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Abstract: Accurate quantification of perfusion is crucial for diagnosis and monitoring of kidney
function. Arterial spin labeling (ASL), a completely non-invasive magnetic resonance imaging
technique, is a promising method for this application. However, differences in acquisition (e.g.,
ASL parameters, readout) and processing (e.g., registration, segmentation) between studies impede
the comparison of results. To alleviate challenges arising solely from differences in processing
pipelines, synthetic data are of great value. In this work, synthetic renal ASL data were generated
using body models from the XCAT phantom and perfusion was added using the general kinetic
model. Our in-house developed processing pipeline was then evaluated in terms of registration,
quantification, and segmentation using the synthetic data. Registration performance was evaluated
qualitatively with line profiles and quantitatively with mean structural similarity index measures
(MSSIMs). Perfusion values obtained from the pipeline were compared to the values assumed when
generating the synthetic data. Segmentation masks obtained by semi-automated procedure of the
processing pipeline were compared to the original XCAT organ masks using the Dice index. Overall,
the pipeline evaluation yielded good results. After registration, line profiles were smoother and,
on average, MSSIMs increased by 25%. Mean perfusion values for cortex and medulla were close
to the assumed perfusion of 250 mL/100 g/min and 50 mL/100 g/min, respectively. Dice indices
ranged 0.80–0.93, 0.78–0.89, and 0.64–0.84 for whole kidney, cortex, and medulla, respectively. The
generation of synthetic ASL data allows flexible choice of parameters and the generated data are well
suited for evaluation of processing pipelines.

Keywords: renal perfusion; arterial spin labeling; synthetic data; magnetic resonance imaging; kidney

1. Introduction

Kidneys are mainly responsible for the excretion of waste materials produced by body
metabolism via urine [1]. They are also key for maintaining steady internal chemical and
physical conditions in the body by controlling blood pressure, acidity, hemoglobin levels,
and regulating the electrolyte balance. Good kidney function is directly dependent on
normal blood flow, making it an important renal biomarker. Acute kidney injury and
impaired perfusion are in fact closely associated [2,3]. Furthermore, cortical perfusion has
been found to be decreased in patients suffering from chronic kidney disease [4–7] and to
vary depending on the disease stage [8]. Perfusion is also critical for renal allografts [9–11]
and allows differentiation between allograft rejection and tubular necrosis [12].

Non-invasive perfusion quantification of the kidneys is thus important for diagnosis
and monitoring of kidney diseases as well as the assessment of renal allograft function.
Especially non-invasive imaging techniques such as arterial spin labeling (ASL) magnetic
resonance imaging (MRI) are promising methods for these applications. ASL makes use of
blood water protons as endogenous tracer to image perfusion quantitatively [13,14]. For
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this, blood water protons present in the arteries delivering blood to the organ of interest
are magnetically labeled and after an inflow time, the labeled blood flows into the imaging
region. A labeled image containing signal from the labeled blood and surrounding static
tissue is then subtracted from a control image acquired without any labeling of blood to
obtain a perfusion-weighted image used for quantification.

Clinical application of ASL MRI is still limited and standardization is lacking despite
recent efforts [15–17]. Variability in evaluation of organ perfusion can be caused by various
effects. The measurement itself involves a large number of degrees of freedom, including
the choice of labeling scheme, readout scheme, scanner, as well as subject compliance and
individual anatomy. In addition to these data acquisition-related sources of variability,
differences in processing pipelines across centers further hinder useful comparison of organ
perfusion quantification. Simulated data mimicking in vivo acquisitions are of great value
as they do not include any variability stemming from acquisition and allow focusing solely
on data processing.

The purpose of this work was to generate synthetic renal ASL data sets of the kidneys
simulating in vivo acquisitions and to test our in-house developed processing pipeline
using this synthetic data. Synthetic renal ASL data were generated using body models from
the XCAT phantom and perfusion was added using the general kinetic model. Sequence
and ASL parameters were set in accordance with the current consensus [17]. Our in-house
developed processing pipeline was then evaluated in terms of registration, quantification,
and segmentation using the synthetic data.

2. Materials and Methods
2.1. Synthetic ASL Data Sets

Synthetic MRI data were generated based on the anatomical structures provided by
five models of the XCAT phantom (77, 80, 92, 93, and 108) [18]. XCAT voxel values were
first converted into MRI magnitude values using the spin echo sequence equation:

S = ρ
(

1 − e−TR/T1
)

e−TE/T2 . (1)

Tissue specific parameters (relative proton density ρ, T1 and T2 relaxation times
at field strengths of 3 T) were taken from the literature [19–21]. Coronal-oblique slice
position (rotation angle of 12◦), voxel dimension of 3 mm × 3 mm × 5 mm repetition
time TR = 5000 ms, and echo time TE = 23 ms were chosen to match recommendations
for in vivo acquisitions [17]. Noise was modeled as an additive white Gaussian noise to
produce signal-to-noise ratio similar to in vivo acquisitions. Respiratory motion during
free-breathing acquisition was simulated by generating 100 synthetic MR images at equally
spaced time points around the exhalation part of the breathing cycle. ASL data sets with a
total of 51 images (one M0 and 25 control–label pairs) were then generated by randomly
selecting 51 images from the available 100 time points. Background suppression used for
control and labeled images was modeled by reducing the signal intensity of all control
and labeled images to 20% of the signal of the M0 image [22]. Assuming the apparent
longitudinal relaxation time of tissue equals the longitudinal relaxation time of arterial
blood, the general kinetic model [23] was used to create both pulsed ASL (PASL) and
pseudo-continuous ASL (PCASL) data sets. To reproduce healthy kidneys, a perfusion
ratio of five was assumed between cortex and medulla [24], with cortical perfusion set
to 250 mL/100 g/min and medullary perfusion set to 50 mL/100 g/min. Arterial transit
times of 1123 ms and 1141 ms were assumed for the medulla and cortex, respectively [25].
In addition to data sets with healthy perfusion, a PCASL data set with abnormal perfusion
in the right kidney (cortical perfusion of 100 mL/100 g/min and medullary perfusion
of 20 mL/100 g/min) was also generated using the body model 92. For all PASL data
sets, the inversion time TI and the labeling duration TI1 were set to 1800 ms and 1200 ms,
respectively. For all PCASL data sets, the post-labeling delay PLD was set to 1200 ms and
the labeling duration τ was set to 1600 ms. The synthetic ASL data sets presented here
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are available for download under https://doi.org/10.11588/data/QAHWSF (accessed on
28 July 2022).

2.2. ASL Processing Pipeline

The data analysis pipeline for renal ASL data is an in-house developed MATLAB script
(Version 2020a, MathWorks, Natick, MA, USA), which includes registration, quantification,
and segmentation steps. The registration is performed using the open-source elastix
toolbox [26,27] and follows a groupwise strategy in which all ASL images (M0, all control
and all labeled images) are registered to a mean image. It is a multi-resolution registration
(isotropic Gaussian kernels 10, 8, 2, 4, 2, 1) with non-rigid transform, 3d-order B-spline
interpolator, adaptive stochastic gradient descent optimizer [28], and principal-component-
analysis-based metric (PCAMetric2) [29]. Perfusion quantification follows the current
consensus for renal ASL [17]:

rbf [mL/100g/min] =
6000 ∗ λ ∗ ∆M ∗ e−TI/T1

2∗α ∗ 0.932∗M0 ∗ TI1
(2)

for PASL data, and

rbf [mL/100g/min] =
6000 ∗ λ ∗ ∆M ∗ e−PLD/T1

2∗α ∗ 0.932∗M0 ∗ T1 ∗
(
1 − e−τ/T1

) (3)

for PCASL data.
According to the consensus [17], we assumed a T1 of blood of 1650 ms at 3 T, a blood-

tissue partition coefficient λ of 0.9 mL/g, and a labeling efficiency α of 0.95 and 0.85 for
PASL and PCASL, respectively, which is corrected by a factor of 0.932 to account for two
background suppression pulses. For the segmentation, whole kidneys are first segmented
manually on the M0 image. A k-means clustering algorithm is then used to automatically
segment cortex and medulla. The clustering is applied on the quantified perfusion map
masked by the manually drawn whole kidney masks for left and right kidney separately.
To further improve the accuracy of the medulla segmentation mask, an additional erosion
step is performed. For this, the manually drawn whole kidney masks were eroded using
[0 0 0 1 1; 0 0 1 0 0; 0 1 1 0 0; 1 1 0 0 0] and [1 1 0 0 0; 0 0 1 0 0; 0 0 1 1 0; 0 0 0 1 1] as
structuring elements for left and right kidney, respectively. The medulla mask produced by
the clustering algorithm is then multiplied with the eroded whole kidney mask to remove
any voxels on the outer edge of the kidneys. A flowchart of the processing pipeline can be
found in Appendix A.

2.3. Pipeline Evaluation

The quality of registration was assessed qualitatively using line profiles across the time
dimension of the ASL data sets as well as quantitatively with mean structural similarity
index measures (MSSIMs) [30] calculated for all possible image pairs of a data set. The
quantification step was evaluated by comparing the mean cortical and medullary perfusion
obtained from the analysis to the values assumed to generate the data sets. The segmen-
tation results obtained from the processing pipeline were compared to the segmentation
masks provided by the XCAT phantom. For this, the organ masks from the XCAT phantom
were first transformed with the registration matrix used to correct for the respiratory mo-
tion and then rebinarized. Whole kidney, cortex, and medulla binary masks were finally
compared using the Dice index [31].

3. Results
3.1. Synthetic ASL Data Sets

The M0, first control, and first labeled images of synthetic single-slice PASL and PCASL
data sets are shown in Figure 1.

https://doi.org/10.11588/data/QAHWSF
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Figure 1. Exemplary PASL (a) and PCASL (b) single-slice data sets (model 77). Left column: M0 
images; middle column: first control images; right column: first labeled images. The signal intensity 
of control and labeled images is lower than that of the M0 due to background suppression. 

3.2. Registration 
Horizontal and vertical line profiles for both right and left kidneys of a synthetic ASL 

data set are shown in Figure 2a. Some movement is visible between subsequent ASL im-
ages in both horizontal and vertical direction before registration. The movement is notice-
ably reduced after the registration as indicated by the smoother line profiles and the less 
abrupt changes in signal intensity. Quantitative evaluation of the registration for all avail-
able healthy data sets is shown in Figure 2b in terms of MSSIM distributions before and 
after registration. For each model, the MSSIMs increase after registration, indicating that 
the resemblance between all images compared increases with the registration. Before reg-
istration, mean and standard deviation of MSSIMs across all healthy data sets were 0.4 +/− 
0.2 and 0.4 +/− 0.1 for PASL and PCASL, respectively. After registration, mean and stand-
ard deviation of MSSIMs across all healthy data sets were 0.5 +/− 0.2 and 0.5 +/− 0.1 for 
PASL and PCASL, respectively. The comparison includes the comparison of identical im-
ages, which explains the MSSIM outliers equal to 1 in each distribution. The lowest 
MSSIMs were obtained for comparisons between M0 and all control or labeled images as 
M0 differs from all other ASL images in terms of intensity due to the assumed background 
suppression. As expected, the MSSIM values differed little between PASL and PCASL 
data sets. Across all models, no difference in MSSIM distributions could be observed be-
tween left and right kidney (0.4 +/− 0.2 before registration and 0.5 +/− 0.1 after registration 
for both). 

Figure 1. Exemplary PASL (a) and PCASL (b) single-slice data sets (model 77). Left column: M0
images; middle column: first control images; right column: first labeled images. The signal intensity
of control and labeled images is lower than that of the M0 due to background suppression.

3.2. Registration

Horizontal and vertical line profiles for both right and left kidneys of a synthetic
ASL data set are shown in Figure 2a. Some movement is visible between subsequent ASL
images in both horizontal and vertical direction before registration. The movement is
noticeably reduced after the registration as indicated by the smoother line profiles and the
less abrupt changes in signal intensity. Quantitative evaluation of the registration for all
available healthy data sets is shown in Figure 2b in terms of MSSIM distributions before
and after registration. For each model, the MSSIMs increase after registration, indicating
that the resemblance between all images compared increases with the registration. Before
registration, mean and standard deviation of MSSIMs across all healthy data sets were
0.4 +/− 0.2 and 0.4 +/− 0.1 for PASL and PCASL, respectively. After registration, mean
and standard deviation of MSSIMs across all healthy data sets were 0.5 +/− 0.2 and
0.5 +/− 0.1 for PASL and PCASL, respectively. The comparison includes the comparison
of identical images, which explains the MSSIM outliers equal to 1 in each distribution.
The lowest MSSIMs were obtained for comparisons between M0 and all control or labeled
images as M0 differs from all other ASL images in terms of intensity due to the assumed
background suppression. As expected, the MSSIM values differed little between PASL
and PCASL data sets. Across all models, no difference in MSSIM distributions could be
observed between left and right kidney (0.4 +/− 0.2 before registration and 0.5 +/− 0.1
after registration for both).

3.3. Quantification

Perfusion maps obtained for the healthy and abnormal PCASL data sets from model
92 are shown in Figure 3a. The decreased perfusion in the right kidney of the abnormal
data set is well distinguishable from the normal perfusion. The distributions of perfusion
values in each data set for whole kidney, cortex, and medulla are shown in Figure 3b. A
clear difference between both data sets is visible for the right kidney with mean perfusion
and standard deviation of 220 +/− 40 mL/100 g/min and 90 +/− 30 mL/100 g/min for
the cortex and 50+/− 50 mL/100 g/min and 10 +/− 30 mL/100 g/min for the medulla
for healthy and abnormal data sets, respectively. At the same time, both data sets presente
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very similar perfusion distributions for the left kidney with mean and standard deviation
of 210 +/− 50 mL/100 g/min for the cortex and 30 +/− 50 mL/100 g/min for the medulla.
This indicates a good reproducibility of the generation of synthetic ASL data as well as the
quantification step of the processing pipeline.
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Figure 2. (a) Line profiles across all ASL images before and after registration (model 93, PASL).
(b) MSSIMs calculated before and after registration for all possible image pairs within each healthy
data set. The black line in each boxplot shows the median of the distribution of mean perfusion across
all models. The top and bottom part of each boxplot represent the 25th and 75th percentiles. The
boxplots’ whiskers extend to the highest and lowest data points not considered as outliers. Outliers
are shown a black ‘+’.
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Figure 3. (a) M0 image cropped to rectangles used for separate left and right registration with overlaid
perfusion map obtained for the healthy (left) and abnormal (right) PCASL data sets of model 92. (b)
Distributions of perfusion values for both data sets.

Looking at all the data sets with healthy perfusion (Figure 4), a narrow interquartile
range of mean perfusion can be observed for whole kidney, cortex, and medulla for both
left and right kidneys and for both labeling strategies. For the whole kidney, mean and stan-
dard deviation of renal perfusion across all healthy datasets were 150 +/− 40 mL/100 g/
min and 130 +/− 10 mL/100 g/min for PASL and PCASL, respectively. For the cor-
tex, mean and standard deviation of renal perfusion across all healthy datasets were
240 +/− 40 mL/100 g/min and 210 +/− 20 mL/100 g/min for PASL and PCASL, respec-
tively. For the medulla, mean and standard deviation of renal perfusion across all healthy
datasets were 50 +/− 20 mL/100 g/min and 49 +/− 8 mL/100 g/min for PASL and
PCASL, respectively. This corresponds well to the perfusion values originally assumed to
generate the synthetic data (250 mL/100 g/min and 50 mL/100 g/min for the cortex and
medulla, respectively).

3.4. Segmentation

A comparison of segmentation masks obtained for one of the data sets is shown in
Figure 5a. The segmentation masks for whole kidney, cortex, and medulla obtained from
the processing pipeline match the XCAT segmentation masks well. Dice index distributions
across all models for PASL and PCASL data sets can be found in Figure 5b. Very good
agreement between segmentations was found for whole kidney and cortex, with dice
indices ranging from 0.80 to 0.93 and from 0.79 to 0.89, respectively. Differences between
medulla masks were larger but still reasonably good, with Dice indices ranging from 0.64
to 0.84.
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the 25th and 75th percentiles. The boxplots’ whiskers extend to the highest and lowest data points
not considered as outliers. Outliers are shown a black ‘+’.
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Figure 5. (a) Comparison of segmentation masks of the PCASL data set of model 108 obtained from
the processing pipeline (red) and the XCAT phantom (cyan). White areas correspond to pixels present
in both masks being compared. (b) Boxplots of Dice indices calculated for the five models for the
PASL and PCAL data sets for whole kidney, cortex, and medulla. The black line in each boxplot
shows the median of the distribution of mean perfusion across all models. The top and bottom part
of each boxplot represent the 25th and 75th percentiles. The boxplots’ whiskers extend to the highest
and lowest data points not considered as outliers. Outliers are shown a black ‘+’.

4. Discussion

Synthetic renal ASL data sets simulating in-vivo acquisitions were generated using
body models from the XCAT phantom, the general kinetic model and literature values for
tissue properties. Sequence and ASL parameters were set in accordance with the current
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consensus [17]. The synthetic data were then used to evaluate our in-house developed renal
ASL processing pipeline consisting of registration, quantification, and segmentation steps.

The generation of synthetic renal ASL data presented in this work allows flexible
choice of parameters and benefits from the multitude of available XCAT body models
presenting different organ sizes and shapes. An additional style transfer to further increase
the resemblance between synthetic and real ASL data would be beneficial. This could be
conducted using CycleGAN networks as previously demonstrated [32]. The five models
included in this work were selected at random from the available adult models. Future
work should also involve the expansion of the synthetic data sets to additional models
as well as include additional pathological data sets (e.g., representing different stages of
chronic kidney disease). In 2019, Antolak et al. introduced a simple ASL digital reference
object to compare software packages [33]. It consists of a square block of voxels with a
range of perfusion values (10–210 mL/100 g/min), considering only PCASL labeling and
including noise. This simple approach does not resemble real-life cases and thus allows only
limited evaluation or comparison of processing software. More recently a brain ASL digital
reference object was introduced [34] and used to set up a challenge for comparison of ASL
processing options employed in research and clinical settings [35]. The authors also looked
into generating synthetic ASL data of the kidneys using the same framework [36]. Their
approach used cortex and medulla segmented from an in vivo MR scan of a single healthy
volunteer and a perfusion of 215 mL/100 g/min and 81 mL/100 g/min were assigned to
cortex and medulla, respectively. This approach requires actual MRI acquisitions, which
can be challenging to obtain due to scanner availability and potential artifacts.

Good registration to correct for respiratory motion is crucial for accurate perfusion
quantification based on ASL MRI data as it requires the subtraction of labeled images
from control images. A mismatch of anatomical structures between any of the images
used for calculation of the perfusion map would result in erroneous perfusion values. The
registration strategy employed in our in-house developed processing pipeline performs
well on the synthetic data. A separate registration of left and right kidney was chosen as
each organ may experience a different motion during the respiratory cycle. As a coronal
oblique slice positioning was used, the respiratory motion, which is mainly along the
craniocaudal direction, will result in a displacement of the kidneys not only within the plane
of imaging but also out of it. This can result in varying organ shapes across the ASL time
series and motivated the choice of a non-rigid registration strategy. Finding the best suited
registration strategy and parameters is difficult and some adaption might be necessary
when analyzing data from different cohorts. The performance of groupwise registration
applied to ASL might be hindered by the difference of signal intensity between M0, control,
and labeled images. Another registration strategy which has been shown to yield good
results for motion correction in ASL of the myocardium consists of a combination of
groupwise registration of control and of labeled images followed by pairwise registration of
mean control image and mean labeled image to the M0 image [37]. Variational frameworks
for non-rigid registration have been shown to yield good results for dynamic contrast
enhanced (DCE) MR images of the kidneys [38] and could be evaluated for renal ASL. Deep
learning based registration is also an interesting alternative as it has already demonstrated
great potential [39]. However, the success and transferability of this approach is limited by
the amount of data available for training. The framework for generation of synthetic ASL
data presented here can be used to complement in vivo acquired data for network training
purposes, as previously suggested for other imaging applications [32].

The quantification model employed here was a single compartment model and as-
sumes the same longitudinal relaxation for tissue and blood. While this corresponds to
the current recommendations [17], it contains a number of assumptions simplifying the
complexity of blood and nutrient delivery to an organ. The framework for generation of
synthetic ASL data presented here can easily be modified to include perfusion-weighting in
the images based on a different and more complex model. In addition, it offers a large flexi-
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bility to modify other assumed tissue properties to simulate diseases involving impaired
renal perfusion as well as altered tissue relaxation times and arterial transit times.

The segmentation procedure employed in our in-house developed processing pipeline
is a compromise between time-intensive manual segmentation and accuracy of automated
segmentation. Automated whole kidney segmentation is complicated, especially for the
left kidney due to the closeness of the spleen, which presents similar intensities as the
kidneys in the M0 image used for segmentation. Automated segmentation of cortex and
medulla works well on the quantified perfusion map as perfusion differs greatly between
cortex and medulla in healthy kidneys. However, this approach will not yield good results
in cases where cortical and medullary perfusion are similar and further improvement
is warranted for application in clinical cohorts. Kidney segmentation based on k-means
clustering has previously been used on entire MR images with three clusters (cortex,
medulla, background) [40] instead of running it on each kidney separately and thus using
only two clusters (cortex and medulla) as done in this work. In our ASL processing pipeline,
the image is already separated in two for separate registration of left and right kidney. A
segmentation performed separately on each kidney is thus more straightforward. Another
automated segmentation for DCE MR images yielding good results uses wavelet-based
clustering [41]. However, it is not directly applicable to ASL images as it makes use of
the DCE-specific changes in signal intensity during contrast agent uptake, which reflects
kidney functionality. An automated segmentation of the kidneys in twelve concentric
objects (TLCO) has been introduced for evaluation of renal oxygenation [42]. However,
this method does not allow separation of cortical and medullary compartments of the
kidneys and is thus less appealing for assessment of renal perfusion. Deep learning has
also successfully been applied for kidney segmentation for both healthy and diseased
kidneys [43,44]. In most cases, segmentation is performed on anatomical T1-weighted or
T2-weighted data or even on quantified relaxometry maps [44,45]. However, this requires
an additional step of registration of the anatomical and ASL data, which is not always
easily achievable.

5. Conclusions

Synthetic renal ASL data were generated. They simulated in vivo acquired data
based on current acquisition recommendations. The data were used to evaluate our in-
house developed processing pipeline, which yielded good results for the registration,
quantification, and segmentation steps. The synthetic data are well suited for evaluation of
processing pipelines and could be used to compare pipelines across centers in a next step.
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Figure A1. Flowchart of the processing pipeline. The ASL data, consisting of one M0 image, n con-
trol images, and n labeled images, is first registered using a groupwise registration strategy. The 
registered control and labeled images are then subtracted and averaged to obtain a mean perfusion-
weighted image ΔM. RBF is quantified with the general kinetic model. For the segmentation, the 
kidney contour is first manually drawn for each kidney. The obtained whole kidney masks are ap-
plied on the RBF map and a k-means clustering algorithm is employed for cortex/medulla segmen-
tation. The final results are RBF maps of the whole kidneys, cortex, and medulla, as well as mean 
RBF values for each. Abbreviations used: n—number of control-label pairs acquired; REG—regis-
tered; RBF—renal blood flow. 

References 
1. Rayner, H.; Thomas, M.; Milford, D. Kidney anatomy and physiology. In Understanding Kidney Diseases; Springer: Cham, Swit-

zerland, 2016; pp. 1–10. 
2. Dong, J.; Yang, L.; Su, T.; Yang, X.; Chen, B.; Zhang, J.; Wang, X.; Jiang, X. Quantitative assessment of acute kidney injury by 

noninvasive arterial spin labeling perfusion MRI: A pilot study. Sci. China Life Sci. 2013, 56, 745–750. 
3. Johnson, R.J.; Feehally, J.; Floege, J. Comprehensive Clinical Nephrology E-Book; Elsevier Health Sciences: Amsterdam, The Neth-

erlands, 2014. 
4. Rossi, C.; Artunc, F.; Martirosian, P.; Schlemmer, H.P.; Schick, F.; Boss, A. Histogram analysis of renal arterial spin labeling 

perfusion data reveals differences between volunteers and patients with mild chronic kidney disease. Investig. Radiol. 2012, 47, 
490–496. 

5. Cai, Y.Z.; Li, Z.C.; Zuo, P.L.; Pfeuffer, J.; Li, Y.M.; Liu, F.; Liu, R.B. Diagnostic value of renal perfusion in patients with chronic 
kidney disease using 3D arterial spin labeling. J. Magn. Reson. Imaging 2017, 46, 589–594. 

Figure A1. Flowchart of the processing pipeline. The ASL data, consisting of one M0 image, n control
images, and n labeled images, is first registered using a groupwise registration strategy. The registered
control and labeled images are then subtracted and averaged to obtain a mean perfusion-weighted
image ∆M. RBF is quantified with the general kinetic model. For the segmentation, the kidney
contour is first manually drawn for each kidney. The obtained whole kidney masks are applied on
the RBF map and a k-means clustering algorithm is employed for cortex/medulla segmentation. The
final results are RBF maps of the whole kidneys, cortex, and medulla, as well as mean RBF values for
each. Abbreviations used: n—number of control-label pairs acquired; REG—registered; RBF—renal
blood flow.
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