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Aptamers are special types of single-stranded DNA generated by a process called

systematic evolution of ligands by exponential enrichment (SELEX). Due to significant

advances in the chemical synthesis and biotechnological production, aptamers have

gained considerable attention as versatile building blocks for the next generation of soft

materials. Hydrogels are high water-retainable materials with a three-dimensional (3D)

polymeric network. Aptamers, as a vital element, have greatly expanded the applications

of hydrogels. Due to their biocompatibility, selective binding, and molecular recognition,

aptamer-based hydrogels can be utilized for bioanalytical and biomedical applications. In

this review, we focus on the latest strategies of aptamer-based hydrogels in bioanalytical

and biomedical applications. We begin this review with an overview of the underlying

design principles for the construction of aptamer-based hydrogels. Next, we will discuss

some bioanalytical and biomedical applications of aptamer-based hydrogel including

biosensing, target capture and release, logic devices, gene and cancer therapy. Finally,

the recent progress of aptamer-based hydrogels is discussed, along with challenges and

future perspectives.
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INTRODUCTION

Hydrogels are a kind of high water-retainable material (containing up to 99 wt% water) with
a three-dimensional (3D) polymeric network which is similar to natural tissue. Due to the
hydrophilic residues in the backbone of polymers, an immense amount of water molecules
are retained within their structures (1). In addition, an extremely large surface area with good
porosity has abundant interior space for biomolecules to be retained within the system through
Coulombic attraction (2), while maintaining their biological activities. Moreover, the polymers
or polymer monomers are easily dissolved in water before crosslinking, while after crosslinking,
they are in a gel state with a defined shape. Due to their excellent properties, hydrogels have
attracted much attention over the past years as the elaborate scaffolds in drug delivery carriers
(3), tissue engineering, sensors (4) and cancer therapy (5). Hydrophilic polymer networks of
hydrogels are formed through the crosslinking of monomers or polymer chains via covalent
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bonds and/or non-covalent interactions including hydrogen
bonding, electrostatic interactions, host-guest complexation and
their combinations (6–11). Plus, hydrogels can be made from
a very large range of building blocks including polymers,
peptides (12–15), and surfactants (16), with different types,
degrees of cross-linking, and properties leading to the nanoscopic
structures, size range, physical properties, and functions of
hydrogel (17). Great attention has been paid to explore the
strategy to control the functionalities of hydrogels. For example,
many of the stimuli-responsive hydrogels have been constructed
by using polymers modified with specific functional units
that can rapidly respond to external stimuli. A variety of
physical and chemical changes of the hydrogel, including volume
change and sol-gel transition, are particularly sensitive to
specific external stimuli due to their component materials (18–
21). These stimuli-responsive hydrogels have gained immense
consideration because of their potential in drug delivery
systems (22–26), sensors (27–32), cancer therapy (33–37), cell
culture substrates (38–40), and tissue engineering (38, 41–44).
Beyond these stimulants, many specific biomolecules, such as
antibodies, nucleic acids (or DNA), and enzymes, that can rapidly
respond to target analytes are used for functional materials
to modify polymers in order to construct target-responsive
hydrogels (45, 46).

Aptamers are used to construct polymer networks as the
stimuli-responsive element in aptamer-based hydrogels, and
due to their unique characteristics they have gained great
attention among the development of hydrogels which are
responsive to specific target analytes (45, 47). Nucleic acid
aptamers are single-stranded DNA(ssDNA) or RNA molecules,
commonly containing 12–80 nucleotides (48, 49), generated by
the systematic evolution of ligands by exponential enrichment
(SELEX) (50) from a random ssDNA or RNA library (usually
1015∼1016 different sequences) by means of three main steps
including selection, separation, and amplification. Aptamer
DNA hybridization and aptamer-target recognition both have
very high specificity. Aptamers also possess high recognition
ability toward specific molecular targets including ions (51,
52), small molecules (53, 54), proteins (55, 56), and cells
(57, 58), because aptamers fold into a unique secondary or
tertiary structure to bind to a target of interest, depending
on van der Waals forces, hydrogen bonds, or electrostatic
interactions (48, 59–62). Since they were discovered in the
1990s by Tuerk and Gold (63) and Ellington and Szostak
(50), aptamers have become smart, specific, and high-affinity
probes in bioanalytical, diagnostic, and therapeutic applications.
Moreover, compared to other antibodies, aptamers are often
called chemical antibodies due to their unique properties: (1)
Aptamers are structurally stable with little immunogenicity
and are chemically synthesized using standard solid state
phosphoramidite reactions, which minimizes the batch-to-batch
variation and improves the reproducibility of hydrogel systems.
(2) aptamers are highly selective and have an affinity to targets,
and low-dissociation constant values (Kds, 1 × 10−12-1 × 10−9

M) (64), so that aptamers can specifically recognize and undergo
changes of their substrates even at very low concentrations.
(3) The molecular weight of an aptamer is between 5 and 20

kDa, which is smaller than antibodies (ca.150 kDa), leading to
better tumor uptake kinetics (6). (4) Aptamers are stable in a
wide range of temperature, solvents, and pH. (5) Aptamers can
be synthesized by chemical or enzymatic procedures or by a
combination of these two methods without any animal-based
synthesis. (6) Aptamers are easily modified with other functional
moieties and have the capability of directional amplification by
polymerase chain reaction (PCR). These excellent characters of
aptamers make aptamer-based hydrogels even more versatile,
and are excellent components in hydrogel engineering: (1)
Aptamers can chemically conjugate with polymers such as
acrydite and carboxymethylcellulose to construct the hydrogel
(65, 66). (2) Aptamers can be integrated onto the surface
of particles by chemical or physical methods and mixed
with a pre-gel solution to form particle/hydrogel composites
(67, 68). (3) Aptamers can recognize both target molecules
and trigger complementary sequences (69–72). Especially to
trap or introduce drugs (73–75), nanoparticles (76–78) into
aptamer-based hydrogels have greatly expanded the applications
in biosensing, target capture and release, cell adhesion and
targeted therapy.

In this review, we focus on the latest strategies of aptamer-
based hydrogels in bioanalytical and biomedical applications
(Scheme 1). We begin this review with an overview of the
underlying design principles for the construction of aptamer-
based hydrogels. Next, we will discuss some bioanalytical and
biomedical applications of aptamer-based hydrogels including
biosensing, target capture and release, logic devices, gene
and cancer therapy. Finally, recent progress of aptamer-
based hydrogels is discussed along with challenges and
future perspectives.

DESIGN AND PRINCIPLE OF
APTAMER-BASED HYDROGELS

Aptamer as Cross-Linkers
Aptamer-based hydrogels have been prepared based on different
design principles. The selected design and preparation methods
have a strong impact on the characteristic features of hydrogels
and thus determine their respective biomedical applications.
Using DNA aptamers as crosslinkers in hydrogels allows the
hydrogels to be prepared to recognize the targets. In the
absence of the target, the aptamer acts only as a conventional
DNA crosslinker, but when the target is present, the aptamer
preferentially forms a complex with the target and induces
the change of the structure of the hydrogel. Such hydrogels
utilize both the smart and programmable features of the DNA
components as well as short aptamer sequences acting as
supramolecular cross-linking agents (79–81). The first DNA-
based polymer hydrogels were reported by Nagahara and
Matsuda in which the short DNA sequences were grafted to
a poly(acrylamide) polymer chain, and two pathways achieved
gelation: (1) two DNA strands grafted to the polymer backbone
were hybridized by other DNA sequences to induce the formation
of gelation. (2) DNA strands attached to the polymer chain
hybridized directly to form gelation without any external
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SCHEME 1 | Schematic illustration of aptamer—based hydrogels for bioanalytical and biomedical applications.

cross-linking agents (82). Based on this principle, a series of
aptamer-based hydrogels have been prepared responding to
target molecules (Figure 1Aa) (85, 86). Aptamers can also be
used as crosslinkers in pure DNA hydrogels. A typical example
is that a pure DNA hydrogel was constructed using a Y-shaped
DNA and a thrombin aptamer linker through DNA self-assembly
(Figure 1Ab) (87). The aptamers for ochratoxin A, ATP and
adenine were used as DNA linkers to construct pure DNA
hydrogels that were sensitive to targets (88–90).

Aptamer as Bioactive Groups or as Tags
for Functionalization
As we know, DNA segments as functional, bioactive elements
rather than structural components were incorporated into
hydrogels, and have also been explored for various bioanalytical
and biomedical applications (84, 91–93). The presence of
aptamer DNA as a bioactive group in these hydrogels typically
does not change the mechanical properties and brings their high
specificity toward a wide range of biological target molecules.
Liu et al. (94) put forward a new strategy for fabricating a
protein-scaffolded DNA nanohydrogel. By further incorporating
therapeutic agents and tumor-targeting MUC1 aptamer, these

SA-scaffolded DNA nanohydrogels can specifically target cancer
cells and selectively release the preloaded therapeutic agents
via a structure switching. A thrombin-binding aptamer was
incorporated into the gel which can bind to adenosine, AMP,
and ATP as shown in Figure 1B. DNA-functionalized gold
nanoparticles or liposomes to DNA-functionalized hydrogels,
when thrombin was added, a stable G-quadruplex structure
emerged in the aptamer structure, which looked like a molecular
switch between tight and relaxed states (95). X-shaped DNA,
a DNA linker, and an aptamer were used to create a DNA
hydrogel through the one-pot and the aptamer was only used
as a functional unit for the target protein capture (96). A DNA
nanohydrogel was developed to efficiently take up cells due to the
recognition of an aptamer in the nanohydrogel (97). Moreover,

an outstanding advantage of aptamer-functionalized hydrogels,
as we know, would overcome the shortcomings of aptamers
in bioanalytical and biomedical applications. Compared to
antibodies, aptamers with high target-specific binding affinity
values, were easily tailored for different targets. However, the
drawback is their low cellular uptake for their high negative
charge density and the limitation of stability in DNA degrading
enzymes which are typically present in cells.
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FIGURE 1 | Schematic representation of the design strategy for formation and dissolution of aptamer-based hydrogel based on aptamers as (A) crosslinkers in (a)

DNA functional polymer hydrogels [Reprinted with permission from Wang et al. (83). Copyright (2008) American Chemical Society] and (b) pure DNA hydrogels

[Reprinted with permission from Previtera et al. (82). Copyright (2013) American Chemical Society]. (B) Bioactive groups or as tags for functionalization [Reprinted with

permission from Lai et al. (84). Copyright (2019) American Chemical Society].

APTAMER-FUNCTIONALIZED
HYDROGELS FOR BIOANALYTICAL AND
BIOMEDICAL APPLICATIONS

Aptamer-Based Hydrogels for Biosensing
Biosensors, as the powerful tools in monitoring biological or
biochemical processes, have been applicated in various fields
including medicine, disease diagnosis, food safety, and the
environment (92). Nucleic acid aptamers are systematically
engineered functional nucleic acids that demonstrate a very high
affinity and specificity for targets including ions, metabolites,
drugs, proteins, and even whole cells (98). Compared with
antibodies, aptamers have been thought the ideal candidates as
molecular recognition units to develop biosensors. Combined
with DNA nanostructures possessing desirable advantages,
aptamer-based biosensors hold great promise for the detection
of a variety of targets. However, aptamers cannot freely
penetrate the cell membrane and some nucleic acid probes are
unstable in both intercellular and intracellular environments
so that aptamer-based biosensors are usually compromised
in intracellular environments (78, 99). Due to the protection
of hydrogel nets, aptamer-based hydrogels have gained great
attention in biosensing detection for their biocompatibility,
chemical stability, and selective binding. Based on the designable
conformational changes of aptamers, aptamer-based hydrogels
can be combined with a variety of signaling mechanisms

including fluorescence, electrochemistry, colorimetry,
electroluminescence, and surface plasmon resonance, to
construct rapid and sensitive biosensors to detect inorganic ions,
organic small molecules, proteins, cells, and tissues. Usually,
DNA-functionalized polymers have been simply crosslinked
by the hybridization of aptamers with their complementary
sequences to construct a hydrogel network structure. Because
the binding affinities of aptamers to their target analytes are
much stronger than that of simple hybridization, the network
structure may deform or disintegrate when the specific target
analytes are presented. The deformation of the aptamer-based
hydrogel network can be easily detected with naked eyes or
various colorimetric or fluorescence agents including, silver,
gold nanoparticles, iodine, fluorescent dyes, and quantum dots
(83, 100–107). The constructed hydrogel biosensor may achieve
visual detection easily.

To detect biological molecules is vital for understanding their
physiological and pathological functions. Since aptamers are
easily modified and engineered, a large number of aptamer-
based sensing hydrogel systems have been developed for the

efficient detection of a wide range of biomolecules. Based on the
use of DNA aptamers that cross-link with linear polyacrylamide
chains, the first reported in this field was an aptamer-based
hydrogel based on a gel-sol transition for detecting adenosine
(85). In this design, when two oligonucleotide (DNA1, DNA2)-
conjugated polyacrylamide chains (P1, P2) were mixed, a
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FIGURE 2 | (A) Scheme of DNA-induced formation and adenosine-induced dissolution of hydrogel. Reprinted with permission from Wang et al. (83). Copyright (2008)

American Chemical Society. (B) The scheme of a target-responsive hydrogel film in capillary tube for visual quantitative detection. [Reprinted with permission from Li

et al. (110). Copyright (2019)]. (C) Preparation of aptamer functionalized hydrogels for the sensitive detection of α-fetoprotein using SERS method, Reprinted with

permission from Guo et al. (103). Copyright (2020) American Chemical Society.

transparent and fluid state was obtained. Subsequently, upon
the cross-linking of the oligonucleotides DNA3 was added, so
that the above fluid system could undergo a sol-gel transition.
The linker strand DNA3 contained three functional domains,
that is, the complementary domains with DNA1, DNA2, and
aptamer sequence domain. When target adenosine molecules
were presented in system, aptamers competitively bound to
adenosine molecules, leading to the breakdown of the hydrogel
and target-responsive payload release. In order to achieve visual
detection, gold nanoparticles were used as the indicator to
add into the gel to monitor the process of gel-sol transition
because of their unique optical properties. In the presence of
adenosine, the upper buffer solution turned from colorless to
red, indicating that the AuNPs had been released into the
solution. The method was generally representative to use a
target molecule as a trigger for the dissociation of the aptamer-
based hydrogels to develop a biosensing system with high
selectivity and visuality. In a similar work, a detection of
food toxin, toxin A, was developed by applying this approach.
The linear polyacrylamide polymers functionalized with short
DNA strands were hybridized by OTA aptamer strands to
construct the hydrogel network structure, and gold nanoparticles
were still entrapped within the hydrogel using optical agent
(108) (Figure 2A). An aptamer-functionalized DNA hydrogel
was also prepared though DNA hybridization and incorporated
inorganic nanomaterials including gold nanoparticles (AuNPs)
and quantum dots (QDs) as signal indicators. The pure DNA
hydrogel was directly constructed using Y-shaped DNA, linker

DNA, and aptamer sequence with two different recognition
sites for thrombin and the complementary sequence. Upon
adding thrombin, it competitively bonded with aptamer, leading
to the collapse and dissolution of the DNA hydrogel. The
released negatively charged AuNPs would meet positively
charged polyethyleneimine (PEI)-functionalized QDs and a
fluorescence quenching strategy based on the Förster resonance
energy transfer (FRET) was developed for the sensitive detection
of thrombin in complex matrices (87). It is obvious that
great progress has been made in this research area, however,
regarding AuNPs, quantum dots etc. as visual indicators, there
are several issues that need to be considered. For example,
AuNPs exhibited an intense background color in the process
of gel dissolution. As a result, this detecting method is not
sensitive enough.

More recently, a thrombin-binding aptamer was incorporated
into hydrogel. When thrombin was presented, a stable G-
quadruplex structure in the aptamer structure emerged which
changed the form of hydrogel by the molecular switch between
tight and relaxed states (109). Li et al. (110) reported a gel
film in a capillary tube based on the thermally reversible
principle which transformed the analyte-induced small changes
inside the DNA hydrogel into visual signals. In the analysis
process, the permeability of the DNA hydrogel film will increase
because of the small structural changes in the gel induced
by the interaction between target molecules and the aptamer
linkers, thereby changing the flow velocity of the sample
solution in the capillary tube (Figure 2B). The duration time
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of the target solution flowing through the capillary tube with
a specified length was used to characterize the concentration
of different solutions. The ultra-trace aptamer DNA hydrogel
(0.01ml) detected cocaine directly with a low detection limitation
(1.17 nM) and excellent selectivity as (Figure 1B). A novel SERS
biosensing platform was constructed by combining the target-
responsive DNA hydrogel for the sensitive detection of α-
fetoprotein (AFP) (83). The aptamer as a linker strand in DNA
hydrogel specifically recognized AFP and accurately controlled
the release of immunoglobulin G (IgG) encapsulated in hydrogel.
In the presence of AFP, the hydrogels were disentangled and the
IgG was released. Interestingly, the released IgG was captured
by SERS probes and bio-functional magnetic beads through the
formation of sandwich-like structures to decrease the detecting
signals, which significantly improved the detecting sensitivity
(Figure 2C).

Furthermore, the exploration and introduction of new
functional nanomaterials to produce aptamer-based hydrogel
biosensing systems which are highly sensitive are also being
developed. Aptamer-incorporated graphene oxide (GO)
hydrogel without synthetic polymers was developed for the
detection of antibiotics. GO hydrogels were readily prepared
by physically mixing GO solution with adenosine. The fast
gelation of the GO dispersion in the presence of adenosine
would attribute to the strong hydrogen bonding and electrostatic
interactions between the adenosine and the GO nanosheets.
Aptamer chains flatly lay on the surfaces of GO sheets as a result
of the strong π-π stacking interactions between the hexagonal
cells of graphene and the ring structure of nucleobases in
ssDNA, which had been elucidated as an effective driving force
for assembling GO sheets into hydrogels (111, 112). Tan et al.
(113) reported a fluorescence biosensor based on GO hydrogel
incorporated with aptamers, which could selectively bind to
tetracyclines. After GO hydrogels were formed, the fluorescence
signal of fluorescence labeled aptamers was quenched for
fluorescence resonance energy transfer (FRET). When hydrogel
was exposed to the tetracycline, the fluorescence recovered.
Using the quenching/recovering of fluorescence, this biosensor
of GO hydrogel provided a quantitative analysis of tetracycline
with high sensitivity at much lower concentration.

APTAMER-BASED HYDROGELS FOR
TARGET CAPTURE AND RELEASE

Capture and Release of Circulating Tumor
Cells (CTCs)
Circulating tumor cells (CTCs) are the collective term for the
tumor cells that escape from the primary tumor sites and travel
through the circulatory system into the peripheral blood stream,
at which point then, the metastases can be ultimately formed
in resident organs. Therefore, detection of CTCs at early stages
of tumors will increase diagnostic accuracy and therapeutic
efficacy. However, CTCs are a very small population. In general,
there are <10 CTCs/mL whereas there are approximately 5
× 109 normal cells present in the same volume of blood
sample (65, 114, 115). Therefore, a variety of materials have

been recently investigated for sensitive catch and release of
CTCs. Aptamer-based hydrogels as an emerging biomaterial,
have recently attracted great attention in the fields of medical
devices for cell catch and separation. For example, aptamer-
based hydrogels were reported for in situ identification of live
CTCs by cloaking/decloaking of CTCs (93). In this design as
shown in Figure 3A, an aptamer DNA strand that specifically
recognized epithelial cell adhesion molecule (EpCAM) on the
CTCs surface triggered a hybridization chain reaction (HCR) via
toehold-initiated branch migration. And an ATP aptamer was
incorporated in the clamped HCR to decloak the DNA hydrogel
on cell surface in order to achieve the phase transition from
hydrogel to solution. The encapsulated AuNPs were exploited
as the indicators of hydrogel formation via generating a red
color at this state. Moreover, this method allowed to identify
a low number of CTCs in whole blood by DNA hydrogel
cloaking with high sensitivity and specificity for diagnosis. More
significantly, controlled and defined chemical stimuli was used
for the decloaking of CTCs without damages for subsequent
culture and live cell analysis. Ye et al. (117) proposed an
aptamer-trigger-clamped hybridization chain reaction (atcHCR)
method for the capture of CTCs by porous 3D DNA hydrogels.
The 3D environment of the DNA networks minimizes cell
damage, and the CTCs can subsequently be released for live-
cell analysis. In their work, initiator DNAs with aptamer-toehold
biblocks specifically bind to the epithelial cell adhesion molecule
(EpCAM) on the surface of CTCs triggering the atcHCR and the
formation of a DNA hydrogel. The DNA hydrogel cloaks the
CTCs, which would facilitate quantification with minimal cell
damage. 10 MCF-7 cells in a 2-µl blood as sample were used
to quantitively identify the decloaking of tumor cells via gentle
chemical stimulus (ATP) which is used to release living tumor
cells for subsequent cell culture and live-cell analysis. The whole
experiment only was about 2.5 d including downstream cell
culture and analysis. Aptamer-DNA hydrogels would open new
powerful and effective routes for capturing rare live CTCs and
their quantification in whole blood so that it can provide a new
approach for cancer diagnostics and therapeutics. An aptamer-
functionalized hydrogel was also reported that could catch
CTCs with a density over 1,000 cells/mm2. When the hydrogel
was coated by restriction endonucleases, the bound cells were
released from the hydrogel coating because of the endonuclease-
mediated sequence-specific hydrolysis of the aptamer sequences.
The release efficiency reached 99%. Importantly, 98% of the
released cells maintained viability (118). Polyvalent aptamer-
functionalized hydrogel could also induce cell attachment on
the hydrogel in dynamic flow. The cell density on the hydrogel
was increased from 40 cells/mm2 to nearly 700 cells/mm2 when
the shear stress was decreased from 0.05 to 0.005 Pa. After
the attachment onto the hydrogel surface, approximately 95%
of the cells could be triggered to detach within 20min by
using an oligonucleotide complementary sequence that displaced
polyvalent aptamer strands from the hydrogel surface (119).

Capture and Release of Protein

To develop the efficient systems for the protection and sustained
release of encapsulated molecules would be beneficial in
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FIGURE 3 | (A) DNA hydrogel with aptamer-toehold-based recognition, cloaking, and decloaking of circulating tumor cells for live cell analysis, reprinted with

permission from Tan et al. (113). Copyright (2017) American Chemical Society. (B) Programmable self-assembly of protein-scaffolded dna nanohydrogels for

tumor-targeted imaging and therapy, reprinted with permission from Pasparakis et al. (116). Copyright (2019) American Chemical Society.

improving how we treat disease and study complex biochemical
processes. Exogenous signaling molecules as biochemical cues
promoted mesenchymal stem cells (MSCs) survival, presumably
becauseMSCs themselves can release a variety of potent signaling
molecules. Zhao et al. (120) examined whether the release of
exogenous signaling molecules from hydrogels can promote
the survival of MSC spheroids. They thought that aptamer-
functionalized fibrin hydrogel (aFn) could release exogenous
VEGF and PDGF-BB in a sustained manner. PDGF-BB-loaded
aFn could double the survival rate of MSC spheroids in
comparison with VEGF-loaded aFn during the 1-week test in

vivo. Therefore, aptamer-based hydrogels have been considered
as the new and promising materials which could be used for
encapsulating a variety of biomacromolecules because they are
responsive to environmental changes and multiple stimulus
could trigger conformational or chemical changes of elastic
network in hydrogels resulting in deswelling or degrading of
hydrogels. Aptamer-based hydrogels have been utilized as smart
systems with sensitivities toward various non-invasive stimuli.
However, several factors, including the pore size of the polymer
network, the diffusion rate of the entrapped target molecule,
and the affinity between the aptamer and target molecule
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usually influence the functionality and efficiency of aptamer-
based hydrogels as capture-release systems (85, 116, 121–123).
Moreover, biochemical signals or biomarkers stimuli are subtle
or presented at subnanomolar concentrations. Therefore, a
sensitive signal trigger is usually necessary to control the release
of preloaded effectors in aptamer-based hydrogels (124–127).
Recently, Lai et al. (128) developed new responsive hydrogels
for controlled protein release by multistep molecular recognition
events. Two oligonucleotides were integrated into the system as
pendant motifs. The first oligonucleotide was used to covalently
construct a hydrogel nanoparticle via a photolabile linker; and
the other aptamer which could form a protein-DNA complex,
was covalently conjugated to the bulk hydrogel network. When
the hydrogel system was exposed to an external light signal,
the nanogel was activated and dissociated. Subsequently, the
freed oligonucleotide would hybridize with aptamer strands to
induce the dissociation of the protein-DNA complex to release
the bound protein (Figure 3B).

Capture and Release of Pollutants

An aptamer-based hydrogel was developed for water remediation
with both high selectivity and multiple adsorbing abilities
for several pollutants. In water remediation techniques, the
contradiction between selectivity and multiple adsorptions
limited this approach for environmental crisis previously (129).
Aptamers in hydrogel were used to accommodate the molecular
structure of pollutants in the scavenger and afforded the perfect
selectivity. Meanwhile, Janus nanoparticles with an antibacterial
function, in which aptamers were on the anisotropic surfaces
to handle different kinds of pollutants. The final hydrogel
scavenger was prepared by entrapping aptamer-functionalized
Janus nanoparticles into a porous cellulose hydrogel. An aptamer
column for the removal of trace pharmaceuticals in drinking
water was reported (130). 5′-Aminomodified DNA aptamer
bound to CNBr-Sepharose as sorbent was packed into gel as a
column to simultaneously test cocaine and diclofenac in drinking
water. The removal of pharmaceuticals was as high as 88–95%.
The aptamer column was reusable and achieved a high removal
efficiency from 4◦C to 30◦C in normal cation ion concentrations
(5–100mg L−1) for multiple pollutants without cross effects and
secondary pollution.

Aptamer-Based Hydrogels for Logic
Devices
Nucleic acid molecules can be rationally designed, synthesized,
and further integrated into Boolean operations, which provided
an unprecedented potential to develop the basic components
of molecular computing devices, because nucleic acid have
high-capacity and low-maintenance digital information storage
due to their predictable structures, high throughput synthesis
and sequencing techniques (131, 132). Nucleic acid-based
logic devices were first introduced in 1994 by Adleman
and Lipton to solve the directed Hamiltonian path problem
and the “SAT” question in computer science with single-
stranded DNA sequences and enzymes (133, 134). Since then,
science has seen the emergence of new logic systems for
mimicking mathematical functions, diagnosing disease and even

imitating biological systems (135–142). In recent years, logic
gate systems based on aptamer-based hydrogels have attracted
remarkable attention due to their intelligent responses to
the external stimuli and convert input signals into a certain
output signal.

Comparing this to silicon-based computation, although many
challenges in designing computation devices, aptamer-based
hydrogels logic circuits are still developing with great rapidity,
due to their stability, biocompatibility, and predictable structure
(143–146). Yin et al. (147) exploited a hydrogel structure based on
hybridization behavior between crosslinker strands with aptamer
sequences of ATP and cocaine molecules onto polymer chains.
As detecting signals output, the BSA-modified gold nanoparticles
were trapped in the hydrogel. The hydrogel served as an “AND”
logic gate, when both cocaine and ATP presented, it was dissolved
and led to the release of entrapped AuNPs And, the “OR”
logic gate was reached if either cocaine or ATP presented,
which led to the collapse of the hydrogel and release of the
AuNPs. A novel colorimetric logic system based on an aptamer-
crosslinked colloidal crystal hydrogel was also reported (148).
When the Hg2+ and Ag+ responsive aptamers was incorporated
into hydrogels, the reversible binding between the specific target
ion (Hg2+ and Ag+) could induce the conformational change
of the aptamers and thus make shrinkage of the hydrogels with
different stimuli. The visualization of the logic output signals was
realized, the aptamer-crosslinked hydrogel displayed a shrinking
response and color change corresponding to a logical “OR” and
“AND” gate when the stimuli of Hg2+ andAg+ at a concentration
of 0.1µMwas input.

Bi et al. (149) reported a DNA four-way junction (DNA-4WJ)
which is target-catalytically formed through cascade assembly
of four DNA hairpins on the basis of DNA TM-SDR. A
concatenated logic circuit composed of one YES gate and three
AND gates with an automatic reset function by using four
DNA hairpins as inputs was fabricated and the formed DNA-
4WJs serving as building units to construct DNA nanohydrogels
(∼120 nm). By incorporating aptamers, bioimaging agents, and
drug loading sites into the building unit aptamer-based DNA
nanohydrogels were synthesized with high loading capacity,
target ability and good biocompatibility (Figure 4).

For traditional silicon circuitry, logic devices of aptamer-based
hydrogels showed more powerful functions in medical diagnosis
(150, 151), in situ analysis (151), and artificial intelligence.
However, this is still in its infancy. Most of the reported
works are conceptional, with isolated logic functions and limited
applications. The breakthrough and development of novel design
and construction might promote the development of logic
devices of aptamer-based hydrogels.

Aptamer-Based Hydrogels for
Multifunctional Gene and Cancer Therapy
Gene therapy is a promising approach for the treatment
of inherited diseases, such as cancers, hemophilia, and viral
infections. It depends mainly on the research and development of
the delivery vectors for gene. To achieve the safety and efficiency
of gene delivery vectors, there remain many technical barriers
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FIGURE 4 | Schematic Illustration of the four-input concatenated logic gates based on target-catalyzed DNA four-way junctions. Reprinted with permission from

Ramezani and Dietz (143). Copyright (2015) American Chemical Society.

to explore the potential of gene therapy. To date, gene therapy
vectors mainly include viral vectors and non-viral vectors. Viral
vectors are widely used for efficient gene transfer, but they
are usually high-risk for immunogenicity and mutagenicity. In
several clinical cases, their use has resulted in patient death.
Compared with viral vectors, non-viral vectors are safer andmore
desirable. Therefore, the development of safe non-viral vectors is
highly desirable (97, 149, 152, 153).

Recently, a variety of non-viral vectors, including liposomes
(154), micelles (155), inorganic nanoparticles (156, 157), DNA
nanostructures (73), and polymeric nano-hydrogel (158), have
been explored as delivery vector for gene therapy. Among these,
aptamer-based hydrogels are used as strong delivery vector
candidates owing to their high payload capacity, as well as
their biocompatibility, flexibility, and mechanical stability (78,
159, 160) as Table 1 shown. Tan (97) created a self-assembly
process using three kinds of building units, Y-shaped monomer
A with three sticky ends (YMA), Y-shaped monomer B with
one sticky end (YMB), and DNA linker (LK) with two sticky
ends, to hybridize a DNA nanohydrogel. By incorporating
aptamers, disulfide linkages, and therapeutic genes into different
building units, the aptamer-based DNA nanohydrogels (Y-
gel-Apt) were formatted for targeted and stimuli-responsive
gene therapy. And, a new intelligent DNA nano system
integrating targeting, immunostimulant, and chemotherapy
was also prepared based on unmethylated cytosine-phosphate-
guanine oligonucleotides (CpG ODNs) DNA nanohydrogels
(CpG-MUC1-hydrogel) (163). The cross-shaped DNAs (C-
DNAs) assembled from pH-responsive I-motif sequences and
targetedMUC1 aptamer-immunoadjuvant CpG-fused sequences
(CpG-MUC1) were integrated into DNA nanohydrogels. DOX
was successively intercalated into the base pairs of CpG-
MUC1-hydrogel to form the CpG-MUC1-hydrogel/Dox that

would controllably release DOX and CpGs at acidic conditions
(Figure 5A). Moreover, a new class of physically cross-linked
nanogel based on DNA, protein, and biotin as a nanocarrier
using for the targeted cancer therapy was reported (162).
The specific molecular recognition interaction between biotin
and streptavidin was used to explore the cross-linking of a
nanogel. The selective uptake of a doxorubicin-loaded nanogel
by aptamer-receptor-positive cell lines (CCRF-CEM and HeLa)
resulted in the specific interaction between the aptamer DNA
decorated on the surface of the nanogel with the PTK7
receptor overexpressed on CCRF-CEM and HeLa cell lines
(Figure 5B).

During clinical treatment, the side effects and accuracy of
drug molecules in intravenous chemotherapy are the main
topic of discussion for treatment. To design multifunctional
therapeutic delivery nanoplatforms would overcome these
limitations. A protein-scaffolded aptamer DNA nanohydrogel
was fabricated by three types of streptavidin (SA)-based
DNAtetrad accompanying with the further incorporation of
therapeutic agents and tumor-targeting MUC1 aptamer. In
an ATP-rich intracellular environment, this aptamer DNA
nanohydrogel specifically targeted cancer cells and selectively
released the preloaded therapeutic agents via a structure
switching to attain the image and treatment of cancer cells
(94). Furthermore, a novel class of physically cross-linked
nanogels solely made of DNA, protein, and biotin were
designed and the biotin–streptavidin molecular recognition
interaction was used for the physical cross-linking of DNA
nanostructures. Biotin-modified ssDNAs were assembled to
form 5′-biotin-tethered X-shaped branched DNA acting as
a tetravalent host and then streptavidin-modified aptamer
DNAs interacted with them to form the aptamer-based
hydrogels which allowed the loading of doxorubicin inside
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TABLE 1 | A list of aptamer-based hydrogels for multifunctional gene and cancer therapy.

Hydrogel materials Aptamer function Agents Therapy application References

DNA Bioactive Groups Dox On-demand drug release upon H2O2 (161)

DNA Bioactive Groups mRNA, MMP-9 GSH induce release of therapeutic genes (97)

DNA Bioactive Groups Dox Protonation triggering the release of the encapsulated drug (162)

Polyacrylamide Bioactive Groups Dox Near-infrared light-responsive drug delivery (124)

DNA Bioactive Groups DOX, CpGs pH induces transition of I-motif sequences (163)

Polyacrylamide Cross-linkers Dox Target protein nucleolin leads the gel to dissolve as a result of reducing the cross-linking

density by competitive target-aptamer binding.

(164)

DNA, PLL-g-Dex Cross-linkers protein drugs Complementary sequences (CSs) of aptamer induce release of protein (165–167)

Carboxymethyl

chitosan

Cross-linkers Dox ATP triggering sol–gel transition and DOX release (166)

FIGURE 5 | (A) Schematic diagram of the synthesis and action procedure of CpG-MUC1-hydrogel/Dox. Reprinted with permission from Ding et al. (168). Copyright

(2019) American Chemical Society. (B) Doxorubicin-loaded nanogels using for delivery of doxorubicin. Reprinted with permission from Mazloumi Tabrizi et al. (154).

Copyright (2019) American Chemical Society.

the gel network and delivered in the cancerous environment.
The aptamer-functionalized and doxorubicin-loaded nanogels
exhibited selective uptake into target cell lines (162). In
the clinical treatment of tumors, the delivery of drugs or
genes, nanogels nanocarriers need long term circulation in
the blood, enhanced permeability and retention effect (EPR
effect), enrichment, infiltration, uptake, and release of the drug
or gene. Aptamer-based hydrogels as intelligent nanocarriers
demonstrated excellent biocompatibility and high selectivity for
target cancer cells (156, 169).

CONCLUSIONS AND PERSPECTIVES

In summary, the recent progress in preparing aptamer-based
hydrogels has made these kinds of materials accessible for
encouraging applications in bioanalytical and biomedical fields.
Aptamer DNA as the unique building blocks have prompted the
development in sensitive biosensors, drug delivery systems, and
cellular scaffolds for regenerative therapies. In this review, we
divided aptamer-based hydrogels into two categories according
to the gelation mechanism: aptamer as cross-linkers, bioactive
groups or as tags for Functionalization. Various synthetic
strategies and applications have been detailed. It is worth

noting that the aptamer technology enables the design of
DNA hydrogels that can detect almost any type of analyte
with high selectivity and sensitivity. New aptamers are easy
to generate which would lead to continue to growth of
addressable targets. Despite the tremendous progress in the
development of aptamer-based hydrogels, several challenges
remained: (1) Aptamer-based hydrogels, as DNA hydrogels have
low storage modulus and consequent thixotropic property, in
which the strength is much lower than of most conventional
polymers. It is crucial to regulate the mechanical properties for
biological applications (78). (2) Mechanism studies on synthesis
and responsiveness of aptamer-based hydrogels are needed to
promote the development of hydrogels in biosensing, controlled
release, and tissue engineering. Although the release profile
of some stimuli-responsive hydrogels has been investigated,
theoretically kinetic studies are rarely reported to reveal the
release characteristics of aptamer-based hydrogels. Deeper
kinetic studies will promote the design of aptamer-based
hydrogels for biological applications. (3) There are still some
problems in large scale applications of aptamer-based hydrogels
because of their high cost and difficulty of preparation. To
develop more techniques and novel synthetic methods to obtain
more aptamer DNA should be mainly considered in order to
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reduce the cost. Furthermore, to explore new materials to hybrid
with aptamer to construct multiple hydrogels is also a solution
for cost concern.
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