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Abstract

Background: Automated gene-calling is still an error-prone process, particularly for the highly plastic genomes of
fungal species. Improvement through quality control and manual curation of gene models is a time-consuming
process that requires skilled biologists and is only marginally performed. The wealth of available fungal genomes
has not yet been exploited by an automated method that applies quality control of gene models in order to obtain
more accurate genome annotations.

Results: We provide a novel method named alignment-based fungal gene prediction (ABFGP) that is particularly
suitable for plastic genomes like those of fungi. It can assess gene models on a gene-by-gene basis making use of
informant gene loci. Its performance was benchmarked on 6,965 gene models confirmed by full-length unigenes
from ten different fungi. 79.4% of all gene models were correctly predicted by ABFGP. It improves the output of
ab initio gene prediction software due to a higher sensitivity and precision for all gene model components.
Applicability of the method was shown by revisiting the annotations of six different fungi, using gene loci from
up to 29 fungal genomes as informants. Between 7,231 and 8,337 genes were assessed by ABFGP and for each
genome between 1,724 and 3,505 gene model revisions were proposed. The reliability of the proposed gene
models is assessed by an a posteriori introspection procedure of each intron and exon in the multiple gene model
alignment. The total number and type of proposed gene model revisions in the six fungal genomes is correlated
to the quality of the genome assembly, and to sequencing strategies used in the sequencing centre, highlighting
different types of errors in different annotation pipelines. The ABFGP method is particularly successful in discovering
sequence errors and/or disruptive mutations causing truncated and erroneous gene models.

Conclusions: The ABFGP method is an accurate and fully automated quality control method for fungal gene
catalogues that can be easily implemented into existing annotation pipelines. With the exponential release of new
genomes, the ABFGP method will help decreasing the number of gene models that require additional manual
curation.

Keywords: Gene model, Automated gene model curation, Sequence error, Truncated gene model, Pseudogene,
Fungal genome, Cladosporium fulvum
Background
In the past decade, numerous fungal genomes of import-
ance to medicine, agriculture and industry have been
sequenced [1,2] and continuous innovations in next gen-
eration sequencing technology will spur this number to
rapidly increase further. Once sequenced and assembled,
genomes are annotated through an automated gene-
calling pipeline, which is still an error-prone process,
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particularly for the highly plastic and diverse genomes of
fungal species.
Most gene annotation pipelines integrate different

gene prediction algorithms to increase the accuracy of
the annotation [3]. These algorithms include ab initio
supervised, ab initio unsupervised and (supervised)
alignment-based gene predictors, which are imple-
mented in tools such as Augustus [4], GeneMark-ES [5]
and TWINSCAN 2.0α [6], respectively. Augustus is one
of the most frequently employed and best performing ab
initio supervised gene prediction tools that offers param-
eterizations for several dozens of fungi [4]. For species
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lacking a provided parameterization, a considerable
manual input is required to obtain such species-specific
parameterization by training the algorithm with a large
sample (~1000) of correct gene models [5]. Thus, its
applicability is limited to only those species for which
parameterization is available [5,6]. GeneMark-ES-2 is an
ab initio unsupervised gene predictor iteratively training
itself on the input genome sequence alone that outper-
formed Augustus [5], but is reported to be relatively in-
accurate in predicting single exon genes [5]. A hybrid
strategy between ab initio and alignment- (or evidence)
based gene prediction is currently implemented in sev-
eral tools. Updated versions of Augustus integrate evi-
dence obtained from unigene alignments [4], protein
multiple sequence alignments [7] and intron- and exon-
hints acquired from RNA-Seq data, which greatly im-
proved their prediction accuracy. To our knowledge,
alignment-based gene prediction in fungi using genomic
data alone has only been successfully applied using
TWINSCAN 2.0 α, which was specifically adapted and
trained to Cryptococcus neoformans [6]. In that case, the
whole-genome DNA alignment of two strains of this
fungus, whose genomes are largely syntenic and exhibit
around 95% nucleotide identity in coding regions, served
as input. The reported ~60% gene accuracy clearly out-
performed non-alignment-based ab initio gene predic-
tion software [6]. TWINSCAN 2.0 α requires extensive
species-specific training and parameterization, offering
a tailor-made solution for a defined pair of related
species only. Most importantly, the approach taken in
TWINSCAN 2.0 α is difficult to apply to fungal ge-
nomes because of their high plasticity [8-10]. The ab-
sence of conserved regions exhibiting macro- or even
meso-synteny between related fungal genomes [8] se-
verely hampers the construction of whole-genome DNA
alignments. Besides reshuffled gene orders, a highly vari-
able gene content is also observed among fungi with a
large number of genes showing a discontinuous distribu-
tion in the fungal tree of life. This is caused by frequent
gene, gene-cluster, segmental and whole chromosome
duplications, losses or horizontal transfers, which have
created complex variation in both gene family expansion
and reduction [8,10]. Although homologous gene loci can
often be inferred easily between distantly related fungi,
annotation of fungal genomes by classical alignment-
based gene prediction tools is problematic. In recent years,
ensemble predictors have been developed to weigh and
combine similarity evidence and the predictions made by
various other tools into a single, more accurate gene
model [11,12]. However, it “often requires significant effort
in implementation to cast comparative information into a
form compatible with the existing gene models” [13].
Because none of the available gene prediction tools

were specifically developed for fungal genomes, automa-
tic gene annotation of fungi often yields a relatively high
fraction of incorrect gene models. These can only be
revised through a time-consuming process of quality
control and manual curation by skilled biologists or
bioinformaticians, but this is often only marginally per-
formed. Manual curation usually involves comparative
analyses with tools that can accurately identify a spliced
gene structure in a target DNA sequence using a hom-
ologous protein sequence as a so-called “informant” se-
quence (e.g. GeneWise [14], Scipio [15], etc.). However,
a large proportion of gene models and derived protein
sequences in current fungal sequence releases contain
errors, and a manual curator can easily propagate exist-
ing errors when using incorrectly predicted informant
protein(s). A typical example of the marginal quality
of fungal gene catalogues is exemplified by the re-
annotation of the Fusarium graminearum genome [16].
In the new version, 1,770 gene models were revised
by using various new gene predictors, exploiting expres-
sion data, performing extensive manual curation and
evidence-based selection of the best gene model from
alternative predictions [16]. Despite this effort, recent
RNA-Seq data provided experimental proof for at least
another 655 incorrectly predicted gene models in the lat-
est version of the F. graminearum annotation [17].
We have now entered an era in which genome sequen-

cing of clusters of related fungi will be performed on a
massive scale. Subsequent gene prediction on these ge-
nomes will require automation with very little manual
inspection [6]. Although gene prediction software suit-
able for fungal genomes has become more accurate over
the last decade, they are still error-prone. A method that
facilitates or automates the process of curating gene
models is therefore needed to increase the accuracy of
the catalogues of predicted genes in sequenced fungal
genomes. Here, we present a novel gene-by-gene method
for alignment-based gene prediction that is particularly
suitable for the plastic genomes of fungi. Our method,
called alignment-based fungal gene prediction (ABFGP),
(i) provides improved accuracy of predicted gene models,
(ii) is species-independent, (iii) does not require partial or
whole-genome DNA alignments, (iv) does not require
supervision and (v) can use a variable number of inform-
ant genes. We demonstrate the accuracy and versatility of
the ABFGP method by re-annotating the genomes of a se-
lection of six sequenced Ascomycete fungi.

Results
The alignment-based fungal gene prediction (ABFGP)
method
The ABFGP method re-annotates gene models on a
gene-by-gene basis by using informants, which differ
from regular alignment-based approaches that require a
whole-genome DNA alignment. An ABFGP informant
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refers to the genomic locus at which an homologous
gene is encoded that may support revision of the target
gene locus. First, a similarity matrix of predicted protein
sequences from several fungal species is obtained (Figure 1;
Additional file 1). From this matrix, bi-directional best hits
(BDBH) with sufficient overlap between both annotated
proteins are selected, representing most likely orthologous
informant gene loci. Subsequently, the genomic loci that
encodes these proteins - not the predicted proteins them-
selves - are used as informants to avoid propagation of
errors in the gene structures. Other resources can be used
to find informant gene loci such as unigene datasets or
any alternative homology search (Figure 1).
The ABFGP method is an automated workflow that

includes all steps typically undertaken when performing
manual annotation of a predicted gene model. It
comprises nucleotide and protein similarity searches
(BLAST, ClustalW and HMM) to build (pairwise) align-
ments, motif searches (SignalP and TMHMM ) and
degenerate Position Specific Scoring Matrix (PSSM)
searches to identify elements of gene structure [18] in-
cluding splice sites, branch points, polypyrimidine tracks
and translational start sites. A flow diagram of the con-
secutive steps undertaken in the ABFGP method is pre-
sented in Figure 2. Graph-theory is used to translate
pairwise alignments of sequences, open reading frames
(ORFs), sequence elements or positional attributes to
multiple alignments of these entities. The gene similarity
graph is an estimation of the gene tree and is used to
Figure 1 Flow diagram of informant gene selection for the alignment
favor, demote or remove nodes and edges from the ORF
similarity graph. Inconsistencies or missing data in series
of multiple aligned ORFs trigger a more sensitive
HMMER protein search, which can identify missing
ORFs of target or informant genes or can recognize
lower similarity. The ABFGP method accurately predicts
intron-exon boundaries by exploiting ORF (dis)continu-
ity surrounding intron presence-absence patterns [19].
In contrast to ab initio gene prediction software, the
ABFGP method is able to cope with sequence errors
(SEs) and true disruptive mutations (DMs), and recog-
nizes those as inconsistencies in coding region continu-
ity. A quality check on the similarity graph is performed
at various stages during ABFGP execution, which can re-
sult in removal of an informant once recognized as too
distinct. In case the target gene locus is distinct from all
informants (which are all homologous to each other),
they are all removed. Once the number of informants
drops below a user-adjustable threshold (by default set
at four), execution of the method is aborted. Finally, an
a posteriori introspection procedure is applied to each
intron and exon in the predicted gene model which
assigns a reliability label (‘ok’ or ‘doubtful’) to the pre-
dicted gene model.
The output of an ABFGP execution is a GFF file con-

taining the predicted gene model and several features
that assist manual inspection of the predicted gene
model. Input for ABFGP is a list of orthologous gene
loci, of which one is assigned as the target locus to be
-based fungal gene prediction (ABFGP) method.



Figure 2 Flow diagram of the ABFGP method.
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Figure 3 (See legend on next page.)
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(See figure on previous page.)
Figure 3 ABFGP-based curation of the MFS transporter-encoding gene Cf189922 of Cladosporium fulvum. A. Selected tracks of the GFF
results obtained by applying ABFGP on the Cf189922 gene locus using 17 fungal informant genes. The annotated (blue) and the ABFGP-predicted
gene model (green and grey) are shown on top. The grey part of the ABFGP prediction indicates an intron-exon boundary with status ‘doubtful’.
Below are indicated the introns (orange) and exons (red) that were revised; the red box highlights the site of the second revision. The intron
evidence track lists intron-exon boundaries obtained from informants; the colours used in the informant gene similarity track represent a measure
for pairwise amino acid similarity. The alignment similarity track represents a summed representation of the inferred multiple sequence alignment
of all informants. B. Multiple protein sequence alignment of currently annotated gene models of Cf189922 and its informants. Sequence is
restricted to the red box shown in panel A. C. Multiple protein sequence alignment of the ABFGP-revised gene model of Cf189922 and its
informants. Sequence is restricted to the red box shown in panel A. The proposed revision is highlighted in the black box.
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re-annotated, and all others serve as informants. This
resulting list of gene encoding loci is provided as a multi
fasta file. A second input option provides additional
functionality, where each (informant) gene locus is a
folder that contains the genomic locus (fasta format),
optionally its currently annotated gene model (gff for-
mat) and unigenes aligned to this locus (gff format). A
provided unigene is used as an additional informant,
from which spliced alignments are exploited as guidance
to infer intron-exon boundaries to enhance the predic-
tion performance. A provided gene structure is used to
speed up similarity searches by prioritization and to
visualize differences between current annotation and the
ABFGP prediction. Optionally, the exons of provided
genes can be used as prior knowledge to facilitate detec-
tion of poorly conserved parts of the gene.
An example of a re-annotated gene model by ABFGP

is given in Figure 3A. It illustrates the predicted gene
model at the genomic locus that encodes a Major Facili-
tator Superfamily (MFS) transporter (Cf189922) in the
Cladosporium fulvum genome. In this example ABFGP
proposes two revisions compared to the originally anno-
tated gene model. Introns (orange) and exons (red) with
revised nucleotides are indicated in a separate track.
Both revisions involve inclusion of novel exons that split
up one intron into two smaller ones. The multiple pro-
tein sequence alignment around the second proposed re-
vised site is shown for the unrevised (Figure 3B) and
revised (Figure 3C) model. The improved continuity and
quality of the sequence alignment suggest that the
proposed revision is most likely correct. Moreover,
TMHMM prediction performed on a 3-frame translation
of the complete locus assigns two trans-membrane
helices in the revised exon, which is consistent with the
secondary structure of the proteins encoded by the in-
formant gene loci (data not shown). Finally, the add-
itional exon is supported by a partial unigene aligned to
the informant gene locus of Fusarium verticillioides
(TC27075). A more detailed description of the ABFGP
method is provided in Additional file 2.

Benchmarking of the ABFGP method
To benchmark the performance of the ABFGP method,
we selected genes from ten different fungi, for which
their intron-exon structure is confirmed by full-length
unigenes. Of those, 6,965 genes have at least four reliable
informant gene loci and passed all selection criteria
(Additional file 3; an excel file with all gene identifiers is
available at http://tinyurl.com/k9qft5o). Using this data-
set, the ABFGP method achieves an overall gene sensi-
tivity of 79.4% (Table 1; Additional file 4), meaning that
on average 79 out of 100 gene models are predicted cor-
rectly without a single nucleotide error in their overall
intron-exon structure.
The ABFGP method applied to a set of available full-

length unigenes from Magnaporthe oryzae and Fusarium
verticillioides was compared to GeneMark-ES [5], which
was previously used on a smaller set of unigenes from
these two fungi (Table 1). The ABFGP method per-
formed better than GeneMark-ES on all gene compo-
nents (exons, introns and nucleotides), in terms of
sensitivity but most noticeably in terms of precision.
The gene sensitivity achieved by ABFGP was 81.7% and
82.1% for the unigenes of M. oryzae and F. verticilloides,
respectively. The results of this benchmarking show that
the ABFGP method can confidently be applied to im-
prove gene models in fungal genomes.

ABFGP as a tool to curate gene models of six annotated
fungal genomes
To illustrate its versatility, we applied the ABFGP
method on the gene catalogue of six different fungal
species previously sequenced and annotated at the
BROAD [2] and JGI institutes [1]: Botrytis cinerea,
Cladosporium fulvum, Dothistroma septosporum, Myco-
sphaerella fijiensis, Verticillium dahliae and Zymosep-
toria tritici (Table 2). ABFGP was performed after
selection of eligible genes (BDBH category) based on in-
formant genes retrieved from a set of 29 fungal genomes
(Additional file 1). A second, much smaller set of genes
was compiled from informants that suggested species-
specific variation or gene models with errors (GME).
Between 7,285 and 8,504 annotated gene loci per species
were eligible for ABFGP using these criteria. For
0.4-2.0% of these, ABFGP was aborted during execution
because the number of representative informants
dropped below four during the integrated quality assess-
ment. For the remaining loci, the gene models predicted

http://tinyurl.com/k9qft5o


Table 1 Benchmarking of the ABFGP performance on validated genes compared to GeneMark-ES

Species 10 pooled species1 Magnaporthe oryzae2 Fusarium verticillioides

Method ABFGP ABFGP GeneMark-ES ABFGP GeneMark-ES

# unigenes 6,965 956 169 1154 327

Intron Sn 91.16 91.5 89.3 92.2 90.7

Pr 97.08 97.4 90.5 98.2 94.3

Exon Sn 88.54 89.1 88.0 90.4 85.4

Pr 98.91 99.4 89.1 98.9 87.9

Nucleotide Sn 98.75 98.3 98.2 99.3 98.8

Pr 99.08 99.3 97.1 99.0 97.1

Gene3 Sn 79.4 (5,533) 81.7 (781) n.a. 82.1 (947) n.a.

Sensitivity (Sn) and precision (Pr) of the gene model components (introns, exons, nucleotides) are expressed in percentages. Sn is calculated as true positives
divided by: (true positives + false negatives); and Pr as true positives divide by: (true positives + false positives) [3].
1A list of all ten fungal species and results per species are provided in Additional file 4.
2Formerly named Magnaporthe grisea.
3The gene sensitivity is the percentage of gene models that is predicted without a single error. Total number of correctly predicted gene models is indicated in
between brackets. Gene sensitivity was not provided for GeneMark-ES.
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by ABFGP were compared to their current annotations.
As expected, the currently available annotation and the
ABFGP-predicted structures of a large fraction of the gene
models (on average 68%) were identical (Table 2). Predict-
ing the same intron-exon-structure by two independent
methods is a strong indication that the predicted gene
models are correct. The ABFGP method proposed at least
a minor revision for 22% to 41% of the assessed genes in a
given species. Among those, the GME category of genes is
highly overrepresented, with 62% to 75% of them being re-
vised versus only 19% to 34% from the BDBH category.
Table 2 Gene models in six fungal species re-annotated by th

Species Botrytis
cinerea

Cladosporium
fulvum

Dothis
septos

Sequence technology Sanger 454 Illumina/4

Fold genome coverage 4.5 21 3

# Annotated genes 16,448 14,127 12,5

Annotation pipeline2 BROAD GeneMark-ES JG

Annotation year3 2005 2009 20

Reference [21] [20] [2

Total eligible gene models 8,503 7,574 8,0

Bi Directional Best Hit 7,165 6,990 7,5

Gene Model Error 1,338 584 57

Confirmed/unchanged4 4,832 57% 5,823 77% 6,249

Revised4 3,505 41% 1,724 23% 1,770

Bi Directional Best Hit5 2,481 35% 1,304 19% 1,404

Gene Model Error5 1,024 77% 420 72% 366

Aborted4 166 2,0% 27 0,4% 71
1Formerly named Mycosphaerella graminicola.
2Sequencing centre which sequenced and annotated this genome (BROAD institute
University and annotated using GeneMark-ES version 2.2 [20].
3Estimated year the gene calling was performed.
4Number and percentage of all gene models in this category.
5Number and percentage of revised gene models in this category.
The lowest number of revisions is proposed for the most
recently annotated genomes of the fungi C. fulvum and D.
septosporum [20], and the highest number for B. cinerea.
This is likely due to the fact that the genome assembly of
B. cinerea has a low sequence coverage produced by
Sanger technology, and its annotation was performed by
older, less accurate gene predictor software (Table 2).

Reliability of the ABFGP-predicted gene models
The ABFGP method confirmed 57 to 77% of the previ-
ously reported annotated gene models and proposed
e ABFGP method

troma
porum

Mycosphaerella
fijiensis

Verticillium
dahliae

Zymoseptoria
tritici 1

54/Sanger Sanger Sanger Sanger

4 7.1 7.5 8.9

80 10,313 10,535 10,952

I JGI BROAD JGI

10 ≤2008 2008 2008

0] n.a. [22] [23]

90 7,283 8,362 7,893

11 6,773 7,814 7,317

9 510 548 576

77% 4,775 66% 5,390 64% 5,262 67%

22% 2,456 34% 2,870 34% 2,553 32%

19% 2,064 30% 2,511 32% 2,137 29%

63% 392 77% 359 66% 416 72%

0,9% 52 0,7% 102 1,2% 78 1,0%

or Joint Genome Institute); C. fulvum was sequenced at Wageningen
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revisions for the remaining in six fungal species (Table 2).
The overall quality of the revised predictions is sup-
ported by high accuracy as shown by the benchmarking
on unigenes (Table 1). To address the reliability at the
level of individual genes, the ABFGP method was
equipped with an a posteriori introspection module.
Each intron and exon in the multiple gene model align-
ment was evaluated on a series of stringent criteria (e.g.
alignment quality, length variance, splice site score, etc.)
and was labelled to indicate the likelihood of its correct-
ness: gene models were labelled as ‘ok’ only if all individ-
ual introns and exons received this label, and were
labelled as ‘doubtful’ in case one or more introns or
exons received this label (Table 3). Of the confirmed
gene models on average 86.4% was labelled ‘ok’ and
13.6% ‘doubtful’, whereas of the revised gene models
66.1% was labelled ‘ok’ and 33.9% ‘doubtful’. The intro-
spection procedure was also applied to the benchmark
set of 6,965 genes supported by unigenes and resulted in
5,016 true positives (72.2%), 496 true negatives (7.1%),
533 false negatives (7.7%) and 899 false positives (12.9%).
This analysis shows that the introspection procedure is
quite accurate, and that the majority of ABFGP-revised
models of the re-annotated genomes is reliable.

Types of revisions proposed by the ABFGP method
The most conspicuous differences between the anno-
tated and ABFGP-predicted gene models are summa-
rized in Table 4. Major revisions proposed by the
ABFGP method comprise corrections of falsely fused
and split gene models in current annotations. B. cinerea
appears enriched for both incorrectly merged and split
genes and C. fulvum for incorrectly merged genes. Up to
19% of the revisions proposed by the ABFGP method
are due to SEs and/or DMs, which were particularly
often encountered in genes of B. cinerea, C. fulvum and
V. dahliae. Other revisions involve boundary changes,
Table 3 Introspection of results obtained by the ABFGP meth

Species Botrytis
cinerea

Cladosporium
fulvum

Dothistrom
septosporu

Total number of assessed genes3 8,337 7,547 8,019

Confirmed/unchanged 4,832 5,823 6,249

Labeled ‘ok’4 3,942 82% 5,186 89% 5,505 88%

Labeled ‘doubtful’4 890 16% 637 11% 744 12%

Revised 3,505 1,724 1,770

Labeled ‘ok’4 2,137 61% 1,160 67% 1,209 68%

Labeled ‘doubtful’4 1,368 29% 564 33% 561 32%
1Formerly named Mycosphaerella graminicola.
2Correctly predicted gene models (benchmarked on the full-length unigenes) that w
labelled ‘doubtful’ are false negatives (FN). Genes that were incorrectly predicted an
negatives (TN).
3Total eligible number of genes minus number of genes aborted during execution
4Number and percentage of genes that are labelled ‘ok’ and ‘doubtful’ by the intros
removal and addition of exons and introns in predicted
gene models. Additional exons are more rarely pre-
dicted, but they are frequently occurring as internal revi-
sions (as shown in Figure 3 for C. fulvum) of genes in B.
cinerea and V. dahliae. ABFGP frequently removed
stopless 3n introns in the gene models of M. fijiensis and
Z. tritici. The proposed revisions resulted mainly in a
decrease of the average intron length: -42, -35, -30, -29, -6
and +1 nucleotides for M. fijiensis, B. cinerea, C. fulvum,
Z. tritici,V. dahliae and D. septosporum, respectively.

Increasing the number of informants improves
performance of the ABFGP method
ABFGP performance decreased when using fewer infor-
mants or when closely related informants are not avail-
able (data not shown). For the curation of a particular
gene model, the most closely related fungal species
failed to provide informants for 7 to 19% of selected loci
(Additional file 5). Conversely, fungal species that pro-
vided the lowest number of informants still contributed
16 to 38% of informant loci. In addition, in some cases,
fungal species that provided most of the informant loci
are not always the closest relatives. For example, M.
fijiensis, the closest relative of Z. tritici, is not among the
top three species that provided the highest number of
informants (Additional file 5). Similarly, N. haemato-
cocca and M. oryzae provide more informants than V.
albo-atrum for the curation of V. dahliae. For C. fulvum
and M. fijiensis, it is striking that fungi that belong to a
different taxonomic class are in the top three species
that provided the highest number of informants. Our
results show that the six studied fungal gene catalogues
differ in quality. Because all informant catalogues
were predicted by the same genome sequence centres
(see Additional file 1), similar error rates are expected
to occur in their gene models. An unexpected low
contributor to the pool of informants could be explained
od

a
m

Mycosphaerella
fijiensis

Verticillium
dahliae

Zymoseptoria
tritici1

Pooled unigenes2

7,231 8,260 7,815 6,965

4,775 5,390 5,262 Correct

4,216 88% 4,536 84% 4,539 84% 5,015 (TP)

559 12% 854 16% 723 16% 533 (FN)

2,456 2,870 2,553 Incorrect

1,730 70% 1,864 65% 1,734 68% 899 (FP)

726 30% 1,006 35% 819 32% 496 (TN)

ere labelled by the introspection procedure as ‘ok’ are true positives (TP) and
d were labelled ‘ok’ are false positives (FP) and labelled ‘doubtful’ are true

(Table 2).
pection procedure in each category.



Table 4 Types of revisions in annotated gene models made by the ABFGP method

Species Botrytis
cinerea

Cladosporium
fulvum

Dothistroma
septosporum

Mycosphaerella
fijiensis

Verticillium
dahliae

Zymoseptoria
tritici1

Total revised genes2 3,473 1,721 1,761 2,448 2,865 2,552

Genes containing SE and/or DMs3 353 333 176 127 515 66

Genes split by ABFGP 195 183 62 91 94 130

Genes merged by ABFGP 102 12 16 27 19 28

Total annotated exons 12967 5675 5211 7525 10709 8316

Unrevised 5970 2372 2078 2593 4956 3116

Boundary revision4 4851 2274 2341 3230 4355 3357

5’ or 3’ removed (−) / added (+)5,6 −783 +617 −451 +252 −265 +224 −297 +341 −529 +333 −415 +335

Internal removed (−) / added (+)5,7 −51 +616 −20 +98 −24 +35 −59 +74 −66 +346 −76 +75

Total annotated introns 9459 3947 3438 5058 7838 5753

Unrevised 4907 2019 1740 2276 4048 2836

Boundary revision8 1799 692 727 889 1738 839

Stopless 3n removed (−) / added (+)9 −447 +189 −166 +146 −365 +146 −1032 +99 −331 +244 −953 +130
1Formerly named Mycosphaerella graminicola.
2The total number of revisions can exceed the total number of revised genes because a gene model can contain more than one revision.
3Genes for which the revision(s) include sequence errors or mutations.
4Exons with a different start and/or end coordinate when comparing both gene models.
5Exons incorporated in only one of both gene models (not in the ABFGP model/only in the ABFGP model).
6Omitted and additional exons in recognized false gene splits and fusions were not counted.
7(Large) intron in one gene model, split into two smaller introns with intermediary (small) exon in the other gene model.
8Introns with a different donor and/or acceptor site when comparing both gene models.
9Stopless 3n introns incorporated in only one of both gene models (not in the ABFGP model/only in the ABFGP model).
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by a slightly higher error rate in its gene catalogue. In
addition, many genes show a discontinuous distribution
in the fungal tree of life [8,10]. This underlines the im-
portance of selecting informants from a wide phylogen-
etic spectrum of species rather than from a small set of
closely related species.

Discussion
The ABFGP method accurately predicts intron-exon
structures of protein-encoding genes in fungi
The ABFGP method can accurately re-annotate the
intron-exon structure in a gene-by-gene fashion when
a gene locus is provided with sufficient informants.
GeneMark-ES was chosen as a state of the art ab initio
gene predictor, and we have shown that the ABFGP
method improves the quality of the gene models. This is
explained by a higher precision (Table 1), which means
that a lower number of false positives are reported
by ABFGP. Indeed, in general, evidence- or alignment-
based methods are less prone to wrongly assign add-
itional exons [3], because they are only predicted when
supported by informants. Predicting introns in compact
genomes with numerous small introns is challenging [5],
yet ABFGP achieves both a high sensitivity (91.2%)
and precision (97.3%) (Table 1). This is achieved by
exploiting abundantly occurring intron presence-absence
patterns [19]. SEs and/or DMs can be confidentially rec-
ognized as discontinuities when compared with exonic
sequences of informant genes. Finally, lack of synteny in
distantly related fungi facilitates recognition of false gene
fusions, which is a frequently observed error made by ab
initio gene predictors [5,16]. Adjacent genes with the
same orientation are prone to be falsely fused to the tar-
get gene, but this is minimized in the ABFGP method
because of the shuffled gene order in informant ge-
nomes. Whole-genome alignment-based gene prediction
benchmarked on a test set of 1,483 genes from two
strains of C. neoformans achieved 88% and 89% exon
sensitivity and precision, respectively, resulting in an
overall gene sensitivity of ~60% [6], which is low con-
sidering the high conservation between the two ge-
nomes. This shows that the gene-by-gene approach
by the ABFGP method is more powerful, even by
making use of informant genes from evolutionary
distant fungal species. The benchmark test showed
uniform performance on unigenes from ten selected
species (Additional file 4). Yet, this performance was,
in case of D. septosporum, achieved with generic
PSSMs that were not derived from its own splice
sites. Species-specific parameterization of gene prop-
erties was indicated as crucial for the performance of
ab initio supervised [4], unsupervised [5] as well as
the alignment-based gene prediction methods [6]. We
speculate that in the ABFGP method, the number of
informants compensates for the absence of species-
specific parameterization.
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ABFGP as a genome-wide annotation assessment tool
Between 7,205 and 8,270 gene models of six fungal
genomes were automatically assessed by the ABFGP
method. Between 1,724 and 3,505 (on average 2,480) of
these gene models were proposed to be incorrect and
needed revision. A more stringent indication of correct
revisions is obtained by counting only those revised gene
models that were labelled ‘ok’ (Table 2), corrected for
the observed error rate of the ABFGP method (based on
79% gene sensitivity). This yields an estimated revision
of between 1,362 and 2,769 gene models for each fungal
species. These numbers are in the same range as those
obtained in a recent genome-wide re-annotation effort
of the F. graminearum genome, which was based on pre-
dictions by a suite of gene predictors, using expression
data and followed by extensive manual curation [16]. In
that case, 1,770 gene models were revised, 691 new gene
models were added and 286 gene models were removed.
Yet, a recent study using RNA-Seq data revised another
655 gene models [17], showing that the quality-
improving manual curation effort was not yet exhaustive.
Their analysis [16] and ours independently show that
thousands of genes are still wrongly annotated in gene
catalogues of many published fungal genomes. Interest-
ingly, the same types of revision were reported (false
gene splits and fusions, novel introns and a decrease in
average intron length) as those proposed by the ABFGP
method.
Types of revision are often related to the annotation

pipelines used (Table 2). For example, inclusion of new
exons represents a rare class of revisions, except in the
two genomes that were annotated at the BROAD insti-
tute. In contrast, prediction of too many stopless 3n
introns was observed in the genomes of M. fijiensis and
Z. tritici that were sequenced at the JGI. The lowest
number of revised gene models was proposed for C. ful-
vum and D. septosporum, which represent the most re-
cently sequenced and independently annotated genomes
[20]. We speculate that this might reflect the steady in-
crease in accuracy of ab initio gene prediction software.
In this study six different fungi from three distinct

phylogenetic classes were re-annotated, using informants
from five classes of Ascomycota and two unrelated
Basidiomycota. This shows that the ABFGP method is
species-independent and can be applied to a wide variety
of fungal genomes.
Genome-wide re-annotation by the ABFGP method

did not capture the complete gene catalogues (Table 2)
which is mainly due to the stringent criteria that were
chosen to obtain the most likely orthologous informant
genes (see Methods). This effect is most obvious for in-
formant genes obtained from poorly annotated genomes.
Performance for those genes can be improved, besides
lowering this threshold, by expanding beyond using
annotated genes only. An informant locus can be any
genomic region that has ample sequence similarity to
the target protein or locus. TBLASTN or TBLASTX
could be used to detect loci that failed to be recognized
and annotated as protein-coding genes or were poorly
annotated (see Figure 1). Loci that are obtained directly
from a (non-annotated) genomic sequence could be used
as an additional resource for informants that would sim-
ultaneously increase the number of eligible target genes
and prediction performance of ABFGP. The reverse
strategy could also be employed by using the ABFGP
method to generate de novo gene models in the target
genome that lack predicted gene models but have
significant sequence similarity to predicted proteins in
other species. However, a general limitation of de novo
evidence-based gene prediction, including the ABGFP
method, is that annotation of species-specific or fast
evolving genes is not possible by any prediction method.
The ABFGP method follows an alternative approach to
the various other ensemble predictors, because it derives
its evidence directly from genomic informant sequences.
Moreover, it proposes revised gene models that include
SEs and/or DMs. This makes the ABFGP method com-
plementary to other ensemble predictors, because these
occur frequently in the gene catalogues of these fungal
genomes [24].

Sequence errors and disruptive mutations in fungal genes
Presumed inconsistent gene models were revised in 70
to 83% of all cases (Table 2), of which on average 55%
were labelled by the introspection procedure as ‘ok’ for
all introns and exons. Among these revisions was an un-
expected high number of gene models containing SEs
and/or DMs. Because ab initio gene prediction software
does not allow in-frame stops or frame-shifts causing
indels, (pseudo)genic regions with strong coding signals
will often be predicted to be truncated or split gene
model(s). Of the six studied fungi, most revisions were
proposed for B. cinerea, likely because its Sanger se-
quenced genome assembly is supported by 4.5× coverage
only [21], and its annotation was performed several years
ago. Recently, resequencing of B. cinerea using Illumina,
supplemented with some additional small Sanger reads,
resulted in a new assembly with 50× coverage [25]. This
new sequence not only revealed 31,275 SEs (personal
communication Dr. Martijn Staats), but also a consider-
able number of assembly errors in the original reference
sequence, of which many were located in coding regions
that contained annotated, yet apparently fragmented
genes (personal communication Dr. Jan van Kan). This
could be an explanation for the higher frequency (2.0%
versus 0.4-1.2% for the other five fungi, Table 2) of
abandoned executions by the ABFGP method. However,
a considerable fraction of inconsistencies observed in



van der Burgt et al. BMC Bioinformatics 2014, 15:19 Page 11 of 13
http://www.biomedcentral.com/1471-2105/15/19
coding regions were confirmed by resequencing, indicat-
ing that they were not SEs but true DMs. Additional
studies on DMs in these six fungal species suggest that
pseudogenization is very common in fungi [24]. Our re-
sults show that many fungal gene catalogues still contain
numerous unidentified truncated and erroneous gene
models due to SEs and/or DMs, that are readily detected
by the ABFGP method.

Introspection of proposed gene model revisions
The introspection module for assessing gene model cor-
rectness is a useful extension of the ABFGP method as it
helps to prioritize gene models that still need manual
curation. For the six fungal genomes, between 3,942 and
5,505 genes were suggested to not require additional
manual curation (Table 3). Based on the benchmarked
performance of the introspection procedure using the
unigene dataset, the error rate of genes incorrectly
labelled as ‘ok’ is estimated to be 12.9%. This accounts
for only 500 to 700 models out of 4,000 to 5,500 that
contain errors. For gene models that were recognized as
‘doubtful’, the ABFGP method provides a GFF-track that
shows the doubtful parts of the predicted gene model
that require manual curation. However, the introspection
module still needs further improvement because 20.6%
of the gene models is incorrectly labelled: 12.9% is
labelled as ‘ok’ but do contain (small) errors and 7.7% is
labelled as ‘doubtful’ whereas the gene models are cor-
rect. Lowering the number of false positives can possibly
be achieved by including ab initio gene model prediction
in the ABFGP method, which would allow better detec-
tion of species-specific variation of genic regions. This
would further increase the efficiency of the ABFGP
method as an automated and accurate method for gene
model curation.

Conclusions
Availability of an accurate gene catalogue of an organism
is a prerequisite and starting point for functional ana-
lyses of its genes. Obtaining such a catalogue with min-
imal manual input is still a major challenge. The ABFGP
method is a useful tool to integrate into existing gene
annotation pipelines because it can assess and improve
gene models with great accuracy in a fully automated
manner. The concept of gene-by-gene alignment-based
gene prediction exploits the availability of dozens of se-
quenced fungal genomes, which is particularly useful for
annotating novel genomes of these plastic organisms.
The possibility of the ABFGP introspection procedure at
the gene and intron-exon level helps to decrease the
number of gene models that still require manual cur-
ation. Because fungal genome sequencing is undertaken
at an accelerating pace [1], both quality and number of
informant gene loci are expected to increase in the
coming years, which will disclose more target gene loci
in genomes and also increase the efficiency and reliabil-
ity of the ABFGP method.

Methods
Sequences, annotations and third party software used
Genomes, proteomes and annotations of 29 fungal
species were downloaded from the Fungal Genome
Initiative of the BROAD Institute [2] and the Fungal
Genomics Program of the Joint Genome Institute (JGI)
[1] (Additional file 1). Available unigenes from ten fun-
gal species were downloaded from the JGI and The Gene
Index Project (http://compbio.dfci.harvard.edu/tgi/). The
ABFGP method uses several third party applications:
BLAST 2.2.8, ClustalW 2.0.12, HMMER 2.3.2, SignalP
3.0, TMHMM 2.0, transeq, getorf and tcode from
EMBOSS 6.2.0.

Full-length unigenes
Datasets of assembled unigenes (Additional file 1) were
aligned to their genomes using GeneSeqer (October
2005) and for each unigene the obtained intron-exon
structure of its coding sequence was compared to its an-
notated gene model. For benchmarking the ABFGP
method only those unigenes that were full-length were
selected.

Informant selection
An all-versus-all similarity matrix was created between
all proteins from the 29 predicted proteomes using
BLASTP. From this matrix, informant proteins from dif-
ferent fungi were selected for each target protein by ap-
plying the following criteria: the protein must represent
(i) the bi-directional best hit (BDBH) in the informant’s
proteome, (ii) the alignment must span at least 70% of
the length of both target and informant protein, (iii) the
relative difference in length between target and inform-
ant protein must be below 50% (calculated from ii) and
(iv) the alignment‘s bitscore between target and inform-
ant protein must be at least 10% of the bitscore of the
proteins when compared to themselves. As a final criter-
ion, at least four informant proteins must be available
for a target protein, and the total number of informants
was limited to the 19 most similar informants (based on
bitscore). This dataset of genes eligible for ABFGP is re-
ferred to as BDBH. A second category was created by
lowering the requirement of length coverage to 25% and
increasing length difference to 300%, followed by filter-
ing for target proteins that were linked to either consist-
ently longer or shorter informant proteins. Consistent
protein length variation putatively indicates species-
specific variation or that the corresponding gene model
contains major errors (this dataset is referred to as
GME). For both categories, target and informant

http://compbio.dfci.harvard.edu/tgi/
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proteins were loaded into ABFGP as DNA sequence of
their genomic locus flanked by an additional 1.5 kb of
sequence on both sides of the gene’s start and stop
codon. Unigenes aligned to these gene loci were taken
along as additional informants. In the benchmark that
uses unigenes, informants were selected only by the
BDBH approach and full-length unigene data aligned to
the target gene locus were discarded; the parameters
`–abinitio` and `–benchmark` were used to discard the
unigene of the target locus and annotated gene models
as hints. In all benchmark analyses, sensitivity and preci-
sion are calculated according as described by Picardi and
Pesole [3], in which specificity is an alias for precision.

Position Specific Scoring Matrices of genic elements
Definitions of donor site, acceptor site, branch point and
polypyrimidine tracks were chosen according to [18].
Generic fungal PSSMs (Additional file 2) for the canon-
ical donor (n = 571,185), the non-canonical GC donor
(n = 2,428) and the canonical acceptor (n = 576,021)
were derived from all splice sites without any nonambig-
uous nucleotide in 25 annotated genomes (excluding the
annotations of Cladosporium fulvum, Coccidioides posa-
dasii, Dothistroma septosporum, Nectria haematococca
and Trichoderma atroviride, which were added as target
and/or informant species in a later stage of the analyses).

Access to the method and data
A technical explanation of the ABFGP method, and its
GFF visualization is provided in Additional file 2. The
source code of the ABFGP method is available (see
Availability and requirements). Other datasets are avail-
able upon request by the corresponding authors: the
complete list of unigene identifiers used for the bench-
mark analyses (.xls), the predicted gene models from the
benchmark that uses unigenes (GFF files) and the
genome-wide re-annotation of the six fungi (fasta and
simplified GFF files).

Availability and requirements
Project name: ABFGP
Project home page: https://github.com/atevanderburgt/
ABFGP
Operating system: Linux, Unix
Programming language: Python
Other requirements: Python 2.6 or higher
Licence: GNU GPL
Any restrictions to use by non-academics: None

Additional files

Additional file 1: Fungal genomes used for alignment-based fungal
gene prediction. Fungal genomes and their phylogeny used in this
study.
Additional file 2: Explanation of the ABFGP method. In-depth
explanation of the ABFGP method.

Additional file 3: Determination of a dataset from ten fungi for
benchmarking the ABFGP method. Determination of a dataset of 6,965
experimentally validated genes models from ten fungal genomes for
benchmarking the performance of the ABFGP method.

Additional file 4: Benchmarking results of ABFGP performance.
Benchmarking results of ABFGP performance on 6,965 experimentally
validated gene models from ten fungal species.

Additional file 5: Rank of species providing informant gene loci
used for the six re-annotated gene catalogues. Top three and bottom
two species that provided the highest number of informants for the
re-annotation of the gene catalogues of six fungal species.
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