
[15:58 27/12/2010 Bioinformatics-btq644.tex] Page: 182 182–188

BIOINFORMATICS ORIGINAL PAPER Vol. 27 no. 2 2011, pages 182–188
doi:10.1093/bioinformatics/btq644

Sequence analysis Advance Access publication November 18, 2010

GPU-BLAST: using graphics processors to accelerate protein
sequence alignment
Panagiotis D. Vouzis1 and Nikolaos V. Sahinidis1,2,∗
1Department of Chemical Engineering and 2Lane Center for Computational Biology, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213, USA
Associate Editor: Burkhard Rost

ABSTRACT

Motivation: The Basic Local Alignment Search Tool (BLAST) is one
of the most widely used bioinformatics tools. The widespread impact
of BLAST is reflected in over 53 000 citations that this software has
received in the past two decades, and the use of the word ‘blast’ as a
verb referring to biological sequence comparison. Any improvement
in the execution speed of BLAST would be of great importance in the
practice of bioinformatics, and facilitate coping with ever increasing
sizes of biomolecular databases.
Results: Using a general-purpose graphics processing unit (GPU),
we have developed GPU-BLAST, an accelerated version of the
popular NCBI-BLAST. The implementation is based on the source
code of NCBI-BLAST, thus maintaining the same input and output
interface while producing identical results. In comparison to the
sequential NCBI-BLAST, the speedups achieved by GPU-BLAST
range mostly between 3 and 4.
Availability: The source code of GPU-BLAST is freely available at
http://archimedes.cheme.cmu.edu/biosoftware.html.
Contact: sahinidis@cmu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on June 3, 2010; revised on October 19, 2010; accepted
on November 12, 2010

1 INTRODUCTION
BLAST was introduced as a sequence alignment heuristic that was
an order of magnitude faster than earlier approaches for analyzing
biological information. Very quickly, this software became a
landmark enabling technique for bioinformatics. According to the
Web of Science, the paper that describes the first version of ungapped
BLAST (Altschul et al., 1990) has been cited more than 28 000
times. In addition, the paper that describes the gapped version of the
algorithm and a technique to speed up the earlier version by a factor
of three (Altschul et al., 1997) has been cited more than 25 000 times.
The level of usage of BLAST suggests that any improvement in its
execution speed will result in significant impact in bioinformatics.
Research efforts in this direction have been substantial and have
relied mainly on custom-designed hardware (Sotiriades and Dollas,
2007) and parallel supercomputing (Lin et al., 2008). Even though
these efforts have resulted in impressive speedups of up to three
orders of magnitude, neither custom hardware nor supercomputers
are easily accessible by the majority of BLAST users.

∗To whom correspondence should be addressed.

With the advent of multicore processors, there have been
several efforts to parallelize BLAST and speedup its execution
on commodity hardware. The National Center for Biotechnology
Information (NCBI) has developed a version of BLAST that exploits
multicore processors for the first phase of the algorithm (Camacho
et al., 2009). Another parallel version of BLAST (Nguyen and
Lavenier, 2009) exploits two features of modern microprocessors–
SSE instructions and multithreading–and achieves speedups of up
to 5.6 times compared with NCBI-BLAST. However, the resulting
protein alignments are up to 5.9% different than those produced by
NCBI-BLAST (Table 4 in Nguyen and Lavenier, 2009).

Recently, Graphics Processing Units (GPUs) became available
as a general purpose processing platforms. We were drawn to
GPUs because of their exceptionally high performance-to-cost
ratio. For around $1500, it is possible to combine a personal
computer with a GPU and achieve trillions of peak floating point
operations per second (FLOPS) performance. GPU technology
brings supercomputing power to the desktop, thus facilitating
the widespread use of parallel algorithms by bioinformaticians.
However, algorithms that perform well on a CPU may not perform
as well on a GPU (c.f. Elble et al., 2010). Algorithm developers
must develop new algorithms in order to harvest the GPU’s massive
parallel nature.

GPUs were designed to accelerate graphics processing and
quickly outperformed CPUs by over an order of a magnitude
in terms of FLOPS and memory bandwidth performance. This
potential was initially difficult to harness in applications beyond
graphics. The situation changed in 2007 with the introduction
of NVIDIA’s Compute Unified Device Architecture (CUDA), a
software and hardware environment that facilitates the adoption
of GPUs in general purpose computing (Nickolls, 2007). Since
then, the use of GPUs has proved advantageous in a number
of computationally intensive bioinformatics problems, including
the Smith–Waterman alignment algorithm (Manavski and Valle,
2008), molecular docking (Sukhwani and Herbordt, 2009), the
protein-folding problem (Beberg et al., 2009; Shirts and Pande,
2000), DNA sequencing (Schatz et al., 2007), computational
proteomics (Hussong et al., 2009), statistical phylogenetics (Suchard
and Rambaut, 2009), biological systems simulation (Dematte and
Prandi, 2010) and cellular-level simulation (Richmond et al., 2010).
Several GPU-based bioinformatics software can be found at http://
www.nvidia.com/object/tesla_bio_workbench.html.

A GPU-based BLAST was recently developed by Ling and
Benkrid (2010), leading to speedups between 1.7 and 2.7
in comparison to NCBI-BLAST. Its authors report that this

© The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://archimedes.cheme.cmu.edu/biosoftware.html
http://
http://creativecommons.org/licenses/

[15:58 27/12/2010 Bioinformatics-btq644.tex] Page: 183 182–188

GPU-BLAST

implementation is not guaranteed to give results identical to those
from NCBI-BLAST. Liu’s GPU-based BLAST (www.nvidia.com/
object/blastp_on_tesla.html) achieves speedups of six. Using default
options for Liu’s code and NCBI-BLAST 2.2.24, we obtained
different alignments for all 51 sequences provided in the ‘queries’
directory of the installation of GPU-BLAST. However, most users
of bioinformatics software are reluctant to use implementations of
BLAST that may produce alignments that are not identical to those
obtained from NCBI-BLAST.

We built GPU-BLAST directly on top of the NCBI-BLAST code.
As a result, GPU-BLAST has a familiar interface to the user and,
most importantly, produces identical search results with NCBI-
BLAST. We took advantage of the algorithm’s parallel aspects by
mapping it on the GPU multithreaded processing environment, while
also allowing the concurrent utilization of multiple CPU threads in
parallel. Although GPU-BLAST shares many data structures with
NCBI-BLAST, we made necessary modifications to exploit the GPU
without compromising the accuracy of the produced alignments.
The current version of GPU-BLAST can perform protein alignments
up to 4 times faster than the single-threaded NCBI-BLAST. Even
compared to a six-threaded NCBI-BLAST, the GPU-BLAST is
nearly twice as fast. These attributes are likely to facilitate the
adoption of GPU-BLAST by the bioinformatics community.

The remainder of the article is organized as follows. In Section 2,
we present an overview of the BLAST algorithm. In Section 3, we
describe the most important architectural features related to GPU-
BLAST, and in Section 4 we present the implementation of the
algorithm on the GPU. In Section 5, we present the quantitative
results of the implementation, followed by conclusions in Section 6.

2 ALGORITHM
The sequence alignment problem calls for searching a sequence
database for matches with a query sequence. The first proposed
method to solve this problem was the Smith–Waterman algorithm
(Smith and Waterman, 1981). Although this algorithm produces
an optimal alignment between two sequences and runs in time
polynomial in the length of the two sequences, it is computationally
expensive for long sequences, and, in many cases, overlooks
alignments that are suboptimal but may provide useful biological
information. These shortcomings became increasingly pronounced
with the increasing size of biological databases.

BLAST addresses these problems with a heuristic that is fast and
biologically relevant. The approach consists of three main steps:
seeding, extension, and evaluation. The seeding step identifies short
words common between the query and a database sequence and uses
them as seeds in the extension step. The word length is user defined
and affects the accuracy and speed of the algorithm; longer words
result in fewer seeds, and, consequently, shorter execution times.

The second step investigates whether the seeds belong to longer,
common subsequences. This step discards the false positive seeds
that occur by chance and keeps the seeds that occur because they
are part of a longer common subsequence. This is achieved by
extending the alignment to the left and right of the seed. The
unconditional left and right extension in the initial version of BLAST
(Altschul et al., 1990) is called the one-hit method and typically
consumes over 90% of BLAST’s total execution time (Peters and
Sikorski, 1997). In order to improve this computationally intensive
part of the algorithm, the two-hit extension was introduced in 1997

(Altschul et al., 1997). In this method, an extension is invoked
only for seeds that are within a user-defined distance from non-
overlapping seeds, thus reducing the computational cost by half.
Initially, the seeds are extended from both the left and right without
inserting any gaps. During this process, the quality of the ungapped
alignment is gauged by the score of each pair of aligned amino acids
using a scoring matrix, such as the popular BLOSUM62 (Henikoff
and Henikoff, 1992). If the ungapped score is above a user-defined
threshold, the seed can be used to produce a gapped alignment based
on a Smith–Waterman type algorithm (Smith and Waterman, 1981).

The evaluation step relies on the score produced by the ungapped
or the gapped extension step, the query and database sequence
lengths, the substitution matrix and the sequence statistics. With this
information, the alignment is accepted as statistically significant if
the probability of finding such an alignment by chance is lower than
a user-defined value (Karlin and Altschul, 1990).

A profiling study of NCBI-BLAST for protein alignment is
depicted in Figure 1. The time spent in each step of the algorithm
can vary substantially with different queries. However, as Figure 1
reveals, the seeding and the ungapped extension are the most
computationally intensive parts. For ungapped alignments, these two
steps consume over 95% of the total execution time. For gapped
alignments, the seeding and the ungapped extension steps consume
75% of the time, while 20% of the time is spent on the gapped
extension. Based on these observations, we decided to focus our
parallelization efforts on the seeding and ungapped extension steps.

3 SYSTEM AND METHODS
A GPU is a massively parallel computer designed to accelerate
computationally intensive applications by operating in a single-instruction
multiple-thread (SIMT) mode. The same instructions are executed in parallel
by multiple threads that run on identical cores and can operate on different
data. Figure 2 presents a block diagram of an NVIDIA GPU as it is executing
GPU-BLAST. The schematic shows that there are N GPU multiprocessors,
each containing M processors.

The executing threads are organized into so-called blocks, and the blocks
are organized into a so-called grid of blocks. The number of threads and
blocks is user defined, and the GPU scheduling mechanism assigns the
execution of each thread block to a specific GPU multiprocessor. Since
each GPU multiprocessor has N processors, there is a maximum number
of threads that can physically execute in parallel. This thread group is called
a warp. A thread block may contain more than one warp, and the GPU
scheduler decides in which order and when to execute each warp. This gives
the capability to the scheduler to increase the overall utilization of the GPU
multiprocessor by putting a warp on hold, e.g. when waiting for data, and
allow another one to execute.

Since each GPU multiprocessor has a single-instruction unit, there is one
instruction dispatched at any given time. Hence, parallelization is maximized
when all threads of a warp agree on their execution path. If threads of a warp
diverge via a data-dependent conditional branch, the warp serially executes
each branch path taken, disabling threads that are not on that path. When
all paths complete, the threads converge back to the same execution path.
Extensive thread divergence can have a detrimental effect on performance.

The schematic in Figure 2 illustrates that there are available different types
of memory, each with different functionality, size and speed. Depending on
the amount of data and anticipated data access pattern, the programmer must
organize and store the data in the most appropriate memory, in order to
achieve the best possible utilization of the available memory bandwidth.
The global memory is the largest in size and the slowest. It can be read and
written by the CPU and the GPU threads, thus allowing the CPU to send data
to the GPU and vise versa. The global memory access pattern by the threads

183

[15:58 27/12/2010 Bioinformatics-btq644.tex] Page: 184 182–188

P.D.Vouzis and N.V.Sahinidis

A B

Fig. 1. Profiling of the NCBI-BLAST code for queries of length 2 to 4998 for two-hit extensions. (A) For ungapped alignments, on average, the seed
identification and extension steps, respectively, consume 75% of the total time (blue) and 20% of the total time (green). (B) For gapped alignment, on average,
the seed identification, two-hit ungapped extension and gapped extension steps, respectively, consume 55% of the total time (blue), 20% of the total time
(green) and 20% of the total time (orange).

Fig. 2. The architecture and the memory organization of an NVIDIA GPU as it is executing GPU-BLAST. The data structures used by GPU BLAST are
stored in the appropriate memory type, according to their size and access pattern.

can affect substantially the data transfer bandwidth; the more coalesced the
memory accessing within a half warp, the higher the achieved bandwidth.

The constant memory is part of the global memory and is read-write for
the CPU and read-only for the GPU threads. Constant memory can offer
higher bandwidth than the global memory when all threads of a half warp
access the same input data. The shared memory is the smallest and the fastest
and is shared by all processors of a GPU multiprocessor. It is a read-write
memory by the GPU threads only, and it can be used to communicate data
between threads that belong to the same block. Shared memory bandwidth

can be affected by the thread-access pattern, but to a lesser extent than the
global memory accessing.

The registers of a GPU multiprocessor are shared between its processors,
and each thread uses an exclusive set of registers. The programmer does
not have explicit control on the registers, as the latter are used for the
execution of a program in the same way as on a general purpose CPU.
GPUs also contain local and texture memory, which were not found useful
in the context of GPU-BLAST and are not depicted in Figure 2. Local
memory, in particular, is used by the compiler automatically to store variables

184

[15:58 27/12/2010 Bioinformatics-btq644.tex] Page: 185 182–188

GPU-BLAST

if needed, but was not used for GPU-BLAST. Texture memory, on the
other hand, is controlled by the programmer and can benefit applications
with spatial locality where global memory access is the bottleneck. As
discussed later, however, thread divergence instead of global memory access
is GPU-BLAST’s bottleneck.

4 IMPLEMENTATION
The most important component of the implementation is the
design of the data structures, which affect the efficiency of the
parallelization and overall implementation. Since GPU-BLAST is
embedded in the NCBI-BLAST code, the two implementations
share data structures. As shown in Figure 2, the most important
data structures used by GPU-BLAST consist of a table holding the
substitution matrix, a presence bit vector holding information on
whether a specific amino acid word is present in the query, a query-
index table and an overflow table holding the positions of the words
of the query, a table holding the database subjects and an index table
holding the resulting ungapped alignments between the query and
each of the database subjects. The location of each data structure
in memory was carefully selected, depending on data size and how
often each structure is accessed during execution. In particular, we
have stored frequently accessed structures in the fastest possible
memories that could accommodate their size.

The query-index table is created in a preprocessing step of the
algorithm. For each word, this table stores how many times the
word appears in the query, and the location of each appearance.
Theoretically, if the word length is w and the query length is l, a
word can appear up to l−w+1 times (corresponding to the case
when all the query amino acids are identical). In practice, however,
each word appears only a few times in a query. For this reason, the
locations of words that appear up to three times are stored in the
query index table. For all other cases, instead of locations, the index
table contains a pointer to an overflow vector that holds the locations
of the words in the query. The index table and the overflow vector
cannot fit in the shared memory and are stored in the global memory,
as shown in Figure 2. Each bit of the presence vector corresponds
to a word and is set only if that word appears in the query. Since
its size is only a fraction of the query index table, this vector can
be stored in the smaller but faster shared memory. The query is
uniformly accessed by all GPU threads. For this reason, it is stored
in the constant memory, which is the most suitable for this access
pattern. The protein database that the query is compared against is
also stored in the global memory due to its size.

Parallelization in the execution step of GPU-BLAST involves
assigning the database subjects to different GPU threads. In order
to balance the load between the threads and avoid having threads of
the same warp work on database sequences with substantial length
differences, the sequences are first sorted according to the number
of amino acids they contain. Sorting is embedded in the formatting
of a FASTA database, which is required by NCBI-BLAST. This
operation is done once per database before this database is used and
does not affect the alignment obtained. Thus, this operation does not
add any overhead to the execution time of the algorithm for NCBI- or
GPU-BLAST. Not having the database sorted would result in cases
where threads of the same warp have to compare the query with
sequences that differ significantly in length, thus causing excessive
thread divergence. By sorting, this thread divergence overhead is
reduced considerably.

Each thread scans consecutive words of a different subject and
checks, via the presence vector, whether these words exist in
the query or not. The presence vector is not necessary for the
implementation of the algorithm since the query index table stores
the word locations. Yet, the presence vector is small enough to
fit in the shared memory of a GPU multiprocessor. Thanks to the
information provided by this vector, a processor can identify word
matches through information readily available in the fast shared
memory, without having to access the slow global memory. Only
when matches exist, the processor accesses the query index table
in the global memory to retrieve information on the number and
locations of the seeds. The substitution matrix is stored in the shared
memory because it is used very frequently during the alignment
score calculations.

In the next step, each seed is extended left and right according to
the two-hit method. Each extension that achieves a score above the
user-defined threshold is characterized as a high scoring pair and its
coordinates are stored in the output table. Since it is not known in
advance how many high scoring pairs per database subject will be
discovered, for their storage we follow a similar technique used for
the query index table. In practice, for each subject, there are only
a few high scoring pairs discovered. Thus, the coordinates of only
up to two pairs are stored in the output table. Database subjects that
have more pairs are processed by the CPU after completion of the
GPU execution.

The CPU has a copy of the database and the data structures, and,
instead of waiting idle for the GPU to parse the entire database,
carries out part of the alignment task, thus reducing the total
execution time. The database is split in two parts that are processed
separately, and when both processors finish execution, the CPU
merges the results, and, if desired, carries out a gapped alignment.

In BLAST, comparison of a query with any sequence in the
database can be carried out independently from comparisons
with other database sequences. While this observation makes
parallelization of this algorithm appear an obvious task, the
challenge here is to develop a mechanism capable of distributing
comparisons to different processors so that processors are fully
utilized and complete their assigned tasks at the same time. The
processing of short and long database sequences must be done in a
way that minimizes idle times for processors. The data structures
used in GPU-BLAST result in a carefully orchestrated parallel
execution of comparisons of short and long sequences, thus utilizing
the GPU as much as possible.

Since GPU-BLAST is built on top of NCBI-BLAST, both share a
common user interface. GPU-BLAST has the following additional
options:

*** GPU options
-gpu <Boolean>
Use GPU for blastp
Default = ‘F’

-gpu_threads <Integer, 1...1024>
Number of GPU threads per block
Default = ‘64’

-gpu_blocks <Integer, 1...65536>
Number of GPU block per grid
Default = ‘512’

-method <Integer, 1...2>

185

[15:58 27/12/2010 Bioinformatics-btq644.tex] Page: 186 182–188

P.D.Vouzis and N.V.Sahinidis

Method to be used
1 = for GPU-based sequence alignment
2 = for GPU database creation

Default = ‘1’
* Incompatible with: num_threads

‘-gpu <Boolean>’ determines whether the GPU is used or
not. With ‘-gpu_blocks’ and ‘-gpu_threads’, the user can
define the number of blocks and threads per block to be used by
the GPU. When ‘-gpu T’ GPU-BLAST carries out the sequence
alignment using the aforementioned options. When ‘-method 2’,
and provided that ‘-gpu T’, GPU-BLAST converts the input
database into the format required by GPU-BLAST, stores the
produced database into a separate file and produces a second file
which includes information about the GPU database. The conversion
has to be done only once for each database, and all subsequent
executions of GPU-BLAST read this database from the disk. Hence,
this time is amortized over thousands or millions of future queries.
For ‘-gpu F’, all the previous options are ignored and GPU-
BLAST executes according to NCBI-BLAST. The current version of
GPU-BLAST works only for protein alignments and can utilize more
than one CPU threads in parallel with the GPU by using the NCBI-
BLAST option ‘-num_threads <Integer>=1>’. The option
‘-method’ is incompatible with the option ‘-num_threads’
because the creation of the GPU database does not support multiple
threads.

The execution of GPU-BLAST consists of three basic
components: (i) initialization of the GPU and data transfer from
the CPU to the GPU, (ii) concurrent GPU-CPU algorithm execution
and (iii) transfer of results from the GPU to the CPU. These basic
steps are depicted in the flow chart of Figure 3. We can see BLAST’s
basic steps and their execution sequence depending on whether the
user chooses to use the GPU or not. If the GPU is used (‘-gpu T’),
the CPU reads the GPU-BLAST database and sends all the necessary
data to the GPU. For the seeding and extensions steps, the CPU and
GPU work concurrently; the GPU by deploying multiple parallel
threads on the sequences, as defined by ‘-gpu_blocks’ and
‘-gpu_threads’, and the CPU on the remaining sequences by
using one or more threads as defined by ‘-num_threads’. After
both platforms finish, the high scoring pairs are transferred from
the GPU to the CPU, and the CPU merges them with its own high
scoring pairs. From that point, the algorithm follows the NCBI-
BLAST execution path without any modifications. GPU-BLAST
follows the NCBI-BLAST execution path when ‘-gpu F’.

GPU-BLAST was implemented on an NVIDIA Fermi C2050
GPU with 448 processors at 1.15 GHz, 64 KB of shared memory per
GPU multiprocessor, 64 KB of constant memory and 3 GB of global
memory. The implementation was built using CUDA, which offers
better performance than OpenCL on NVIDIA GPUs (Weber et al.,
2010). While this software choice limits GPU-BLAST to NVIDIA
cards, future versions will provide support for OpenCL in order to
extend applicability to other GPU hardware.

The GPU was combined with a six-core Intel Xeon host CPU
at 2.67 GHz with 12 GB of memory. Since GPU-BLAST uses
the GPU and the CPU concurrently, the workload has to be
properly distributed between the two in order to maximize the
utilization of the CPU–GPU combination. The ideal load balancing
is achieved when the execution times on the CPU and the GPU
are equal. GPU-BLAST assigns predetermined fractions of the

Fig. 3. Execution flow of GPU-BLAST. The blue blocks are executed on the
CPU and orange ones on the GPU (HSP: high scoring pairs, DB: database).

database between the CPU and the GPU, based on the number of
available CPU threads. We determined these ratios after extensive
experimentation with different databases and number of available
CPU threads.

5 RESULTS
The database used for computations was the latest releases of
the env_nr (ftp://ftp.ncbi.nlm.nih.gov/blast/db/) protein database,
which contains 6 031 291 sequences and its size is 1.3 GB (October
2010). The queries were 51 mouse sequences with lengths from
2 to 4998. These sequences were obtained from the UniProt database
(http://www.uniprot.org/) and are provided in the ‘queries’ directory
of the GPU-BLAST distribution.

Figure 4A depicts the speedups achieved by the ungapped and
gapped versions of GPU-BLAST, in comparison to one-threaded and
six-threaded NCBI-BLAST for the env_nr database. These speedups
depend on the query length. The speedups increase for query lengths

186

ftp://ftp.ncbi.nlm.nih.gov/blast/db/
http://www.uniprot.org/

[15:58 27/12/2010 Bioinformatics-btq644.tex] Page: 187 182–188

GPU-BLAST

A B

Fig. 4. GPU-BLAST speedups relative to the CPU as a function of sequence length (A), and average speedups as a function of CPU threads working in
parallel with GPU-BLAST (B). Speedups were calculated based on start-to-finish wall-clock times.

of approximately up to 1000 amino acids for the one-threaded and
2000 for the six-threaded implementations, after which the speedup
remains essentially constant. For shorter queries, the speedup is
slightly lower because the seed identification and the extension steps
consume a smaller percentage of the total execution time, as seen
in Figure 1. The scattering of the speedups in Figure 4A can be
attributed to several factors, including the number of seeds identified,
the extension length around each seed and the number of ungapped
and/or gapped extensions, which affect the thread divergence on the
GPU and consequently its performance.

The GPU’s theoretical peak performance is 1030 GFLOPS
in single precision and 515 GFLOPS in double precision. The
corresponding numbers for the CPU are 128 GFLOPS and 64
GFLOPS. Although the GPU’s peak performance in GFLOPS is
about eight times higher than the CPU’s, the speedups achieved
by GPU-BLAST are currently around four. The reason for this
difference is that the SIMT architecture of the GPU executes
concurrently multiple threads that operate on different data and
follow the same execution path in each warp. Whenever the
execution paths within a warp diverge, the threads are serialized
and overall performance is reduced.

The one-threaded GPU-BLAST is faster for ungapped than
gapped alignments because it is possible to transfer 95% of the
computations to the GPU in the ungapped case, compared with
only 75% in the gapped case as shown in Figure 1. For the
six-threaded GPU-BLAST, the total speedup is smaller and the
difference between the ungapped and gapped version diminished
because the CPU can handle a bigger workload leaving a smaller
margin to the GPU to speedup the total running time. For the
one-threaded GPU-BLAST the speedup is always bigger than one,
except for the first sequence which has length two. The six-threaded
GPU-BLAST offers speedup for sequences longer than 500 amino
acids.

In Figure 4B, we present average GPU-BLAST speedups when
using up to six CPU threads in parallel with the GPU. The times
used to calculate each speedup are elapsed times to carry out
a sequence alignment, which start from the beginning of GPU-
BLAST’s execution and finish with the writing of the output

alignments to a file. We can see that GPU-BLAST achieves the
largest speedups compared with single-threaded NCBI-BLAST, and
the speedups decrease as the number of CPU threads increase.

Finally, in Figure 5, we present speedups relative to a
single-threaded CPU. Both multi-threaded CPU and CPU/GPU
combinations are considered as a function of the number of available
CPU threads. In all cases, speedups were calculated based on the
total time to align the entire set of queries. As this figure shows,
the multithreaded NCBI-BLAST itself does not scale linearly. For
instance, with six CPU threads, the NCBI-BLAST speedup is less
than four. GPU-BLAST inherits some of these limitations as it
is built on top of NCBI-BLAST in order to guarantee the same
output results. Nonetheless, in all cases, the addition of the GPU
considerably increases the observed speedups. For instance, the six-
threaded GPU-BLAST achieves a speedup of nearly six for both
gapped and ungapped alignments.

6 CONCLUSIONS
Using carefully orchestrated parallel execution of comparisons of
short and long sequences on a GPU, this article has demonstrated
that GPU-BLAST can speed up the popular NCBI-BLAST code by
nearly four times while producing identical results. Moreover, our
implementation is capable of using the GPU along with multiple
CPU cores concurrently. Hence, the performance of GPU-BLAST
will benefit from future hardware advances of both CPU and GPU
technologies.

The present version of GPU-BLAST only works for BLASTP.
Future work will extend the implementation to other BLAST
methods, including PSI-BLAST which is more sensitive in detecting
weak relationships between protein sequences (Altschul et al.,
1997). PSI-BLAST uses multiple iterations to scan the database,
with each iteration constructing a position-specific score matrix that
replaces the simple query. Although there are differences in the
implementations of BLAST and PSI-BLAST, both algorithms share
several subroutines. A profiling study of PSI-BLAST reveals that
PSI-BLAST and gapped BLAST share the same subroutines that
take most of their execution time. In particular, the profiling graph

187

[15:58 27/12/2010 Bioinformatics-btq644.tex] Page: 188 182–188

P.D.Vouzis and N.V.Sahinidis

Fig. 5. Speedups relative to a single-threaded CPU as a function of CPU threads. Speedups were calculated based on start-to-finish wall-clock times to align
the entire set of queries.

of PSI-BLAST is almost identical to Figure 1B. This suggests that
PSI-BLAST can be implemented on the GPU in a similar fashion
with GPU-BLAST and that similar speedups are likely.

Conflicts of Interest: none declared.

REFERENCES
Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410.
Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST:Anew generation of protein

database search programs. Nucleic Acids Res., 25, 3389–3402.
Beberg,A.L. et al. (2009) Folding@home: lessons from eight years of volunteer

distributed computing. In Proceedings of the 8th IEEE International Workshop on
High Performance Computational Biology. IEEE, Rome, Italy, pp. 1–8.

Camacho,C. et al. (2009) BLAST+: architecture and applications. BMC Bioinformatics,
10, 421.

Dematte,L. and Prandi,D. (2010) GPU computing for systems biology. Brief.
Bioinform., 11, 323–333.

Elble,J.M. et al. (2010) GPU computing with Kaczmarz’s and other iterative algorithms
for linear systems. Parallel Comput., 36, 215–231.

Henikoff,S. and Henikoff,J. (1992) Amino acid substitution matrices from protein
blocks. Proc. Natl Acad. Sci. USA, 89, 10915–10919.

Hussong,R. et al. (2009) Highly accelerated feature detection in proteomics data sets
using modern graphics processing units. Bioinformatics, 25, 1937–1943.

Karlin,S. and Altschul,S.F. (1990) Methods for assessing the statistical significance of
molecular sequence features by using general scoring schemes. Proc. Natl Acad.
Sci. USA, 87, 2264–2268.

Lin,H. et al. (2008) Massively parallel genomic sequence search on the Blue Gene/P
architecture. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,
Austin, TX, pp.1–11.

Ling,C. and Benkrid,K. (2010) Design and implementation of a CUDA-compatible
GPU-based core for gapped BLAST algorithm. Procedia Comput. Sci. USA, 1,
495–504.

Manavski,S. and Valle,G. (2008) CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics, 9
(Suppl. 2), S10.

Nguyen,V.H. and Lavenier,D. (2009) PLAST: parallel local alignment search tool for
database comparison. BMC Bioinformatics, 10, 329.

Nickolls,J. (2007) Nvidia GPU parallel computing architecture. In IEEE Hot Chips
19, IEEE Technical Committee on Microprocessors and Microcomputers, Stanford,
CA.

Peters,R. and Sikorski,R. (1997) BLAST off! Science, 278, 510–502.
Richmond,P. et al. (2010) High performance cellular level agent-based simulation with

FLAME for the GPU. Brief. Bioinform., 11, 334–347.
Schatz,M. et al. (2007) High-throughput sequence alignment using graphics processing

units. BMC Bioinformatics, 8, 474.
Shirts,M. and Pande,V.S. (2000) Screen savers of the world unite! Science, 290,

5498.
Smith,T. and Waterman,M. (1981) Identification of common molecular subsequences.

J. Mol. Biol., 137, 195–197.
Sotiriades,E. and Dollas,A. (2007) A general reconfigurable architecture for the BLAST

algorithm. J. VLSI Signal Process., 48, 189–200.
Suchard,M.A. and Rambaut,A. (2009) Many-core algorithms for statistical

phylogenetics. Bioinformatics, 25, 1370–1376.
Sukhwani,B. and Herbordt,M.C. (2009) GPU acceleration of a production molecular

docking code. In Proceedings of 2nd Workshop on General Purpose Processing on
Graphics Processing Units, ACM, Washington, DC, pp.19–27.

Weber,R. et al. (2010). Comparing hardware accelerators in scientific applications:
a case study. IEEE Trans.Parallel and Distributed Systems. IEEE computer
Society Digital Library, IEEE Computer Society. Available at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2010.125 (last accessed date June 2, 2010)

188

http://doi

