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Gestational hypoxia is a risk factor in the development of pulmonary hypertension
in the newborn and other sequela, however, the mechanisms associated with the
disease remain poorly understood. This review highlights disruption of metabolism by
antenatal high altitude hypoxia and the impact this has on pulmonary hypertension in the
newborn with discussion of model organisms and human populations. There is particular
emphasis on modifications in glucose and lipid metabolism along with alterations in
mitochondrial function. Additional focus is placed on increases in oxidative stress and
the progression of pulmonary vascular disease in the newborn and on the need for
further exploration using a combination of contemporary and classical approaches.
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GESTATIONAL HYPOXIA AND THE NEWBORN LUNG

A mother’s womb provides a nurturing environment for her unborn child, helping to maintain
physiological homeostasis when presented with various prenatal stressors. Such maternal
compensation allows the fetus to develop fully and thrive under less than ideal conditions. Exposure
to excessive gestational hypoxia or other intrauterine stress, however, may cause fetal abnormalities
or death. Stress-related physiological aberrations that begin in utero can also cause fetal organ
systems to become compromised or fail even before birth. Intrauterine stress can result in a myriad
of newborn morbidities and also program the infant to have diseases later in life (Longo and Pearce,
2005; Pearce, 2014; Ducsay et al., 2018). This review is centered on the disruption of metabolism by
antenatal high altitude hypoxia and the impact this has on pulmonary hypertension in the newborn
with discussion of issues that arise in human populations and the use of model organisms.

Antenatal hypoxic exposure places a significant stress on the fetus, which can cause growth
restriction that is dependent on the degree of exposure. Stress-related fetal growth restriction
increases the risk of infant morbidity and mortality as well as enhances the possibility of developing
diseases that occur later in life. Young children with growth restriction can have lower cognitive
scores and worse academic performance compared with similar preterm infants who do not suffer
growth restriction or a failure to thrive (Cole and Lanham, 2011; Homan, 2016). Complications
and morbidities associated with stress-related developmental abnormalities and growth restriction
are costly and present significant financial burdens on families of sick infants as well as our
public health system. Gestational hypoxia can be a consequence of placental insufficiency,
placental infarcts, high altitude residence, maternal smoking, congestive heart failure, heart valvar
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diseases, pulmonary diseases, acute/chronic respiratory tract
infections, anemia, preeclampsia, and other conditions.

Worldwide many women live or sojourn to high altitude
during pregnancy, which causes fetal hypoxia and places the
fetus at risk of developing disease. Studies on humans have
unmasked critical phenotypic changes associated with gestational
hypoxia in native and non-native populations (Niermeyer et al.,
1995; Weissmann et al., 2003; Scherrer et al., 2010), including
congenital heart defects in Tibetan children with a prevalence
that stratifies based on their altitude of residence (Chun et al.,
2019). Others have begun to define a number of genetic
modifications in native populations (Simonson et al., 2010;
Eichstaedt et al., 2014; Nanduri et al., 2017; Gnecchi-Ruscone
et al., 2018). Even still, animal models are vitally important to
our understanding of the mechanistic underpinnings of how
long term exposure to high altitude leads to disease. When
using animal models the oxygen tensions can be titrated to
induce stress on the mother and unborn infant that ranges from
being relatively mild to extreme. The magnitude of stress can
be adjusted because it is based on the altitude and duration
of exposure as opposed to other multifactorial stress models
in animals, such as uterine artery ligation and consequent
placental insufficiency.

We have used a gestational long-term high altitude sheep
(LTH) model for over 20 years to understand the relevant
mechanisms that underlie functional and structural adaptations
in the lung and other organ systems (Ducsay et al., 2018).
Pregnant sheep are placed at the White Mountain Research
Station at 3,801 m for the latter majority of pregnancy. This
altitude is significant as it is similar to that of Lhasa Tibet and
La Paz Bolivia, which are home to millions of people. Being
at this altitude results in an inspired PO2 of approximately
90 Torr for pregnant mothers and animals, which is a ∼35%
reduction from sea level. In turn, in the pregnant ewe the fetal
arterial PO2 decreases by roughly 20% (Ducsay et al., 2018).
Studying the effects of this antenatal hypoxic exposure in fetal
and newborn sheep has enabled us to better understand the
etiology of hypoxia-related dysregulation in fetal, newborn and
adult physiology. Our group chose sheep for exploration of
prenatal programing of disease because fetal sheep have a similar
developmental profile, are of similar size to human infants, and
because we have the ability to perform invasive studies. Findings
from our group illustrate that LTH leads to many respiratory,
cardiovascular, endocrine, adipocyte, and neural impairments in
fetal and newborn lambs and can disrupt normal physiological
function in pregnant and non-pregnant ewes (Lewis et al., 1999;
Garcia et al., 2000; Arakawa et al., 2004; Longo and Pearce, 2005;
Ducsay et al., 2007, 2018; Gao et al., 2007; Xue et al., 2008; Hubbell
et al., 2012; Adeoye et al., 2014, 2015; Myers et al., 2015; Newby
et al., 2015; Blum-Johnston et al., 2016).

The lung is particularly vulnerable to hypoxemic damage
during the prenatal and neonatal periods in various species
including humans, in part because the organ experiences
marked developmental plasticity both before and after birth
(Papamatheakis et al., 2013). Long term prenatal high altitude
stress in particular places infants at risk of developing pulmonary
hypertension (Niermeyer et al., 1995; Weissmann et al., 2003;

Scherrer et al., 2010), high altitude pulmonary edema (Niermeyer
et al., 2009), and idiopathic pulmonary hypertension later
in life (Grunig et al., 2005). Human infants exposed to
gestational hypoxia adapt poorly to breathing air because the
low oxygen exposure impairs lung development. Lungs of these
infants manifest with structural and functional defects that
program them to be susceptible to disease throughout life
(Goldberg et al., 1971).

We and others have found that hypoxia-induced pulmonary
vascular disease, which occurs in human infants, can be
recapitulated in fetal and newborn sheep from pregnant ewes
living at high altitude. Fetal sheep that gestate at 3,801 m have
thickened resistive pulmonary arteries, similar to afflicted human
newborns (Bixby et al., 2007; Xue et al., 2008; Sheng et al.,
2009), effects that persist in newborn lambs that remain at high
altitude (Herrera et al., 2007, 2010). Fetuses and lambs born at
high altitude have other abnormalities that parallel infants with
hypoxia-induced pulmonary hypertension (Berger and Konduri,
2006; Abman, 2007; Konduri and Kim, 2009), including elevated
pulmonary pressures, exacerbated hypoxic-induced pulmonary
vasoconstriction (Herrera et al., 2007, 2010; Blood et al., 2013),
impaired vasodilation (Blum-Johnston et al., 2016), arterial
remodeling (Bixby et al., 2007), and right ventricular hypertrophy
(Herrera et al., 2007). Studies further demonstrate that Ca2+

signals are disrupted in endothelium and smooth muscle and this
involves modifications in the expression and function of multiple
receptor signaling systems and ion channels (Herrera et al., 2007,
2010; Goyal et al., 2011; Hadley et al., 2012; Blood et al., 2013;
Blum-Johnston et al., 2016; Shen et al., 2018).

High altitude-induced changes in the structure and function
of the cardio-respiratory system that result in pulmonary
hypertension in humans and animal models may be related
to hypoxia-mediated changes in cellular metabolism, oxidative
stress, and inflammatory processes, elements that have not been
thoroughly examined in humans or animal models. The influence
of high altitude gestation on metabolism is important to consider
as the ensuing chronic hypoxia reduces oxygen uptake and
delivery to immature fetal tissues (Cosse and Michiels, 2008).
Varying degrees and durations of high altitude exposure are also
likely to cause differential impact on metabolic adaptations in the
fetus. Long-term multigenerational living or relocation to high
altitude can lead to the selection of genetic and epigenetic traits
(Simonson et al., 2010; Eichstaedt et al., 2014; Nanduri et al.,
2017; Gnecchi-Ruscone et al., 2018). The phenotypic and genetic
changes can be unique to the human populations examined,
as illustrated by studies on Andean and Tibetan populations
(Simonson et al., 2010; Eichstaedt et al., 2014; Heinrich et al.,
2019). Native Tibetans have modifications to the EGLN1 and
EPAS genes that result in modifications to hypoxia inducible
factors (HIF1α) and HIF2α, respectably that prevent these
transcription factors from being activated normally. Given the
role of these genes in activating erythropoietin and erythrogenesis
these modifications have caused Tibetans to adapt such that
high altitude does not increase hematocrit levels (Simonson
et al., 2010; Tashi et al., 2017; Heinrich et al., 2019). This
differs from Andean populations who can have extremely high
hematocrit values, and who do not have the changes in EGLN1
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that restrict erythrogenesis (Heinrich et al., 2019). Epigenetic
changes can result in modifications in DNA methylation, histone
modifications, as well as changes in non-coding RNAs all
of which regulate gene transcription and translation allowing
for developmental plasticity (Ducsay et al., 2018). Associated
with these epigenetic modifications, short term sojourns to
high altitude can induce developmental adaptations as well as
abnormalities (Jones et al., 2019). While we do not know all of
the changes in the pulmonary vasculature due to prenatal hypoxic
exposure and high altitude living, the genetic and epigenetic
changes due to high altitude living are likely to have great impact
on cellular metabolism (Woolcott et al., 2015; Murray, 2016;
Murray and Horscroft, 2016; Stenmark et al., 2018).

DISRUPTION OF METABOLISM BY HIGH
ALTITUDE GESTATION

Glucose Metabolism
The general influence of hypoxia on cellular metabolism is
known, however, less is understood regarding the effects in
the lung and even less is known about the influences on
the fetus or infant as compared to that of the adult. The
impact of gestational hypoxia has been mostly investigated
in animal models including rodents, sheep, and other species
(Bixby et al., 2007; Herrera et al., 2007, 2010; Al-Hasan
et al., 2013; Breckenridge et al., 2013; Neary et al., 2014;
Allison et al., 2016; Mcgillick et al., 2017; Blum-Johnston
et al., 2018). In humans, there have also been examinations
of short-term high altitude adaptation in native adult Tibetans
and non-native lowlanders (Ge et al., 2012; Woolcott et al.,
2015; Murray, 2016; Murray and Horscroft, 2016). There are
distinctions between the metabolic adaptations to high altitude
that occur in these native and non-native adult populations,
though individuals from both populations exhibit an increase
in cellular glycolysis along with a decrease in beta-oxidation
of fatty acids as well as citric acid intermediates (Table 1;
Murray, 2009, 2016; Murray and Horscroft, 2016). Further, in
a fetal sheep model, exposure to a low oxygen environment
can elicit a glycolytic shift in glucose metabolism with an
increase in lactic acid production and appearance in the plasma
(Allison et al., 2016).

Even though many of the effects of high altitude on glycolysis
have been observed with transition and residency in high altitude
environments, a majority of our knowledge regarding the effect of
hypoxia on glycolytic metabolism is derived from cancer biology.
In the case of cancer, tumors often have limited nutrient supply
and oxygenation as cellular growth outpaces vascularization.
Even when cancer cells do have sufficient oxygen they still
metabolize more glucose than normal cells and produce greater
lactic acid than non-cancerous tissues in what is known as
“aerobic glycolysis” or the “Warburg effect” (Huang et al., 2014).
Cancer cells reduce their reliance on mitochondrial oxygen-
dependent ATP production in favor of cytoplasmic glycolysis,
which is far less efficient at generating energy. The result is that
cancer cells consume more glucose to produce the ATP required
for cell growth and survival (Huang et al., 2014).

Stimulation of hypoxia inducible factors (HIFs) by the
low oxygen environment is mechanistically important to the
metabolic adaptations that occur at high altitude. HIF-1α

and HIF-1β are the primary responders, although HIF-2
and other isoforms may also serve important roles (Milane
et al., 2011). Mechanistically, the low oxygen environment
decreases HIF-1α subunit degradation through depression of
prolyl hydroxylase (PHD) activity, which enhances HIF-1α

stabilization. Stabilization of HIF-1α favors formation of an
activated complex with the beta subunit, retention in the
nucleus, and binding to hypoxia responsive elements (HRE)
on target genes and induction of transcription (Milane et al.,
2011). In the mouse heart, HIF-1α activation due to hypoxia
increases transcription of Hand1, which is vital to cardiac
development and causes a fundamental shift toward an increase
in glycolysis and a decrease in oxidative phosphorylation
(Table 1; Breckenridge et al., 2013; Wong et al., 2017).
Activation of HIF-1α is also important to the glycolytic shift
in cancer cells, fibroblasts and other cell types (Yang et al.,
2014). However, whether or not hypoxia induced HIF-1α

activation causes an analogous shift toward glycolytic metabolism
in cells within the fetal lung remains unresolved; although
chronic hypoxia induced HIF-1α activation is important to
medial wall thickening associated with the development of
pulmonary hypertension in various species (Yang et al., 2014),

TABLE 1 | Collective evidence of metabolic changes induced by hypoxia.

Pathways Metabolites Mechanisms

Glucose metabolism

↑Glycolysis14
↑Lactic acid1

↑HIF1α13

↓TCA metabolites8
↑HIF1β13

↑Hand14

Fatty acid metabolism

↓β-oxidation14
↓Acetyl-CoA6

↓PPARα5,17

↑Long-chain Acyl-CoAs6

↑Fatty acids6

Mitochondrial function

↓Oxidative phosphorylation8
↑ROS8

↓UCP315

↑PGC111

↑PPARγ11

Oxidative stress

↑ROS production1,19
↑O2

−16,19
↑NOX1, NOX2, NOX42,12,18

↓Nitric oxide9
↓eNOS7

↑SOD10

↑GPx10

↑COX10

↑IRE13

↑PERK13

↑ATF63

1Allison et al. (2016); 2Aschner et al. (2007); 3Bergmann and Molinari (2018);
4Breckenridge et al. (2013); 5Cole et al. (2016); 6Das et al. (1983); 7Dikalova
et al. (2016); 8Fuhrmann and Brune (2017); 9Jaitovich and Jourd’heuil (2017);
10Jochmans-Lemoine et al. (2018); 11Lai et al. (2008); 12Luneburg et al.
(2016); 13Milane et al. (2011); 14Murray (2016); 15Murray and Horscroft (2016);
16Stankovic-Valentin and Melchior (2018); 17Templeman et al. (2010); 18Veith et al.
(2019); 19Waypa et al. (2013).
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and delays surfactant protein production in the fetal sheep lung
(Orgeig et al., 2015).

Fatty Acid Metabolism
Similar to glucose metabolism, fatty acid metabolism is also
affected by reduced oxygenation. Oxidation of fatty acids usually
occurs in the mitochondria where an acyl-CoA is catalyzed to
produce acetyl-CoA, NADH+ H+ and FADH2 (Huang et al.,
2014). Acute ischemia of the rabbit fetus reduces fatty acid
metabolism in the lung with decreased levels of acetyl-CoA
and a buildup of long chain acyl-CoA derivatives (Table 1; Das
et al., 1983). Anoxia to the myocardium of rats causes similar
reductions in acetyl-CoA and increases in long chain acyl-CoA
products (Whitmer et al., 1978). Hypoxia induced activation
of HIF-1 contributes to the buildup of fatty acid metabolites
in myocardium of mice as it suppresses activity of peroxisome
proliferator activator receptor alpha (PPARα) (Templeman et al.,
2010; Cole et al., 2016). The reduction in PPARα activity restricts
fatty acid uptake and metabolism. These decreases in fatty acid
metabolism and changes in CoA and acyl derivatives with low
oxygen exposure further illustrate that beta oxidation is a limiting
step in fatty acid metabolism (Whitmer et al., 1978). Related with
this, under aerobic conditions in the adult between 60 and 90%
of the total oxygen consumption may be used to oxidize fatty
acids (Whitmer et al., 1978). The fetal heart, however, is far more
reliant on glycolytic pathways than the adult and thus already
is not very dependent on oxygen, and chronic hypoxia causes
a further reduction in fatty acid oxidation (Thompson, 2003).
These adaptations to hypoxia that lessen fatty acid oxidation and
oxygen utilization, generally, can be energetically advantageous
in rarified environments (Ge et al., 2012). Whether hypoxia due
to high altitude gestation modifies fatty acid metabolism and
increases glycolytic metabolism in the developing lung remains
to be determined and is important to resolve as the changes in
bioenergetics may be linked to disease.

Oxidative Phosphorylation and the
Mitochondria
High altitude gestation and the accompanying low oxygen
environment alter mitochondrial function in an altitude
dependent manner (Murray, 2016; Chicco et al., 2018). The
density of skeletal muscle mitochondria may be reduced in
humans who remain in particularly rarified environments
(>5500 m) for long periods (Hoppeler et al., 1990; Levett
et al., 2012; Murray, 2016). Electron transport chain complexes
are downregulated along with uncoupling protein 3 in these
extreme high altitude environments, while there is a decrease
in fatty acid oxidation capacity and creatine kinase expression
(Table 1; Murray and Horscroft, 2016). The reduction in
proton leak results in changes in the coupling efficiency of the
electron transport chain and contributes to modifications in fuel
utilization at altitude.

Evidence suggests that carotid arteries of newborn sheep
experience mitochondrial stress when subjected to LTH due
to a build-up of compounds related to glycolysis, the pentose
phosphate pathway, and the mitochondrial citric acid cycle

(Goyal and Longo, 2015). Furthermore in rat heart, long term
hypoxia decreases fatty acid oxidation, respiratory capacity,
and pyruvate oxidation (Essop et al., 2004; Adrogue et al.,
2005; Murray, 2016). At moderately high altitudes, decreased
mitochondrial respiratory capacity of humans may occur without
mitochondrial volume density being affected, but mitochondrial
volume density decreases at extreme altitudes (>5500 m), a
process that may be governed by hypoxia-signaling pathways
(Murray, 2016). Studies using cultured cells and genetic mouse
models have explained a number of adaptations that allow cells
with a diminished mitochondrial density to function effectively
in hypoxic situations (Murray, 2009).

High altitude hypoxia generally results in changes in citric acid
cycle metabolism and oxidative phosphorylation (OXPHOS),
as well as alterations in mitochondrial morphology, mass,
fusion, fission, and mitophagy, reviewed recently (Fuhrmann
and Brune, 2017). Mitochondria are one of the main consumers
of oxygen through OXPHOS and when oxygen levels decrease
they become a more prominent contributor of reactive oxygen
species (ROS) (Fuhrmann and Brune, 2017). Notably, the
fetal pulmonary vasculature offers a dramatic example of the
differences between fetal and neonatal oxygen tensions. During
fetal life, the unventilated lung is perfused predominantly with
less-oxygenated blood returned from the upper body with
a PO2 in the low 20 s (Vali and Lakshminrusimha, 2017).
With the initiation of pulmonary ventilation at birth, the PO2
of the pulmonary vasculature increases to ∼40 Torr in the
arteries and >90 Torr in the pulmonary veins. Thus, the
mitochondria of the fetal pulmonary vasculature experiences
a two to fivefold increase in PO2 during the transition from
fetus to newborn. Little is known regarding how the fetal lung
adapts to these changes in O2 concentrations and studies using
both classic and modern approaches are needed to resolve the
adaptive processes during the birth transition. In the hearts
of mice, the substantial increase in O2 tensions after birth
decreases cardiomyocyte HIF-signaling, a process that leads to
mitochondrial fusion and biogenesis (Neary et al., 2014). The
upregulation of mitochondrial biogenesis after birth in mice is
due, in part, to increases in peroxisome proliferator-activated
receptor gamma coactivator-1 (Pgc1alpha/beta) expression (Lai
et al., 2008). PPARγ activation is also important for upregulation
of lipid uptake along with enhanced expression of citrate
synthase, a key mitochondrial enzyme involved in the citric acid
cycle. Interestingly, fetal mitochondria of mice and rabbits have
a “fragmented” appearance while postnatal mitochondria are
elongated in appearance, a process due to the metabolic changes
that occur with birth (Lopaschuk et al., 1991; Neary et al., 2014);
a process that may be related to the increase in PGC1 expression.

HIGH ALTITUDE GESTATION AND
OXIDATIVE STRESS

The low oxygen environment associated with high altitude
exposure is well regarded for enhancing oxidative stress in
tissues from adults and in cultured cells. Although maternal
chronic hypoxia increases oxidative stress in intact fetal lamb
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(Table 1; Allison et al., 2016), far less is known about the
impact of gestational hypoxia on oxidative stress in the fetal
and newborn lung. What is more, hypoxia associated with other
acute and chronic lung diseases also increases oxidative stress
(Van Der Vliet et al., 2018), and thus gestational hypoxia may
increase oxidative stress in fetal lung. Reactive oxygen species
are not just harmful byproducts of cellular metabolism, but
rather are complex signaling molecules that regulate cell function.
Under normal conditions free radicals are produced by cells
in a highly controlled way by various enzymatic systems, but
most prominently by NADPH oxidases (NOX) that produce
superoxide (O2

−) (Stankovic-Valentin and Melchior, 2018).
There are seven members of the NOX family, which have varied
tissue and subcellular distributions. NOX1 is well expressed in
epithelial and endothelial cells (Veith et al., 2019). NOX2 plays
a prominent role in phagocytic cells and the innate immune
response (Veith et al., 2019). NOX4 has been implicated in
fibrotic diseases including those of the liver, skin, kidney, heart,
and lung (Veith et al., 2019).

Hypoxia is known to uncouple endothelial nitric oxide
synthase (eNOS) (Jaitovich and Jourd’heuil, 2017). This
uncoupling of eNOS impairs nitric oxide (NO) signaling
and increases generation of superoxide. Such eNOS
uncoupling affects nitric oxide (NO) signaling in a variety of
cardiopulmonary disorders, including pulmonary hypertension
(Dikalova et al., 2016). The contribution of eNOS uncoupling
to cardiopulmonary disease is mediated through a number
of mechanisms related to the superoxide production. When
eNOS becomes uncoupled, electrons travel to molecular
oxygen producing superoxide instead of NO (Dikalova et al.,
2016). For example, eNOS becomes uncoupled following
exposure of newborn piglets to hypoxia for as few as 3 days
and is associated with increases in generation of O2

− and
decreases in both eNOS dimer formation and NO production
(Dikalova et al., 2016). Changes in the cellular redox status
are biologically relevant as the reactive oxygen molecules
elicit reversible or irreversible oxidative protein or DNA
modifications, mitochondrial dysfunction, as well as changes
in the expression or activity of NOX enzymes and antioxidant
enzyme systems (Van Der Vliet et al., 2018). When considering
protein folding, cells work to compensate for the misfolded
or oxidized proteins by marking them for degradation using
posttranslational modifications such as ubiquitination and
SUMOylation (Stankovic-Valentin and Melchior, 2018).

Acute alveolar hypoxia is well known to trigger constriction
of resistance pulmonary arteries (Waypa et al., 2013).
Accompanying this, acute hypoxia also leads to superoxide
generation in smooth muscle cells (Table 1; Waypa et al.,
2013). These cytosolic oxidant signals are thought to be
important to the increases in [Ca2+]i that cause acute hypoxic
pulmonary vasoconstriction (HPV) (Waypa et al., 2013).
We find that newborn sheep born at high altitude have
exacerbated HPV responses (Blood et al., 2013). Potentially
this enhanced responsiveness may be due to alterations
in the pro and anti-oxidant systems. Long-term high-
altitude exposure of rats as compared to mice provides
some insight about the diversity in inter-species responses.

In response to high altitude living at 3,600 m rats, but
not mice, have a decrease in gas exchange across the lung
epithelia that is associated with loss of alveolar surface area
(Jochmans-Lemoine et al., 2018). While the authors did not
determine causation, rats had elevated oxidative stress and
mitochondrial compensatory pathways, while mice were less
effected. Associated with the elevation in oxidative stress,
mitochondrial superoxide dismutase (SOD), glutathione
peroxidase (GPx) and cytochrome oxidase-c (COX) activities
were 2–3 times higher in high altitude rats while cytosolic
enzymatic activities for NOX, xanthine oxidase (XO), SOD, and
GPx were not as greatly effected in high altitude mice (Table 1;
Jochmans-Lemoine et al., 2018).

Low oxygen tensions generally reduce mitochondrial
function, as previously discussed. However, in the fetus,
where oxygen tension is already low the additional impact
of the high altitude environment on free radicals is largely
unresolved. In most tissues, ATP production predominantly
happens via mitochondrial oxidative phosphorylation of
reduced intermediates of the citric acid cycle from substrates,
the majority of which come from glucose and fatty acids
(Murray, 2009). Mitochondria need a constant supply of
fuels and oxygen to maintain ATP production (Murray,
2009). In high altitude environments, tissue oxygen levels
fall and cells must work to limit oxidative stress (Murray,
2009). Exposure to the rarified environment in tissues of the
adult increases superoxide production from mitochondrial
complexes of the respiratory chain (Guzy et al., 2005; Guzy and
Schumacker, 2006; Murray, 2009; Murray and Horscroft,
2016). Fetal lungs of guinea pigs exposed to 10.5% O2
for the last 14 days of gestation had reduced cytochrome
oxidase activity and expression of COX4, illustrative of
perturbations to the generation of free radicals by mitochondria
(Al-Hasan et al., 2013). While there is a fair amount of
knowledge regarding the importance of oxidative stress
to the regulation of vascular function further exploration
is needed to fully understand the underlying cellular and
molecular mechanisms.

The endoplasmic reticulum (ER) is a critical organelle that
is important for protein processing, lipid synthesis, as well
as for intracellular Ca2+ signaling and homeostasis. Protein
translation and folding functions of the organelle are strongly
regulated by reactive oxygen species. Although the ER can
respond to ROS generated anywhere throughout the cell, NOX4
is known to be closely associated with the ER and nucleus in
rats, and regulates ER function through superoxide generation
(Camargo et al., 2018). Elevated levels of oxidative stress due
to superoxide and other free radicals is part of the normal
signaling process. However, abnormally high oxidative stress
can cause ER dysfunction. Heightened oxidative stress due to
hypoxia and other stresses can elicit protein misfolding and
unfolding responses in the ER. The unfolding protein response
is a prototypical marker of ER stress and induces cellular
responses that act to preserve homeostasis. The unfolding protein
responses are graded and highly conserved across phylogeny
suggesting reactive oxygen species are critical regulators of
organelle function (Bergmann and Molinari, 2018).
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Modest levels of ER stress leads to activation of signaling
pathways that increase protein synthesis, enhance protein
trafficking through the ER, increase protein folding and
augment ER-associated protein degradation processes, all
of which allows for maintenance of organelle function.
However, elevated ROS and ER stress levels cause greater
organelle dysregulation and magnified UPR responses and
activation of IRE1, PERK1, and ATF6 (Table 1; Bergmann
and Molinari, 2018). High levels of stress and coordinated
activation of these pathways then leads to cell autophagy.
While the exact role of NOX4 in the fetal or newborn lung
is unresolved, recent studies show that NOX4 expression
is elevated in pulmonary arteries of adult rats exposed to
chronic hypoxia (Luneburg et al., 2016) and in systemic
arteries of spontaneous hypertensive rats (Camargo et al.,
2018). These findings have focused attention on the potential
that ER stress is important in the development of systemic
as well as pulmonary hypertension. SHR rats have increased
ER stress that is associated with an upregulation of NOX4.
Suppression of oxidative stress as well as NOX4 expression
blunts the hypertension response. These effects in the systemic
vasculature of SHR rats are similar to piglets exposed to chronic
hypoxia, which have increased NOX dependent pulmonary
hypertension (Aschner et al., 2007). Similarly, fetal sheep
lungs of ewes exposed to 10.5% O2 from 105 to 138 days
of gestation had increased expression of the antioxidant
catalase but decreased pro-oxidant NOX4 expression,
illustrative of changes in oxidative stress in the neonatal
lung (Mcgillick et al., 2017).

Chronic hypoxia is closely associated with the induction
of ER stress, disruption of mitochondrial function and the
development of pulmonary hypertension. Chronic hypoxia-
induced pulmonary hypertension in mice is associated with
increases in ER stress and the uncoupling protein response
(Dromparis et al., 2013a). The hypoxic stress is further linked
to loss of the mitochondrial membrane potential as well as
cellular proliferation and medial wall thickening. Reducing
ER stress with the chemical chaperones 4-phenylbutyrate or
tauroursodeoxycholic acid in these mice provides additional
evidence for these interactions as the chemicals were able
to mitigate the hypoxia related impacts on mitochondrial
calcium and membrane potential, activation of ER stress
pathways, as well as the proliferative responses (Dromparis
et al., 2013a). Downregulation of uncoupling protein 2 in
mice, which is normally expressed in the mitochondria,
causes dysregulation of mitochondrial Ca2+ signaling and
induces pulmonary hypertension (Dromparis et al., 2013b).
The close association between the mitochondria and ER
also appear to be important to the development of PH
in mice (Sutendra et al., 2011). ER stress due to hypoxia
may cause a breakdown in the close interaction and Ca2+

movement between the ER and mitochondria, which further
dysregulates the function of both organelles (Sutendra et al.,
2011; Raffaello et al., 2016). Based on this evidence, it will
be important to pursue the impact of gestational hypoxia on
ER stress and its relevance to the development of pulmonary
hypertension in the newborn.

IMPACTS ON HUMAN POPULATIONS

A number of human populations have lived at high altitudes
for many generations, including citizens of Tibet, Ethiopia,
and the Andes. Among these, Tibetans are the best studied
high altitude population. Interestingly, they have a variety of
adaptations that improve their capacity to develop and thrive
at high altitude (Niermeyer et al., 1995; Ge et al., 2012).
However, beyond only a handful of studies our knowledge
remains limited concerning the developmental progression
of cellular metabolism and the impact of the low oxygen
environment on these populations. This includes functional
compensatory mechanisms consisting of increased ventilation
and greater pulmonary diffusion capacity relative to non-native
populations (Bianba et al., 2014). The lungs of Tibetan infants
are better adapted to provide enhanced blood oxygenation
through developmental alterations in cardiorespiratory structure
and function (Niermeyer et al., 1995). This combined with the
decreased oxygen utilization by the mitochondria and lessened
fatty acid oxidation in peripheral tissues help to enhance
physiological performance at high altitude (Murray, 2016).

The excessive oxidative stress that occurs with chronic
hypoxia has physiological consequences (Jochmans-Lemoine
et al., 2015, 2018). Oxygen sensing is essential for stimulating
gene expression and transcription for growth processes and
angiogenesis (Kurlak et al., 2016). However, this is best examined
in animal models that share critical features of human disease
because of the ability to perform invasive examinations regarding
the phenotypic impacts of high altitude, the associated cellular
and molecular mechanisms, and evaluation of new therapeutics.
For example, in Bolivia at 3,600 m above sea level, rats exhibit a
chronic mountain sickness phenotype that is similar to humans
with elevated hematocrit, lower ventilation, signs of severe
pulmonary hypertension, and lower arterial oxygen saturations
when breathing either high or low levels of oxygen (Jochmans-
Lemoine et al., 2018). From a therapeutic perspective, some
of these effects can be partially reversed by exposing affected
rats to enriched oxygen during the first 2 weeks after birth
(Jochmans-Lemoine et al., 2018).

One key adaptation in adults with exposure to even
moderately high altitudes above 1,500 m is that there are
dramatic changes in glucose tolerance, which may be linked
to oxidative stress (Woolcott et al., 2015). Initial exposure to
the rarified environment causes a person’s glycemic index to
increase with an increase in anaerobic glucose metabolism (Kelly
et al., 2010). Related to this, healthy people exposed to high-
altitude hypoxia may become insulin-resistant (Siervo et al.,
2014). Mechanistically, the insulin resistance may be related to
cellular inflammation and ROS production (Trayhurn, 2013).
Long-term residence at high altitude in comparison may lower
a person’s glycemic index and improve glucose uptake and
utilization (Woolcott et al., 2015). Recent work in the sheep fetus
exposed to gestational hypoxia for 9 days may provide some
insight as the data shows there is an increase in hepatic expression
of G6PC and PCK1 without any change in plasma glucose
(Jones et al., 2019). Overall, the relationships between ROS,
cellular metabolism, and the functional consequences remain to
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be elucidated in humans and animal models. Whether or not
many of the changes outlined in fetal and adult organs also occur
in the lung are unresolved but are important to address as changes
in ROS and cellular metabolism are projected to have major
impact on lung development and function.

PERSPECTIVES

High altitude gestation and birth places a significant stress
on both the mother and fetus and results in metabolic
reprogramming of the lung and other organ systems, which
give rise to functional defects including pulmonary hypertension
as well as diseases in other systems. Focused evaluation of
individual signaling pathways, related genes and proteins has
provided some insights into the mechanistic basis for stress
related diseases due to high altitude gestation. Even still,
our comprehension of the impact of low oxygen on fetal
development is far from complete. Better understanding of
the etiology as well as treatment of disease will require
integration of information from various sources. Studies that

use contemporary omics approaches including metabolomics,
proteomics, transcriptomics and genomics along with traditional
functional studies using manipulated systems hold great promise
for providing a deeper understanding of the mechanisms
associated with hypoxia-related disease in the fetus as well as the
development of novel treatments.
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