).

The so-called permeameter boundary conditions were used (constant pressures applied to the entry and exit 
faces, no flow allowed through the sides). To test the accuracy of the solver I compared the intrinsic permeability 
simulated using a gas in the purely viscous regime (equation 1) and the permeability kL of an incompressible liq-
uid through identical network realizations (in liquid flow simulations, the linear Kirchoff equations were solved 
using the Krylov method). In principle, one would expect kL and k to be equal, but I found that the solver yielded 
values of k greater than kL. The difference between k and kL depended on the pore radius variability measure CV 
and, to a lesser extent, to the pore coordination number z. The ratio k/kL ranged from 1 to 1.1 for nearly homoge-
neous networks (CV = 0.05), from about 1.1 to 1.4 for CV = 0.55 and reached much greater values (from 1.3 to as 
high as 20) for the most heterogeneous networks (CV = 1.05). The largest ratios occurred when the connectivity 
was low (z ≈ 3). These observations are illustrated in Fig. 2, which shows a three-dimensional plot of ensemble 
averaged values of k as functions of RH and (z − zc), and, a schematic visualization of the liquid permeability field 
as a series of lines in constant RH and constant (z − zc) planes. The kL lines have the form kL = C RH

2 (z − zc)β pre-
dicted by the Bernabé et al.30 model (the numerical values of C and β specifically associated with CV = 0.05, 0.55 
and 1.05 are given in Bernabé et al.30).

Although the solver used here was accurate in nearly homogeneous networks, the accuracy could be deterio-
rating in networks with increasing heterogeneity, thus casting doubts about the validity of the k/kL > 1 inequality. 
Alternatively, the increase of k/kL with increasing heterogeneity may reflect a real gas flow property. This issue 
is difficult to resolve. Since the accuracy of the solver depends on the assumed initial pressure field (IPF), I tried 
several possible IPF’s, including the pressure field predicted by equation 1 for a perfectly homogeneous network 
(Ri = RH for all pipes) or that produced by the liquid flow simulation. The diverse solutions obtained did not differ 
by more than 1 or 2 percent. I also tried to change the solver arrest condition in purely viscous gas flow simula-
tions and found that the intrinsic permeability increased with tightening of the arrest condition. A tighter arrest 
condition presumably leads to improved accuracy, albeit at a great cost in CPU time. Thus, the observed increase 
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of k/kL with increasing heterogeneity is in fact more likely to be a valid result than not. In any event, to avoid 
including potentially spurious results in the subsequent analyses, I discarded the highly heterogeneous network 
realizations, for which k/kL was larger than 2 (i.e., the orange data-points in Fig. 2).

Since the Knudsen number varies with gas pressure, gas flow for each network realization was simulated at 6 
different mean macroscopic gas pressures P  (namely, 10, 0.1, 0.01, 0.003, 0.001 and 0.0003 MPa). These variations 
in mean gas pressure combined with those of the hydraulic radius produced more than 6 orders of magnitude 
changes in Knudsen numbers, Kn = (μ/P  RH) (πRgT/2)1/2. The maximum Knudsen numbers Kmax achieved for 
each networks realization were 74, 22, 7.4, 2.2 and 0.74 corresponding to RH = 0.3, 1, 3, 10 and 30 10−6 m, respec-
tively. Varying P  also allowed performing the Klinkenberg analysis for each network realization (i.e., examining 
the dependence of the gas permeability kgas on the inverse gas pressure 1/P ).

Two different rules were used to set the macroscopic pressure difference ΔP, the small-gradient rule, ΔP = P /10, 
and the large-gradient rule, ΔP = 2(P  − 0.0001). The large-gradient rule obviously produced much greater varia-
tions in local Knudsen numbers than the small-gradient rule, especially when the mean pressure P  was high (it also 
yielded slightly higher k/kL ratios). Only the small gradient-rule was used with the bimodal network realizations. All 
the simulations assumed that the saturating gas was nitrogen at room temperature. For simplicity, the compressibil-
ity factor Z was taken to be equal to 1 and full momentum accommodation was considered (σ = 1).

Results
Monomodal networks.  For each network realization, values of k and kg were calculated using equation 1 
and equations 5 and 6, respectively. The simulated kg’s corresponding to different mean gas pressures P  can con-
veniently be expressed in normalized form, kg/k, and displayed in Klinkenberg-type plots (Fig. 3). Linear func-
tions, kg/k = A* + B*/P , appeared to fit the simulated data very well in all cases, although a subtle underlying 
non-linearity was indicated by the dependence of A* and B* on the maximum Knudsen number reached for each 
kg/k curve. For comparison with F, the normalized gas permeability can be recast as a function of the Knudsen 
number

= +k k A BK/ ,g n

where A and B depend on Kmax. The values of A and B in nearly homogeneous networks (CV = 0.05) were very 
close to those estimated from the function F and, furthermore, were not significantly affected by changes in con-
nectivity (Fig. 4). This good agreement of kg/k and F in homogeneous networks was not preserved, however, for 

Figure 2.  A three-dimensional plot of ensemble averaged values of k as functions of RH and (z – zc) for three 
values of CV (0.05, black dots, 0.55, blue dots and 1.05 red and orange dots). Incompressible liquid flow was 
performed in the same conditions. The color-matching solid and dashed lines in constant RH and constant (z 
− zc) planes help visualize the liquid permeability field kL for comparison with k. For the lowest values of CV, k 
and kL are in good agreement while k is clearly greater than kL for CV = 1.05 (the data-points with k/kL > 2 are 
indicated in orange).
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higher levels of heterogeneity. In network realizations with CV ≥ 0.55, A and B for kg/k increasingly diverged from 
their F counterparts when CV was increased and/or z decreased. But the most striking result was that the intersect 
A had completely different forms when the small- and large-gradient rules were used. With the small-gradient 
rule, the results were analogous to those shown in Fig. 1, namely, A was lower than 1 and decreased with increas-
ing Kmax. In contrast, values of A larger than 1 and increasing with Kmax were obtained when the large-gradient 
rule was applied (Fig. 4). An increase of A with Kmax indicates a non-linear Klinkenberg curve with a downward 
curvature and implies an overestimation of k if the Klinkenberg extrapolation is used. The implication is thus that 
experimental Klinkenberg plots may yield incorrect underestimates or overestimates of the intrinsic permeability 
if the maximum Knudsen number investigated is larger than about 1 (a limit suggested by Fig. 4), depending on 
the heterogeneity level and the magnitude of the pressure gradient.

Since the Klinkenberg analysis can be properly performed when Kmax is lower than 1, I calculated the 
Klinkenberg coefficient bK for the various network realizations excluding the kg/k data obtained for Kn > 1 (Fig. 5). 
In simulations using the small-gradient rule, bK was approximately proportional to the inverse hydraulic radius, 
bK ≈ C*/RH, with C* a relatively weak linear function of CV (specifically, C* = 0.034 + 0.2CV). Importantly, there 
was no discernable effect of connectivity (the data-points fell on nearly horizontal lines in constant RH planes; 
Fig. 5). The large-gradient rule produced similar results with slightly larger and more variable values of bK (Fig. 5).

Bimodal networks.  The intrinsic permeability k generally decreased with increasing wS and a sharp drop 
occurred when the set of large pipes became disconnected (i.e., for wL ≈ 0.25 or wS ≈ 0.75). The variations of k 
with wS, including the singularity observed above the large pipes percolation threshold (for wL ≥ 0.25 or wS ≤ 0.75; 
Fig. 6a), were similar for all hydraulic radii combinations and were well reproduced by a simple modification of 

Figure 3.  Examples of Klinkenberg plots of the simulated ratio kg/k as a function of the reciprocal mean gas 
pressures 1/P  (CV = 1.05 and z = 3). The small-gradient rule was used in (a) and the large-gradient rule in (b). The 
values of RH and Kmax corresponding to each set of simulations are indicated in the insets in colors matching the 
data-points. The color-matching solid lines represent the best fitting linear functions, kg/k = A* + B*/P . These 
lines show that the intercept A* was lower than 1 when the small gradient was used and greater than 1 otherwise.

Figure 4.  Values of (a) the slope B and (b) the intersect A of the best fitting linear function, kg/k = A + B Kn, as 
functions Kmax. The values of CV and z − zc used for each set of simulations are given in the inset in matching 
colors. The solid symbols and lines indicate that the large-gradient rule was used whereas the open symbols and 
dashed lines correspond to the small-gradient rule. The thick grey lines visualize A and B previously estimated 
for the function F.
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the percolation-based binary mixing model of Bernabé et al.33. The Bernabé et al.33 model uses different mixing 
laws above and below the percolation threshold of the high-permeability phase, namely, the upper and lower 
Hashin-Shtrikman bounds for wL > 0.25 and wL < 0.25, respectively. A better fit was obtained here by replacing 
the lower Hashin-Shtrikman bound with the geometric average (see details in Appendix A).

The Klinkenberg coefficient bK also displayed a typical percolation behavior. For each hydraulic radii combina-
tion, bK remained nearly constant until wS approached the percolation threshold, where a sudden jump occurred 
(Fig. 6b). Strikingly, the singularity was located below the large pipes percolation threshold (for wL ≤ 0.25 or 

Figure 5.  A three-dimensional plot of the Klinkenberg coefficient bK for the various network realizations 
excluding the kg/k data obtained for Kn > 1 as a function of RH and z − zc. The values of CV used in the 
simulations are given in matching colors (the orange dots represent the simulated bK for CV = 1.05 using 
the large-gradient rule). The horizontal solid straight lines in constant-RH planes demonstrate that bK was 
essentially insensitive to connectivity changes. The inclined dashed lines in constant-(z − zc) planes show that 
bK was linearly related to the inverse hydraulic radius.

Figure 6.  Results of the bimodal simulations. The variations with wS of (a) k and (b) bK. The five combinations 
of large and small hydraulic radii used in the simulations are indicated in the inset in matching colors. The thick 
vertical grey line shows the location of the percolation threshold of the large pipe population. The discontinuous 
dashed lines in (a) show the good fit obtained with the modified Bernabé et al.33 model (see text and 
Appendix A for more details). The horizontal dashed lines in (b) demonstrate that bK is nearly constant until the 
percolation threshold of the large pipe population is nearly reached.
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wS ≥ 0.75; Fig. 6b) and not above as normally expected. Thus, the connectivity of the large pipes significantly 
affected k but had a negligible influence on bK (this is similar to the lack of sensitivity of bK to z − zc in Fig. 5). 
Below the percolation threshold, the (disconnected) large pipes still strongly affected bK while their effect on k 
was weak.

Discussion
Upscaling of the BK single pipe model.  The relationship of kg/k and Kn obtained in the simulations, in 
effect, represents the result of upscaling the BK model from the scale of a single pore to that of a porous body 
containing many pores. One manifest result is that the simulated macroscopic behavior was not always similar 
to that predicted by the BK model. The simulated data revealed very weakly non-linear Klinkenberg curves, 
asymptotically becoming linear at high Knudsen numbers, as expected from the BK model. But both upward- 
and downward-bending of the Klinkenberg curves were observed whereas equations 5 and 6 only show upward 
curvature. Indeed, rare but clear instances of upward or downward bending of experimental Klinkenberg curves 
have indeed been observed34–36. However, the subtle non-linearity predicted by the simulations could often be 
obscured by experimental uncertainties.

The main factor producing weakly non-linear Klinkenberg curves in the simulations was the heterogeneity 
of the field of local Knudsen numbers, which itself resulted from the geometrical heterogeneity of the networks 
combined with the gas pressure difference imposed externally. The origin of the strong non-linearity occasionally 
observed in rocks is less clear. Rarefaction effects such as those predicted by the BK model must have played a role 
but were probably not the only cause since Knudsen numbers larger than 1 were rarely reached in these experi-
ments (see Fig. 9 of Sinha et al.34 or Figures 14 and 15 of Wang et al.36). Other causal factors include deformability 
of the porous material, which may have a strong effect at high gas pressures (for example, in Fig. 7 of Wang et al.36 
the increase of kg as the inverse gas pressure approaches 0 was likely due to a decrease of the effective pressure; see 
also Letham and Bustin37), the non-ideal constitutive behavior of the gas3 and gas adsorption in porous media 
with a very small pore size1.

Difference of liquid and intrinsic gas permeability.  Another important result is that the intrinsic per-
meability k estimated from purely viscous gas flow simulations was apparently larger than the liquid permeability 
kL. As discussed in section 2, there is a reasonable possibility that the enhanced efficiency of compressible flow 
with respect to incompressible flow was not a numerical artifact but resulted from genuine differences between 
the pressure fields produced in identical networks by flow of a compressible gas and an incompressible liquid. 
To illustrate this point, the normalized gas and liquid pressure fields, Pi and Πi, obtained for the same network 
realization (RH = 30 10−6 m, CV = 0.55 and z − zc = 4.5) were plotted against each other in Fig. 7a. Two versions 
of Pi corresponding to the small- and large-gradient rules are shown in the same diagram. The effect of gas com-
pressibility is evident for the large-gradient dataset (quasi-quadratic Pi versus Πi trend) while it is almost invisible 
in the small gradient case (quasi-linear trend). Most importantly for this discussion, the relationship between 
Pi and Πi is blurred by strong fluctuations with respect to the overall trends. These fluctuations are irregular 
but not random as they resulted deterministically from the specific Ri field of this network realization. Under 
close examination, identical very strong fluctuations can easily be identified in the large- and small-gradient 
data-point clusters, implying that the geometrical heterogeneity of the network affected the two pressure fields in 
a nearly indistinguishable way. This view is supported by a cross-plot of the large- and small-gradient gas pressure 
fields, precisely outlining a fluctuation-free, compressibility-controlled relationship among the two pressure fields 
(Fig. 7b). Similar observations were made for network realizations with larger CV and/or smaller z – zc, although 
the level of numerical noise was higher than in Fig. 7.

Ratios of Klinkenberg-corrected gas permeability to liquid permeability, k/kL, significantly greater than 1 have 
been experimentally observed in crystalline rocks (Christian David and Jerome Wasserman, personal commu-
nication), in tight sandstones38,39 and other materials such as clay-bearing fault gouge40 or mortar41. The origin of 
the experimental k > kL discrepancy remains unclear. The nature of the saturating liquid or gas appears to be very 
important. Permeability to water tends to be lower than permeability to non-polar liquids41, suggesting that water 
flow tests can be strongly affected by water-solid interactions (note that distilled water was observed to reduce 
permeability more than brine38,40). Gas flow experiments showed that permeability to nearly ideal gases such as 
helium is substantially higher than the permeability to non-ideal gases such as methane and that the difference 
increases with non-ideality3,34.

Effect of the pressure gradient.  Besides the effects discussed above, the magnitude of the pressure gradi-
ent also affected the gas pressure fields simulated in conditions corresponding to moderate to high Knudsen 
numbers. Cross-plots of the large- and small-gradient pressure fields simulated in the same realizations are shown 
in Fig. 8 for P  = 0.01 and 0.0001 MPa and various input parameters (CV = 0.55, z – zc = 4.5 and RH = 30, 10, 3, 1 
and 0.3 10−6 m). The Knudsen numbers achieved in these simulations increased from 0.022 to 22 with decreasing 
RH and P . As in Fig. 7b, the cross-plotted curves show very small fluctuations about the well-delineated overall 
trends. The important observation is that these curves reveal a regular transition with decreasing Kn from quad-
ratic to nearly linear trends (Fig. 8). Thus rarefaction and compressibility effects tend to balance each other in gas 
flow at large Knudsen numbers.

Implications for the Klinkenberg analysis.  The simulated gas flow at various gas pressures was compati-
ble with the Klinkenberg analysis only when the maximum Knudsen number considered was lower than 1. Since 
the ultimate purpose of the Klinkenberg analysis is to determine the intrinsic permeability k, substantial errors in 
k can occur unless carefully selected experimental conditions are used: (a) the externally applied pressure differ-
ence across the sample should be minimized, (b) the highest mean gas pressure reached during the measurements 
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should be much smaller than the confining pressure to reduce variations in effective pressure and the associated 
pore space deformations, (c) the lowest mean gas pressure should correspond to a Knudsen number no greater 
than 1, and finally, (d) substantially non-ideal gases should be avoided (e.g., methane, carbon dioxide).

The relationship between k and bK is also an issue of great interest in rock physics. Experimental data suggest 
a power law relationship, bK ∝ k−n. Values of the exponent n between 0.33 and 0.39 were obtained from large 
rock datasets38,42. However, these values can be considered uncertain owing to the very large scatter clouding the 
data. Wang et al.36 measured k and bK in two gneiss samples subjected to increasing confining pressures. They 
found very well defined power laws with n = 0.20 and 0.53, demonstrating that the relationship between k and 
bK is highly variable for individual rocks. Civan22 derived a model predicting a slightly different power law, bK ∝ 
(k/φ)−n, where φ denotes porosity and n = 1/2 (Sampath and Keighin39 applied this model to their data and found 
n = 0.53). The values of k and bK obtained here in monomodal simulations are represented in a three-dimensional 
diagram against each other and the hydraulic radius RH of the network realizations (Fig. 9). The diagram shows 
that, as already mentioned in sections 3 and 4, k and bK are very sensitive to the hydraulic radius and generally 
obey the power laws, k ∝ RH

2 and bK ∝ 1/RH (the dotted lines shown in Fig. 9 for comparison were calculated such 
that their projections on the k − RH and bK − RH planes obeyed these power laws). The intrinsic permeability is 
also significantly affected by pore size heterogeneity CV and pore connectivity z − zc while the Klinkenberg coeffi-
cient is weakly affected by CV and almost totally insensitive to z − zc (Li et al.17 obtained very similar results using 
the Javadpour pipe model). Combining these power laws, one easily finds bK ∝ k−1/2. However exponents lower 
than ½ as observed in natural rocks38,42 can be obtained if subsets of the simulated data are appropriately selected. 
Reduction of n is easily achieved by introducing some sort of correlation of k to z − zc and anti-correlation to CV, 
a reasonable assumption since highly permeable rocks, indeed, possess better pore connectivity and tend to show 
less pore size relative variability than those with very low permeability.

Figure 7.  (a) Plot against each other of the normalized gas and liquid pressure fields, Pi and Πi, obtained for the 
same network realization (RH = 30 10−6 m, CV = 0.55 and z − zc = 4.5). The pressure fields Pi corresponding to 
the small- and large-gradient rules are drawn in blue and red, respectively. The arrows point to examples of the 
same large fluctuations that can be identified in both pressure fields. (b) Fluctuation-free cross-plot of the large- 
and small-gradient gas pressure fields for the same network realization.

Figure 8.  Cross-plots of the large- and small-gradient pressure fields simulated in the same realizations 
(CV = 0.55, z − zc = 4.5) for two values of the mean gas pressure (a) 0.01 MPa and (b) 0.0001 MPa. The values 
of RH and Kn used in these simulations are given in the insets in matching colors. The cross-plotted curves show 
very small fluctuations about the overall trends and thus demonstrate a regular transition with decreasing Kn 
from quadratic to nearly linear trends.
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Bimodal networks.  The bimodal networks investigated here are not realistic representations of rocks con-
taining micro-porosity (a more truthful image is given by dual porosity networks43). The results obtained are 
nevertheless quite instructive. Both the intrinsic permeability and Klinkenberg coefficient displayed typical per-
colation singularities when wL crossed the percolation threshold of the large pipe population (Fig. 6), although 
the behaviors of k and bK were very different. The intrinsic permeability simulated data are very well reproduced 
using two different binary mixing laws, the upper Hashin-Shtrikman bound above (i.e., to the left of the grey 
line in Fig. 6a) and geometric averaging below the percolation threshold (see Appendix A). In this model, the 
percolation singularity results from the critical power law describing the number fraction of large pipes that 
belong to the connected cluster (here, I used the classic value, 0.41, of the critical exponent). In the case of the 
Klinkenberg coefficient, however, the singularity is located below the percolation threshold (i.e., to the right of the 
grey line in Fig. 6b). Remarkably, bK appears to be constant, independent of wL, above the percolation threshold. 
This peculiar behavior may be related to the insensitivity of bK to z – zc observed in monomodal simulations. This 
result suggests that, in dual porosity rocks, bK may be insensitive to the presence of micro-porosity as long as the 
macro-pore population is connected.

Conclusions

	(a)	 The flow of an ideal gas through heterogeneous and imperfectly connected simple cubic networks of pipes 
was simulated numerically. The simulations included both rarefaction and compressibility effects. The 
permeability to gas in the purely viscous regime (Kn = 0) was found to be greater than the permeability to 
an incompressible liquid. This result suggests that a compressible fluid may flow through a heterogeneous 
porous media more efficiently than an incompressible one. Non-ideal constitutive laws may have an impor-
tant additional effect.

	(b)	 The functional dependence of gas flow on the macroscopic Knudsen number differed from that predicted 
by the BK single pipe model and was contingent on the pipe radius distribution, the pore connectivity and 
the magnitude of the externally applied pressure gradient. The implication in terms of the Klinkenberg 
analysis was that extrapolation of a Klinkenberg curve cannot be trusted to provide an accurate estimate of 
the intrinsic permeability unless the maximum Knudsen number investigated is lower than 1.

	(c)	 The Klinkenberg analysis was applied to appropriate subsets of the simulated data (Kmax < 1). The Klink-
enberg coefficient bK is almost completely insensitive to pore connectivity, only moderately affected by the 
width of the pipe radius distribution, and thus nearly proportional to the inverse hydraulic radius of the 
network.

	(d)	 In the bimodal simulations, the intrinsic permeability k displayed a typical percolation behavior, with a sin-
gularity occurring immediately above the percolation threshold of the large pipe population. The Klinken-
berg coefficient bK showed an unusual behavior. It remained constant above the percolation threshold and 
developed a typical percolation singularity below it.

Figure 9.  A three-dimensional plot of k, bK and RH for monomodal network realizations. The values of CV are 
indicated in the inset in matching colors. The color-matching dashed straight lines visualize the power laws, k ∝ 
RH

2 and bK ∝ 1/RH approximately followed by the simulated k and bK.
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Data Availability Statement
The data are available upon request at yvb@mit.edu.
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