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Abstract

Background and Aims: Coronavirus disease 2019 (COVID‐19), caused by the

SARS‐CoV‐2 novel coronavirus, is a highly communicable disease that gave rise to

the ongoing pandemic. Despite prompt action across many laboratories in many

countries, effective management of this disease is still out of reach. The focus of this

review is to describe various vaccination approaches and nanomedicine‐based

delivery systems against COVID‐19.

Methods: The articles included in this study were searched and added from

different electronic databases, including PubMed, Scopus, Cochrane, Embase,

and preprint databases.

Results: Mass immunization with vaccines is currently at the forefront of COVID‐19

infection control. Such vaccines are live attenuated vaccines, inactivated vaccines,

nucleic acid‐based vaccines, protein subunit vaccines, viral‐vector vaccines, and

virus‐like particle platforms. However, many promising avenues are currently being

explored in laboratory and clinical settings, including treatment options, prevention,

diagnosis, and management of the disease. Soft nanoparticles like lipid nanoparticles

(solid lipid nanoparticles (SLNPs), liposomes, nanostructured lipid carriers, nanoe-

mulsions, and protein nanoparticles play an essential role in nanomedicine. Because

of their unique and excellent properties, nanomedicines have potential applications

in treating COVID‐19 disease.

Conclusions: This review work provides an overview of the therapeutic aspects of

COVID‐19, including vaccination and the role of nanomedicines in the diagnosis,

treatment, and prevention of COVID‐19.
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1 | INTRODUCTION

Coronaviruses are positive‐sense single‐strand RNA (+ssRNA) viruses

belonging to the family Coronaviridae.1,2 They got their name from

the halo, the spike proteins studded on their outer surface resembling

a crown.1,3 Basically, coronavirus causes mild to severe respiratory

illness in human beings as well as a variety of illnesses in animals.4,5

The human coronaviruses first came to light in the 1960s as a cause

of the common cold, approximately 30 kb (27–32 kb) in genomic

size.5 In the last two decades, coronaviruses have been issued as

epidemic and pandemic threats in the world.6 As a fatal respiratory

infection, Severe Acute Respiratory Syndrome (SARS‐CoV) emerged

in 2002 and 2003 in the Guangdong province, China and Middle East

Respiratory Syndrome (MERS‐CoV) emerged in 2012 in the Middle

Eastern countries.4,6 In addition, the third zoonotic human corona-

virus, named novel coronavirus (2019‐nCoV), subsequently issued a

pandemic that the World had not seen before late 2019.7 It is also

introduced as Severe Acute Respiratory Syndrome Coronavirus 2

(SARS‐Cov‐2) because this virus is genetically related to SARS‐CoV,

which was the reason behind SARS outbreak of 2003.8 SARS‐CoV‐2

has a homologous genome sequence with SARS‐CoV and MERS‐

CoV, 77.5% and 50%, respectively.3,9 In general, they contain

various components in their structure, including spike (S) glyco-

protein, nucleocapsid (N) protein, membrane (M) protein, and

envelope (E) protein that contributes to its pathogenesis. The

binding of the S protein to the angiotensin‐converting enzyme 2

(ACE2) receptor facilitates viral fusion, enabling the virus to enter

host cells.10,11

Initially, a cluster of pneumonia patients of the unidentified cause

was linked to the seafood and wet animal wholesale market located

in Wuhan, a city in Hubei Province, China.10 As a matter of fact, the

symptoms were found to be identical to the patients with SARS‐CoV

and MERS‐CoV; for instance, fever, cough with chest pain, and in

worst cases, difficulty in breathing and bilateral pulmonary infiltra-

tion.10,12 The World Health Organisation (WHO) named the disease

COVID‐19 in December 2019.13 This virus spreads rapidly through-

out the world,14 caused by an aerial person‐to‐person transmission

by either virion suspended on large droplets via coughs, sneezes and

even talks or fine aerosols expelled from the respiratory tract of the

affected person.15 It is a highly infectious virus with multiple

mutations.16 The COVID‐19 disease is still spreading continuously.

So, vaccination can be a suitable option to stop millions of deaths, like

eradicating smallpox and rinderpest, by effective and universal

vaccination.17

In terms of ending up the pandemic, hundreds of vaccine

candidates are in the pipeline for COVID‐19 disease.18 Traditional

vaccine development takes many years and even decades, but due to

the previously gained knowledge and experience from related

viruses, the world was able to develop COVID‐19 vaccines in a

successful way,19 and at the same time, nanomedicine added a new

dimension to deal with the diagnosis, treatment, and prevention of

COVID‐19.20 According to the definition of the European Science

Foundation (ESF), nanomedicine is the science and technology

associated with the diagnosis, treatment, and prevention of disease

by applying molecular knowledge of the body.21,22 The approximate

size of nanomedicine is around 100–200 nm with hydrophilic surface

modification.23 Multiple nanotechnology method‐based strategies

are ongoing for COVID‐19, for example, nanomedicine‐dependent

mRNA vaccines, Pfizer‐BioNTech (BNT162b2), and Moderna (mRNA‐

1273) are under the authorization of emergency use, leading the

most significant role in COVID‐19 disease,24 nanoparticles (NPs) in

diagnosis have potential applications in quick, sensitive and accurate

results in COVID‐19 detection due to the efficient interaction with

biomolecules (protein, DNA) and even impregnation of metallic NPs

as like Ag‐NPs in various protective materials including masks,

medical devices, gloves could be helpful in the prevention of viral

spread.20 Therefore, nanomedicine is like a rational key factor or like

a rescue from the COVID‐19 pandemic.

The focus of this review is to describe various vaccination

approaches against the novel coronavirus, including both conven-

tional and innovative approaches, including but not limited to

nanomedicine‐based delivery systems, gene delivery, viral carriers

and so forth.

2 | METHODS

The articles included in this study were searched and added from

different electronic databases, including PubMed, Scopus, Cochrane,

Embase, and preprint databases. The authors have tried to collect all

available data related to the concept of the study (COVID‐19

vaccination and nanomedicine) without any language or region‐

specific barriers. However, the authors have also tried to remove

some articles from the reference list that have been retracted

already. The authors are not liable for any future concern related to

retracted articles. As the data on COVID‐19 is rapidly updating, the

authors recommend using the latest available data for future works

on this theme.

3 | CURRENT THEMES COVID‐19
VACCINES

In the race of developing enough safe and effective COVID‐19

vaccines, in words of WHO onNovember 18, 2022, 175 vaccine

candidates are in human clinical trials and more than 199

candidates in preclinical trials all over the world which are from

live attenuated vaccines, nucleic acid‐based vaccines, inactivated

vaccines, protein subunit vaccines, viral‐vector vaccines, and

virus‐like particles platforms.18

3.1 | Whole‐virus vaccines

Two types of whole‐pathogen vaccine are commonly distinguished:

Live‐attenuated vaccines (LAV) and inactivated vaccines.25
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3.1.1 | LAV

LAV use live pathogens with reduced virulence, which can grow and

replicate without causing disease.26 They introduce a mild infection,

that is, the natural infection, and provide a strong, long‐lasting

immune response against the disease.25 However, live vaccines are

not suitable for people whose immune system is weak.25

An example of an existing live‐attenuated vaccine is Bacillus

Calmette‐Guerin (BCG) is still the only vaccine highly effective in

preventing Tuberculosis (TB) in humans resulting in a significant

reduction in the number of deaths.27 The WHO and International

Union against Tuberculosis and Lung Disease suggest that the

substrain of BCG may be the future vaccine.27 This vaccine can

offer a powerful specific and nonspecific immune response though it

is still unknown whether it can offer potent protection against

COVID‐19 or not.28

3.1.2 | Inactivated vaccine

The inactivated vaccine uses inactivated versions of viruses or other

pathogens using chemicals, UV light and heat to produce an immune

response.29 Although the immune response is weaker than live

vaccines and needs several booster doses, it is safe, especially for

immunocompromised persons.29

CoronaVac from Sinovac (China) is an example of inactivated

vaccine.30 It is a two‐dose vaccine adjuvanted with aluminum

hydroxide currently in phase IV trial.19,31,32 In this vaccine, SARS‐

CoV‐2 is deactivated by beta‐propiolactone.19 A recent study

demonstrated that the host cells of the participants vaccinated with

CoronaVac defenced through the immune system by targeting spike

protein and nucleoprotein, where the fever was relatively low

compared to other RNA vaccines, DNA vaccines, and viral vector

vaccines.30 Application of mRNA‐based or vector‐based vaccines for

heterologous boosting after primary CoronaVac vaccination may

cause to the recovery of high COVID‐19 protective antibody

concentrations quickly.33

Valneva's Vero‐cell‐based VLA2001 is a highly purified inactivated

vaccine against COVID‐19,34 transitioned into a phase III trial

(NCT04864561). It contains an inactivated version of the whole virus,

SARS‐CoV‐2, with a high‐density of S protein with the combination of

cytosine phosphate‐guanine (CpG 1018) and aluminum hydroxide as

adjuvants in expecting to induce a strong immune response35 by

triggering the production of antibodies. On April 6, 2021, Valneva

reported positive phase I/II data in whichVLA2001 was well tolerated in

participants with no safety concerns identified.35 Data showed that

VLA2001 could neutralize the initial SARS‐CoV‐2 virus along with the

variants Omicron and Delta (https://www.nihr.ac.uk/news/nihr-

supported-valneva-covid-vaccine-trial-reports-positive-results/28969).

China‐based Sinopharm developed BBIBP‐CorV, a two‐dose

inactivated vaccine, which underwent into phase IV trial.32,36 It

showed good immunogenicity in phase I/II trials of randomized,

double‐blinded, placebo‐controlled.37 A recent study uncovered a

lower prevalence of adverse reactions of the Sinopharm vaccine in

contrast to Pfizer and AstraZeneca vaccines.36

Bharat Biotech and the Indian Council of Medical Research and

the National Institute of Virology jointly developed COVAXIN, which

is composed of the inactivated whole virion (SARSCoV‐2), produced

with two adjuvants Algel and Algel‐IMDG.38 The advantages and

limitations of different types of vaccines with their target portions for

COVID‐19 are shown in Table 1.25,31,39

3.2 | Protein subunit vaccine

Protein subunit vaccine is composed of one or more fragments of actual

viral protein as antigens to trigger immune response.40,41 They are

manufactured easily using recombinant DNA technology and contain

well‐defined compositions.41,42 Although live attenuated or killed

(inactivated) vaccines have gained success in several diseases like polio,

they are not always effective and have some issues.42 But protein subunit

vaccines are attractive vaccine candidates and gained enough interest in

recent years.42 They are inherently safe and do not induce injection site

pain.42 However, the vaccines require additional support of an adjuvant

in amplifying immune response due to low immunogenicity.40,41 Many

protein subunit vaccine candidates have participated in clinical phase

trials using S protein and its fragments, like S1, S2, RBD, and nucleocapsid

protein, as a main target antigen for COVID‐19.41

Novavax (USA) offered NVX‐CoX2373 is a protein‐based

nanoparticle vaccine with saponin‐based Matrix M1 adjuvant.43 In

the preclinical study, NVX‐CoV2373 induced antibodies responsible

for blocking the spike protein to bind with receptors and provided

protection against COVID‐19.44 It was well‐tolerated with robust

antibody response in phase I/II trial.44 Follow‐up with the phase III

clinical trial of NVXCoV2373 has shown 89.7% efficacy against

SARS‐CoV‐2.45

Clover Biopharmaceuticals in China designed SCB‐2019 as a

vaccine candidate for COVID‐19.46 This vaccine contains a stabilized

trimeric form of S protein (S‐Trimer) formulated with either ASO3 or

CpG/Alum as adjuvants.46 Phase 1 data shows the vaccine is well‐

tolerated as well as has a strong immune response in younger and

older age groups and this result preferred the vaccine to move into

phase 2/3 trial.46,47

3.3 | Nucleic acid vaccine

This vaccine can be DNA or RNA. To trigger an immune response,

this category of vaccine utilizes genetic material derived from a

pathogen.18

3.3.1 | DNA vaccine

Inovio Pharmaceuticals is working on a DNA vaccine candidate

(INO‐4800) that encodes the S‐protein of SARS‐CoV‐2.48 In the
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phase 1 trial, INO‐4800 was safe and well tolerable and at the same

time and 100% of vaccinated participants showed immunogenicity by

expressing either or both humoral or cellular immune responses.48

Phase II/III clinical trial is underway (NCT04642638).

3.3.2 | mRNA vaccines

Pfizer and BioNTech collaborated and took two immunogens,

BNT162b1, the receptor‐binding domain (RBD), and BNT162b2,

the full‐length S protein in a preliminary clinical trial.49 BNT162b2

was found to be safer than BNT162b1, especially in aged adults and

thus, BNT162b2 was entered into phase II/III clinical trial.49 Phase 3

clinical trial has shown 95% efficacy of Pfizer/BioNTech BNT162b2,

an excellent result for mRNA vaccines against SARS‐CoV‐2 and just

need two shots 21 days apart for this efficacy.50

Moderna's mRNA‐1273, also a two‐dose vaccine based on

stabilized mRNA of the viral spike protein (mRNA‐1273) is given 28

days apart.51 Phase I clinical trial of this has demonstrated that the

mRNA‐1273 vaccine induced immune responses against SARS‐CoV‐

2 in all subjects with no identifiable safety concern that set the

vaccine to enter into the stage of II/III trials.52 The mRNA‐1273

vaccine candidate passed in the phase 3 trial consisting of 30,420

participants with 185 cases at high risk for COVID‐19, giving 94.1%

effectiveness in preventing COVID‐19 without identifiable safety

concerns.53

These two mRNA vaccines have been developed using lipid

nanoparticles (LNPs) and due to the presence of PEG in the

formulation, both of them have side effects such as injection site

pain, fever, muscle or joint pain, chills, fatigue, headache, as well as

allergic reaction in some patients.51 Both of them are currently

transitioning into phase IV trial.32

CVnCOV is also an mRNA vaccine candidate produced by the

German company CureVac.54 A study provides evidence that

CVnCOV is safe and potent for the protection of SARS‐CoV‐2.55 A

study of randomized observer‐blinded, placebo‐controlled phase IIb/

III showed this vaccine had 70.7% overall efficacy in moderate‐to‐

severe and 77.2% in participants aged 18–60, and it had a good

safety profile in phase II randomized study.56

In addition, Globe Biotech Ltd from Bangladesh is working on a

nucleocapsid‐modified mRNA vaccine that encodes the S protein that

is BANCOVID. The vaccine is based on the D614G variant, which is

10 times more infectious than the D614 genotype. The vaccine is

encapsulated by lipid nanoparticles (LNP). A study indicated that the

in vivo administration of the vaccine was safe and exhibited a

consistent and stable immune response, both at the cellular and

humoral levels, effectively neutralizing infection caused by the

S protein.57

TABLE 1 Advantages and limitations of different types of vaccines with their target portions for COVID‐19.25,31,39

Vaccine type Targets Advantages Limitations

Live attenuated Whole virus − Provide strong and long‐term immune response

− Single dose administration is often enough
− Cost effective

− Often induce higher reactogenicity cold storage

condition is required
− Can lead to transient immunosuppression in healthy

person
− Not suitable for people with weak immune system

Inactivated Whole virus − More stable than other platforms
− Good safety profile as no live virus is present
− Easy to transport and storage condition is not as

critical

− Less immunogenic than a live vaccine
− Requiring booster dose thus increases costs
− Use of adjuvants can lead to unwanted inflammation

Protein subunit S protein − Cannot induce infection
− Safe for immunosuppressed patients
− Have fewer side effects
− Do not induce injection site pain

− May require adjuvants
− Weak immunogenic
− Cannot mimic the size of the native pathogen like

DNA‐based S protein − Fast production capacity
− Safe, well tolerated and reusable
− Can be stored at room temperature

− High production and development cost
− Require specific delivery devices and equipment
− Genome integrational risk resulting in insertional

mutagenesis
− No vaccines licensed for humans

mRNA‐based S protein − Fast production capacitySafe and nonintegrating
− Reusable and highly immunogenic

− Necessary to store at cooler temperatures
− In vivo vaccine delivery

VLP‐based S protein − Self‐adjuvant properties capable of inducing strong
immune responses

− Safe because it does not induce infection

− Higher doses are required for administration
− Challenges to producing with good immunogenicity

Viral vector S protein − Less infectious and reusable
− Fast production capacity
− Provide both cellular and humoral immune

responses

− Pre‐existing immunity against vector may misdirect
immune response

− Possibility of adverse reaction
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3.4 | Viral vector‐based vaccines

Viral vector vaccine is produced by a gene of interest and inserted

with the sequence of coding of the target virus, and its goal is to

provide an immune response against the target antigen.31

3.4.1 | Nonreplicating viral vector vaccines

ChAdOx1 nCoV‐19 or AZD1222 (sold under the names Covishield,

Vaxzevria etc.), a chimpanzee adenovirus vaccine against SARS‐CoV‐

2 offered by AstraZeneca and Oxford Vaccine Group (UK‐Sweden).58

There are two shots to be administrated 4 weeks apart.59 A phase I/II

study of single‐blind, randomized controlled trial in five trial sites in

the UK showed that AstraZeneca candidate was safe, tolerable, and

immunogenic.60 Local and systemic reactogenicity like fever, injec-

tion site pain, headache, muscle ache, and malaise were common

factors in participants reduced by acetaminophen.60 So, there was no

such serious adverse effect. Interim analysis of Phase II/III trial had

found that AstraZeneca was 70.4% effective after two shots and

64.1% protective after at least one standard shot against COVID‐19

disease with on safety concern.61 Another analysis of the Phase III

trial of the vaccine ensured 79% effectiveness in preventing

symptomatic COVID‐19 disease.59 This vaccine was re‐checked 2

days later, and the efficacy was around 76% indeed.62 Now in the

phase IV trial.32

The major European nations tentatively suspend Oxford‐

AstraZeneca vaccine due to the issue of its thromboembolic

effects.54,62 There is no justification and proper evidence for the

ban, however.54 An evaluation of safety data of more than 10

million records provides evidence of no identification of blood

clots at any batch, gender, defined age group or in any specific

country.54

Based on adenovirus, Janssen Pharmaceutical Companies of

Johnson & Johnson developed a single‐shot vaccine candidate

Ad26.COV2‐S/JNJ‐78436735 shows 66% efficacy against

COVID‐19 and US Food and Drug Administration (US‐FDA) has

approved this J&J vaccine for Emergency use.63–65 Phase IV is

underway.32

Nevertheless, the distributions of J&J vaccine faced a temporary

pause by the US regulator because the blood clot problem was issued

in six cases out of seven million dose administrations after reports of

a blood clot in vaccinated people. The symptoms occurred 6–13 days

after vaccination in all six women aged between 18 and 48.

According to a newspaper article, both AstraZeneca and J&J vaccine

has the same problem though; the reason is yet to be found, but

something might have something to do with the adenoviral vector

EDTA and in these vaccine formulations, they are likely causing this

problem.66,67

Ad5‐nCoV is another single‐dose nonreplicating viral vector

vaccine currently transitioned into phase IV.32 It had an efficacy of

57.5% against symptomatic.68

3.4.2 | Replicating viral vector vaccine

Initially produced in Russia, Sputnik V is a two‐component

adenoviral‐based vaccine where serotypes 5 and 26 of adenovirus

are used.58,69 In phase I/II trial, this vaccine showed a good safety

profile and as well as produced a strong cellular and humoral immune

response.70 Recently, an interim analysis of a randomized controlled

phase 3 trial in Russia, published in the Lancet, examined the safety

and efficacy of a COVID‐19 vaccine based on rAd26 and rAd5

vectors in a heterologous prime‐boost regimen. The study demon-

strated that the vaccine exhibited a high efficacy of 91.61% against

SARS‐CoV‐2.70

3.5 | Virus like‐particle vaccine

Plant‐based COVID‐19 vaccine candidate of Medicago Inc

co‐administered with GSK's pandemic adjuvant uses coronavirus

like‐particles (CoVLP) now in phase III. Two shots of 3.75 µg are

given 21 days apart (https://www.medicago.com/en/media-room/

medicago-and-gsk-start-phase-3-trial-of-adjuvanted-COVID-19-

vaccine-candidate/).

Table 2 shows the overview of COVID‐19 vaccine candidates.

4 | EFFECTIVENESS OF COVID‐19
VACCINES AGAINST NEW VARIANTS

All the currently developing COVID‐19 vaccines are mainly focused

on the original, unstable D614 forms of S protein.92 D614G mutation

of S protein emerged early in this pandemic is not an obstacle for this

vaccine development.93 However, recently different variants of

SARS‐CoV‐2 have raised concern on the efficacy of emergency‐

authorized vaccines.

In September 2020, B.1.1.7 (Alpha) variant contained several

mutations of S protein, including the most significant spike N501Y

mutation flowed out in Southeast England.94 It is also referred to as

501Y.V1.94 This variant rapidly spread throughout the UK along with

other countries.95 A recent analysis suggested that sera samples from

the vaccinated individuals of Pfizer vaccine or Moderna vaccine have

identical neutralizing activities against Alpha variant as compared

with wild type.94 Emary et al.96 run a study and provide evidence that

the AstraZeneca vaccine has reduced neutralizing activity against

Alpha variant than non‐Alpha variant in vitro and this vaccine is

efficacious against Alpha variant. Novavax, a protein‐based vaccine,

has approximately 86% efficacy against this variant.97

The B.1.351 (Beta) variant of coronavirus was identified in late

2020 in South Africa,95 and since then, this variant has shown a

dominant character.14 The variant contains N501Y mutation in the S

protein like UK variant.95 An investigation reported that sera samples

from people vaccinated with Pfizer vaccine or Moderna vaccine

might not have comparable efficacy to this variant when compared
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with the wild type.94 In a recent analysis, two shots of the

AstraZeneca vaccine had no efficacy with the South African variant

to prevent COVID‐19.98 In contrast, Novavax vaccines have 60%

efficacy against this variant.97

In early January 2021, Brazil experienced a new SARS‐CoV‐2

variant P.1 (Gamma),99 from a local B. 1. 1.28 clade.100 P.1 is also

called N501Y.V3.100 Basically, It was 1st detected in four travelers

returning from the Amazon state, and by this, the second wave

flowed out in Brazil.100 A recent analysis suggests that after

administration of the second shot, CoronaVac has 42% efficacy in

the real‐world setting of excessive P.1 transmission and vaccine

effectiveness will be less among adults ≥70 years of age.99

Recently, the major concern regarding vaccination against

COVID‐19 has been raised for the novel variants (Delta and Omicron)

of SARS‐CoV‐2. The Delta variant of SARS‐CoV‐2 first emerged in

mid‐April 2021 in the United Kingdom, which rapidly caused a spike

in COVID‐19 cases and hospitalization around various parts of

the world. While the Delta variant has higher transmissibility, it is not

due to vaccine inefficiency but a higher viral load.101,102 The

difference in vaccine effectiveness after two doses was negligible

between the Alpha and the Delta variants.103

A current study demonstrates that two doses of Pfizer vaccine

have 87.9% efficacy against symptomatic disease caused by

B.1.617.2 (Delta) variant, while two shots of AstraZeneca vaccine

show 59.8% efficacy.104

B.1.1.529 (Omicron), one more variant first came up in Botswana

and South Africa, has been designated by WHO as a variant of

concern.105 Early reports showed the Omicron variant is highly

transmissible and has high vaccine escape due to frequent mutations

in the S protein receptor‐binding domain and S2 fusion domain;

however, fully vaccinated individuals showed higher protection

against severe COVID‐19 infection.106,107 Reported data from South

Africa on >11,000 subjects (aged 19–59 years) showed that omicron

variant had a lower percentage of hospital admission and less clinical

severity compared to the early SARS‐CoV‐2 variants.108 The

authority of J&J vaccine said that this vaccine has a critical tool in

fighting this pandemic, that is, it has the ability to provide protection

from different variants across countries.64

5 | NEXT‐GENERATION COVID‐19
VACCINES

Although multiple approved first‐generation vaccines made tremen-

dous progress in COVID‐19 disease, still, many challenges are

remaining as like further increasing efficacy, sufficient vaccine

distribution, fighting against different variants.109 So, the develop-

ment of second‐generation vaccines may be a better option to

overcome these gaps and lessen ongoing global spread by focusing

on the limitation of first‐generation vaccines. The second‐generation

vaccines are targeting the new variants as well as old ones.

CureVac and GlaxoSmithKline (GSK) are working on a second‐

generation vaccine for COVID‐19. It is designed with a new mRNA

backbone that does not conform to CureVac's first‐generation

CVnCoV candidate.110 In a preclinical study, two shots of CVnCoV

were given to some rats, and they induced strong neutralizing

antibodies for SARS‐CoV‐2 at all dose levels.109 Sera from these

vaccinated animals revealed cross‐neutralization activity against the

variants that was originated in the UK (B.1.1.7), Denmark (B.1.1.298),

and South Africa (B.1.351).109 This preclinical study suggests that

CV2CoV is able to generate a strong immune response against

COVID‐19 disease and tackle future challenges of this pandemic,

allowing this vaccine for further clinical development.109,110

CoVepiT is another second‐generation COVID‐19 vaccine of

OSE Immunotherapeutics (France).111 It is like a peptide‐based,

multitarget and multivariant vaccine. Its aim is to induce CD8+Tcell‐

mediated immune response by targeting 11 SARS‐CoV‐2 virus

proteins, such as S protein, M protein and several nonstructural

proteins, to cover all initial and novel SARS‐Cov‐2 variants and

strains.111

Sanofi Pasteur and GSK vaccine targeting original D614 virus as we

as B.1.351 variant. Phase III pending (https://www.sanofi.com/en/

media-room/press-releases/2021/2021-05-27-07-30-00-2236989).

6 | ROLE OF NANOMEDICINE IN
COVID‐19

Current applications of nanomedicine span across a multitude of

fields, such as drug delivery, vaccine development, diagnostic (both in

vivo and ex vivo), therapeutic, and theragnostic purposes.21,112 Soft

nanoparticles like lipid NPs (solid lipid nanoparticles (SLNPs),

liposomes, nanostructured lipid carriers), nanoemulsions, and protein

nanoparticles play an effective role in the nanomedicine platform.113

Because of their unique and excellent properties, nanomedicines

have potential applications in treating cardiovascular diseases,

neurological diseases, inflammatory diseases, and even cancer.113,114

The metal nanoparticles, including gold (Au), zinc (Zn), silver (Ag), and

titanium (Ti), have proven their ability against various types of viruses

like influenza virus,115 hepatitis B virus,116 HIV‐1,117 respiratory

syncytial virus, zika virus monkeypox virus.113 The specialty of these

metal nanoparticles is to block viral attachment on the surface of cell

and cause inhibition of viral internalization.113 Multiple vaccine

products and potential candidates are utilizing nanoparticles to

facilitate the vaccine delivery at the targeted area and to protect its

cargo while traveling to the site of action. The mRNA‐based vaccine

candidates are packaged this way.118 The pros and cons of few

nanoparticles are described in Table 3.

6.1 | Nanoformulations in the diagnosis
of COVID‐19

COVID‐19 diagnosis is performed by following up on epidemiological

history, auxiliary examinations and clinical manifestations, including

nucleic acid testing, computed tomography (CT) scans, blood
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culture.128 However, sometimes they have a few limitations as time‐

consuming, low sensitivity, and lack of specificity due to being a

conventional method.129 Metal nanoparticles (Ag, Au, Cu), magnetic

nanoparticles (iron oxide), and quantum dots (Pb, Cu, Ga, Zn, Hg) are

synthesized in varying sizes ranging from 2 to 60 nm and used for

finding out if the patient has a specific disease or not caused by

several viruses as like MERS, SARS, IBV, and H5N1. During this

pandemic, this nanoparticles‐based diagnosis system provided rapid

and selective detection.129

Nano biosensor can selectively detect any kind of analyte that is

usually made by optical and electrical properties containing nano-

materials with biological or synthetic molecules.130 Since the main

purpose of nano diagnosis is to enhance the rapid detection and

efficacy,131 the use of thiol‐modified antisense oligonucleotides‐

capped gold nanoparticles (AuNPs), for example, is a good example of

COVID‐19 nano diagnosis.132

Here are some reports on nano diagnosis for COVID‐19 that are

introduced:

• Mertens et al.133 reported a silver (Ag) Respi‐Strip diagnostic assay

for nano diagnosis of COVID‐19, which is able to work within

15min for detection.

• The dual‐functional plasmonic system has fast and effective

diagnostic capabilities for SARS‐CoV‐2 detection.134

• Bai and colleagues conducted a study based on the inductive

magnetic NP sensor‐dependent microfluidic chip oil detection

method. According to this study, inductive oil detection sensors

with magnetic nanoparticles has great advantages on high

detection accuracy.135

• Wen and colleagues worked on the lateral flow immunoassay strip

to quickly detect the IgG antibody against the coronavirus. This

method is economical, more efficient, and easier than other

techniques, such as the implementation of isolation and Enzyme‐

Linked Immunosorbent assay (ELISA).136

• Huang and colleagues developed a colloidal Au NP‐dependent

lateral‐flow assay for quick diagnosis and on‐site detection of IgM

antibodies for coronavirus. This method ensured a low‐cost, less

time‐consuming, effective, and easily operative diagnostic

process.137

Furthermore, the optoelectric‐magnetic biosystems based on

immune‐sensing and geno‐sensing have the ability to detect

SARS‐CoV‐2 efficiently.138

6.2 | Nanomedicine‐based treatment of COVID‐19

Nanomaterials can provide a powerful solution to neutralize the

coronavirus infection. The utilization of nanoparticles has significant

potential in terms of developing updated treatment strategies for

COVID‐19.139 Based on the published literature, using nanomaterials

like liposomes, polymeric and lipid nanoparticles and so forth, offer a

number of solutions for safe and effective COVID‐19 treatment,

reducing drug toxicity, improvement of physicochemical properties,

enabling drug encapsulation, and targeting the specific binding

site.130,140 Evidence shows that nanoparticles function as potential

tools for modulating the immune system that activates the immune

activity against viruses. For instance, the modification of graphene

oxide with amino groups altered the signaling mechanism of STAT1/

IRF1 interferons in T lymphocytes which further induced chemoat-

tractant expression.139

A report by Zhang and colleagues described two types of cellular

nanosponges, namely, human pulmonary epithelial type II nanosponges

and human macrophage nanosponges. These nanosponges attract

SARS‐CoV‐2 viruses and capture them, resulting in the neutralization

and disabling of SARS‐CoV‐2 viruses. As a result, they report

nanosponges as an effective countermeasure to coronavirus.141

Chitosan nanoparticle has been widely used in various medical

fields, such as treating cancer, pulmonary diseases, gastrointestinal

diseases, and carrying drugs to the brain because of their

biodegradability, biocompatibility, and nontoxic nature.142 Besides,

chitosan NP has already shown its effectiveness in inducing

protective immunity against several infectious diseases.143 In addi-

tion, chitosan‐based‐NPs are useful for the pulmonary delivery of

TABLE 3 Pros and cons of some nanoparticles.

Nanoparticles Pros Cons

Liposomes119,120 − Biocompatible and biodegradable

− Drug loading capacity is high
− Able to modify the physical and chemical properties of drugs

− Manufacturing cost is high

− Less stable
− More complex than conventional items

Solid‐lipid NPs (SLNPs)121 − Biocompatible and biodegradable

− Large‐scale production is easy to do

− Low drug loading capacity

− Possible to have drug expulsions

Gold NPs (AuNPs)122,123 − Highly biocompatible
− Less toxic in nature

− Manufacturing cost is high
− Limited availability in the markets

Silver NPs (AgNPs)124,125 − Have adjustable size and shape
− Density of surface ligand attachment is high

− Expensive and toxic

Dendrimer NPs120,126,127 − Biodegradable
− Highly soluble

− Structural and chemical homogeneity is high

− Manufacturing cost is high
− Nonspecific toxicity is high
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drugs. Thus, chitosan NPs can be a possible alternative to treating

COVID‐19 disease.143

In another study, McKay and colleagues developed a self‐

amplifying RNA that encodes the S protein of SARS‐CoV‐2. This RNA

is packaged in a lipid nanoparticle, facilitating the generation of

significant levels of neutralizing antibodies. This lipid nanoparticle

could be used for the development of novel vaccines and the

assessment of immunogenicity that will be useful in developing

nanomaterial‐based vaccines.144

Some research suggests that the use of nano‐decoys can inhibit

the replication of SARS‐CoV‐2 and neutralize inflammatory cytokines

like GM‐CSF and IL‐6. Consequently, employing Cell‐Derived

Vesicles as a treatment method could serve as a promising alternative

against SARS‐CoV‐2.145

Nitric oxide (NO) has shown potential in inhibiting the replication

of SARS‐CoV.146 Given that SARS‐CoV‐2 primarily targets endothe-

lial cells, which are a significant source of NO synthesis, delivering

NO‐based nanoparticles may offer a response to this viral assault on

endothelial cells.147 Therefore, NO nanoparticles could be considered

as a viable option for treating COVID‐19.

Iron oxide (FeO) nanoparticles have been approved by the US‐

FDA for treating anemia, and some studies have reported their

potential antiviral activity. Abo‐Zeid and colleagues conducted a

molecular docking study to evaluate the interaction between IONPs

and the S protein receptor of SARS‐CoV‐2, which is necessary for

binding to host cells. They recommended the clinical trial of FDA‐

approved IONPs for treating COVID‐19 based on their potential to

induce conformational changes in viral proteins and thus inactivate

SARS‐CoV‐2.148

6.3 | Nano‐formulations in the prevention of
COVID‐19

As SARS‐CoV‐2 can be persistent for 3 h in aerosolized form and

more than 9 days at 30°C, WHO recommends maintaining personal

hygiene, wearing a mask, and cleaning up surfaces with disinfectant.

In this situation, nanotechnology‐based formulations open up new

avenues.149

Experts have developed disinfectants formulated with silver NPs

and titanium oxide and used for building cleaning. This disinfectant

acts as a penitential disinfectant by oxidation reaction by utilizing

light indeed. NPs‐based disinfectants have several challenges in

reaching the market, for example, production cost, toxicity, scalability

and so forth, although they have various advantages.149 Silver

nanoparticles (Ag‐NPs) based sanitizers have possible applications

against the virus.150 The antiviral effect of this nanoparticle has

already been proven. It helps to damage the structure of virus. The

job of impregnation of Ag‐NPs in face masks and air filters is to

inactivate SARS‐CoV‐2.145 Influenza viruses can be inactivated when

exposed to a mask containing CuO‐NPs. A recent study demon-

strated that the SARS‐CoV‐2 virus is inactivated on the surface by

copper‐filled materials. Hence, CuO with NPs has a suitable strategy

in deactivating the SARS‐CoV‐2 viruses in the outward environ-

ment.145 Additionally, various nanoparticle‐based cloths not only trap

SARS‐CoV‐2 but also successfully eradicate them.138

The use of gold nanoparticles in vaccine development can be an

effective alternative for COVID‐19 disease as these can easily

produce an immune response by accessory cells.145

LNPs have a significant role in Covid‐19 as vaccine candidates,

and they proved their success in the nervous system by developing

Paticiran (Onpattro), an RNAi‐based treatment.151 Many pharmaceu-

tical companies are working on a nanomaterial‐based vaccine to fight

against SARS‐CoV‐2.152

For example:

• Novavax, Inc. has designed NVX‐CoV2373 by conjugating the

spike protein of SARS‐CoV‐2 on the virus‐like nanoparticle's

surface43 for delivery to the host body.153

• Moderna and BioNTech/Pfizer have encapsulated their mRNA

vaccine in lipid NPs.50,53

• Janssen Pharmaceuticals has developed a recombinant vaccine

using AdVac® in which adenovirus vectors are combined with

PER.C6®, a human cell line.152

Besides, more NPs‐based vaccines are now under development,

aiming to fix this pandemic. It can be considered that nano‐based

vaccines will be a better option for the prevention of this disease

than conventional vaccines due to their quicker, safer, and more

effective natures.152

7 | CONCLUSIONS AND FUTURE
PERSPECTIVES

Due to the electric inception of vaccinations against SARS‐CoV‐

2, the pandemic scenario has shifted radically, with countries

opening their borders and enterprises. While new variants of the

virus are ever emerging due to various mutations, fully vaccinated

individuals so far have shown great resiliency against the

infection. Works on the overall management of COVID‐19 may

be missing until now; research works on several vaccines and

medications are well underway. Based on the evidence and

discussions, nano‐based vaccines and medicines may provide

better outcomes for diagnosing and preventing COVID‐19 than

the available conventional vaccines because of their faster, safer,

and more effective features. However, the potential side effects

of nanotechnology‐based vaccines or medicines should be

carefully investigated. Besides, further studies are warranted to

accelerate the outcomes of nanomaterial‐based therapeutics.

Moreover, the inclusion of advanced technologies such as

computational analysis or artificial intelligence could significantly

fasten the discovery and development of high‐performance

nanomedicine to combat SARS‐CoV‐2.
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