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ABSTRACT
Flowers are generally short-lived, and they all face a multidimensional challenge
because they have to attract mutualists, compel them to vector pollen with minimal
investment in rewards, and repel floral enemies during this short time window. Their
displays are under complex selection, either consistent or conflicting, to maximize
reproductive fitness under heterogeneous environments. The phenological or
morphological mismatches between flowers and visitors will influence interspecific
competition, resource access, mating success and, ultimately, population and
community dynamics. To better understand the effects of the plant visitors on floral
traits, it is necessary to determine the functional significance of specific floral traits
for the visitors; how plants respond to both mutualists and antagonists through
adaptive changes; and to evaluate the net fitness effects of biological mutualisms and
antagonism on plants. In this review, we bring together insights from fields as diverse
as floral biology, insect behavioral responses, and evolutionary biology to explain the
processes and patterns of floral diversity evolution. Then, we discuss the ecological
significance of plant responses to mutualists and antagonists from a community
perspective, and propose a set of research questions that can guide the research field
to integrate studies of plant defense and reproduction.
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INTRODUCTION
Considering that flowers are the main component of the evolutionary innovation of
flowering plants, exploring the phenotypic trait diversification of flowers has special
significance for understanding the adaptability and diversity of populations (Schiestl &
Johnson, 2013; Soltis & Soltis, 2014). Many studies have elucidated that the diversity of
floral traits is largely a result of evolution alongside an even more diverse flower-associated
community (Strauss & Whittall, 2006; Schiestl & Johnson, 2013). The community
associated with flowers is extremely complex and varied, consists of mutualists such as
pollinators, carnivores (including predators and parasitoids), and beneficial
microorganisms (e.g., nectar yeasts), as well as antagonists such as florivores, seed
predators, nectar robbers and thieves, and pathogenic microorganisms (Aleklett, Hart &
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Shade, 2014; Rusman et al., 2019a; Boaventura et al., 2021). Visitors to flowers use a variety
of floral traits to locate food sources, spawning, and predatory sites, and the behavior,
growth, and innate and learned preferences of visitors lead to the continued evolution of
floral traits (Rusman et al., 2019a).

Flowers have evolved diverse traits to attract animal mutualists and/or to deter
antagonists to ensure reproductive success. These functions are maintained by a
combination of flowering phenology, floral shape, floral display, floral color, floral scent
and resources (Rusman et al., 2019a). It is generally believed that pollination mediated
selection is the main factor affecting flower evolution (Benoit & Kalisz, 2020). The selection
of non-pollinator agents can strengthen or oppose the selection of pollinators, so it will also
affect the variation of floral traits (Roddy et al., 2020). The trade-off between reproduction
and defense has fundamental impacts on the evolution of floral traits, as well as plant
defense mechanisms and pollination systems (Schiestl et al., 2014). Different from the
previous view that pollinators are the main evolutionary source of flowers, many studies
have now adopted a pluralistic approach in which multiple sources of selection are
considered in studies of floral evolution (Caruso et al., 2019; Moreira et al., 2019; Roddy
et al., 2020; Kuppler & Kotowska, 2021). Therefore, to explain the processes and patterns of
floral signal evolution, it is needed to structure in such a way that the effects of mutualists
and antagonists were compared and contrasted to illustrate the potential fitness
consequences of change in the community interactions.

The evolutionary diversity of floral traits is a means for plants to cope with
environmental heterogeneity and seek survival, but evolution is diffuse when the selection
on a given trait is dependent upon the broader community context in which a species
exists. This means that shed light on the evolutionary forces of floral signals requires
additional insights from the community dynamics. This review adopts a community
perspective to understand the selection pressure and ecological implications of floral traits
in multiple linked interaction units, which has practical significance for the continuation
and protection of species. Beyond attempting a synthesis of current knowledge, we also
point to areas in need of further research.

SELECTION AGENTS
Mutualists
Mutualisms, defined as interspecific interactions that are beneficial to all the involved
partners, have been a source of major evolutionary innovations (Pereira & Kjellberg, 2021).
Mutualists of flowers are usually grouped according to the types of resources and services
exchanged: transportation, protection, or nutrition, including pollinators, predators,
parasitoids and beneficial microorganisms (Bronstein, Wilson & Morris, 2003; Rafferty,
CaraDonna & Bronstein, 2015).

Pollination is the transfer of pollen from the anthers to the stigma of the carpel by the
pollinator to fertilize the ovule and is typical of mutualism in plants (Bronstein, Alarcon &
Geber, 2006). Pollinators evolved strategies to increase the exploitation of floral resources
to their advantage, and play the role of pollen transporters in cross-pollinated plants
(Bronstein, Alarcon & Geber, 2006; van der Kooi, Vallejo-Marin & Leonhardt, 2021).
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Certain plant-pollinator interactions are relatively specialized, but most are widely
generalized (Rusman et al., 2018; Rusman et al., 2019b; Guimarães, 2020). In several highly
specialized plant-insect interactions, scent-mediated specificity of pollinator attraction is
directed by the emission and detection of volatile organic compounds (VOCs) (Proffit
et al., 2020), such as the pollination mutualism between figs (Ficus seymicordata) and fig
wasps (Ceratosolen gravelyi) (Chen et al., 2009). Schiestl and colleagues summarized three
main types of pollinators’ responses to floral signals: receiver bias, adaptive innate
preferences, and associative learning, which constitute the key selection environment for
flower traits (Schiestl & Johnson, 2013; Schiestl, 2017). The preference of pollinators that
have not evolved in the context of flower visitation is receiver bias. For example, receiver
biases of some bees for radiating stripes, dark centers and peripheral dots may have
evolved in the context of sexual selection rather than flower visitation (Van Kleunen et al.,
2007). Both adaptive innate preferences and associative learning are related to pollinators’
pursuit of more rewards and appropriate oviposition site. Sensory preferences can be
rapidly altered by associative learning, increasing foraging rewards (Schiestl & Johnson,
2013; Schiestl, 2017). But the relative benefit for plants vs pollinators ranges from solely
beneficial for flower visitors (e.g., reward robbing), to more balanced interactions, to solely
beneficial for plants (e.g., pollination by deception) (van der Kooi, Vallejo-Marin &
Leonhardt, 2021).

The quantity or quality of rewards (e.g., oil, pollen and nectar) and appropriate
oviposition site offered by a flower have essential consequences for pollinator-mediated
selection on floral signals. For instance, bumblebees learned and discriminated between
different pollen types and casein using olfactory cues. When they touched the substances
with their antennae, using chemotactile cues, they could also discriminate between
different concentrations (Hagler, 1990; Ruedenauer, Spaethe & Leonhardt, 2015). But in
some cases, due to the restriction of flower structure, pollinators cannot directly infer the
reward status of a flower, nor can they directly infer the specific foraging cost associated
with the flower (Von Arx et al., 2012; Haverkamp et al., 2016). For this reason, pollinators
must rely on indirect floral signals, such as floral color and scents to predict the reward
amounts of flowers (Hempel de Ibarra, Langridge & Vorobyev, 2015; Ollerton, 2017). Ficus
produce urn-shaped inflorescences called figs that limit direct pollination behavior. Floral
scent may provide an effective olfactory signal to fig (Ficus semicordata) pollinating wasps
(Ceratosolen gravelyi) enabling them to infer the reward status (Chen et al., 2009).
However, if the production of rewards causes a significant cost to plants and a decreased
intra-individual correlation between floral signals and rewards allows them to reduce this
cost, selection may favor plants with deceptive strategies (Benitez-Vieyra et al., 2010).
Roddy et al. (2020) used an economics spectrum framework (‘economics’ refers to the
cost-payback relationship that selection should favor) to identify the selective pressures
shaping floral phenotypic variation, as the production and maintenance of flowers are
energetically costly for plants (Roddy et al., 2020; Kuppler & Kotowska, 2021). But genetic
constraint of plants, resource limitation and associative learning of pollinators may
contribute to the maintenance of signal accuracy (Benitez-Vieyra et al., 2010). On the one
hand, the existence of genetically based differences in signal accuracy among plants is a
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necessary condition for an evolutionary response mediated by pollinator selection
(Ashman & Majetic, 2006). On the other hand, pollinators could be favoring the
maintenance and reinforcement of the signal-reward correlation through a preference for
those plants displaying more accurate signals, but the behavior increase foraging costs
(Benitez-Vieyra et al., 2010).

Pollinator-mediated selection on floral signals is traditionally regarded as a common
mechanism of adaptation and speciation in plants (Koski, 2020). Some findings indicated
that the flower traits crucially depend on pollinator specialization and syndrome (Fenster
et al., 2004; Ollerton, Winfree & Tarrant, 2011; Rosas-Guerrero et al., 2014; Dellinger,
2020). At first, animal pollinators will promote the evolution of floral traits, leading to the
development of ‘pollination syndromes’, where the phylogenetically unrelated flowers
match the preference of pollinators in shape, color, scent and size (Haverkamp et al., 2016).
But the existence of pollinator syndromes to explain floral evolution and diversity is
controversial, it just represents a specific hypothesis regarding the nature of floral variation
and its ultimate causal roots (Ollerton et al., 2009). On the other hand, plants that are either
too rare or insufficiently rewarding to their pollinators by imitating signals of other
rewarding plants, including the signals of key food plants, animal mating partners, or
oviposition sites, which would lead to advergent floral signal evolution (Gigord et al., 2002;
Schiestl & Johnson, 2013). However, there are still some published studies proposed that
the different pollinators all selected for a common floral trait, while some implied that a
trait change that increases the fitness contribution of one pollinator will decrease the
fitness of another (Sahli & Conner, 2011; Joly et al., 2018; Reich et al., 2020). Therefore,
understanding the strength and shape of pollinator-mediated selection on flower traits is
the first step to update the cognition of flower adaptive evolution (Schiestl & Johnson,
2013).

Carnivores (including predators and parasitoids) can benefit plant fitness by feeding on
herbivores, which are indirect defense strategies of flowering plants against herbivores.
Indirect defenses of flowers include the induced production of extra nectar that is exploited
as a food source by carnivores and the induced emission of floral volatiles that attract
carnivores (Dicke, 2000; Lucas-Barbosa, 2016). Tri-trophic interactions mediated by plant
compounds are a classical approach to understanding plant indirect defense and have been
described in many excellent reviews (Agrawal, 2000; Abdala-Roberts et al., 2019).
Ant-plant protection mutualisms are model systems for examining the evolution and
maintenance of plant defense strategies, species coexistence and multitrophic interactions
(Trager et al., 2010). It has been shown that ants forage preferentially on plants with
extrafloral nectaries. The visit of ants reduces the number of herbivorous insects on plants
possessing extrafloral nectaries and thus lessens the damage by herbivores (Heil et al.,
2001).

Antagonists
Aside from pollinators, whose relationships with their host plants are by definition
mutualisms, all other visitors may have antagonistic effects on plant reproduction (Galen,
1999). Antagonists range from large mammals to tiny insects, as well as microscopic
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bacteria and viruses, but most research in trait coevolution between antagonists and
flowers generally focused on herbivores, florivores, and pathogens (Rusman et al., 2019a,
2019b). To survive, animal antagonists not only need to select high-quality food but also
consider avoiding the damage caused by predators and parasitoids (Lucas-Barbosa et al.,
2014). In this context, antagonists can alter the evolution of floral signals, either through
direct fitness effects via the destruction of reproductive structures (i.e., carpels and
stamens) or indirectly through resource allocation trade-offs of plants between survival
and reproduction (Schiestl & Johnson, 2013; Lucas-Barbosa, 2016).

As much as 18% of terrestrial plant biomass and 7% of flower biomass are consumed by
herbivores, which makes herbivores an important driving force for the evolution of flower
signals (McCall & Irwin, 2006; Boaventura et al., 2021). Foliar herbivory influences floral
traits by changing plant resource allocation or by presenting secondary metabolites in
flower signals and rewards (Kessler et al., 2013; Schiestl et al., 2014; Silveira et al., 2018).
Herbivores might prefer to feed on flowers that could provide more resources to grow
faster rather than on leaves; their larvae or adults can consume specific organs or the
complete flower before seed coat formation (McCall & Irwin, 2006; Agerbirk et al., 2010;
Silveira et al., 2018). Florivores can feed exclusively on flowers, but can also start feeding on
leaves and then move to the flowers later in development, or switch diet when flowers
become available (Lucas-Barbosa et al., 2014). Florivory generally causes varying degrees of
damage to bracts, sepals, petals, stamens, pistils, as well as pollen and ovules (Inouye, 1980;
Galen & Butchart, 2003;McCall & Irwin, 2006; Smallegange et al., 2007; Boaventura et al.,
2021). The defense of plants is considered to be costly, not only because of the direct
metabolic cost but also because of the indirect ecological cost (Cozzolino et al., 2015).
For example, disruption of plant-pollinator interactions associated with inducible plant
defense can be indirectly detrimental to plant fitness, conferring potential ecological costs,
e.g., ant-pollinator conflict (Kessler & Halitschke, 2009; Trager et al., 2010; Agrawal, 2011a;
Lucas-Barbosa, 2016).

Antagonist-induced changes in floral signals also have an impact on several other
plant-insect interactions, including a tendency to cause altered pollinator community
composition and pollinator behavior, increased subsequent florivory and predators,
indicating broad community-wide effects of floral damage for whole-plant interactions
(Gorden & Adler, 2016; Rusman et al., 2018; Rusman et al., 2019b; Rusman et al., 2020).
For example, flowers of cowpea emit volatiles attracting parasitoids (Apanteles taragamae)
when attacked by herbivores (Maruca vitrata) (Dannon et al., 2010). Floral herbivores
(caterpillars) in Ruellia nudiflora had significant detrimental effects on floral traits and
plant attractiveness to pollinators (bees) (Moreira et al., 2019). But Cozzolino et al. (2015)
found that the higher fruit set in foliar herbivore-infested Silene latifolia was caused by
increased nocturnal pollinator attraction, mediated by the increased emission of
pollinator-attracting floral volatiles. Thus, the effects of antagonists on plant reproductive
fitness are not always negative, because plants can compensate herbivory with increased
investment in pollinator attraction. In certain situations, mutualistic partners can also
affect flowering plants indirectly by interfering with floral visitation, becoming
antagonistic partners (Altshuler, 1999; Ness, 2006). For example, ant (Ectatomma ruidum
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and Ectatomma tuberculatum) attendance strongly improved fruit set of Psychotria
limonensis by increasing the rate of pollinators’ visitation and preventing fruit loss to
herbivorous insects. But carries costs to plants during fruit removal because bodyguard
ants had a negative effect on the removal of ripe fruits by avian frugivores (Altshuler, 1999).

Plants have to induce direct and/or indirect defense responses to avoid a variety of
damage from antagonists (Lucas-Barbosa et al., 2014). The concepts of resistance and
tolerance have been used to understand how plants defend against antagonists directly
(Strauss & Agrawal, 1999;McCall & Irwin, 2006; Irwin et al., 2010). Resistance is the ability
to reduce the frequency of damage, including chemical deterrents, escape in space and
time, physical barriers, and certain indirect resistance processes (Irwin, Adler & Brody,
2004;McCall & Irwin, 2006). The tolerance reflects the ability of plants to maintain fitness
after damage, including compensatory flowers, resource reallocation, and improvement
fecundity of individual flowers (Strauss & Agrawal, 1999; Ashman, 2002; Irwin et al., 2010).
The indirect defenses that affect the antagonists through its natural enemies, carnivores,
can be classified as mutualisms (Martinez-Bauer et al., 2015; Knauer, Bakhtiari & Schiestl,
2018; Rusman et al., 2019a). For example, ant-plants recruit ants by providing nesting sites
and/or food resources and benefit from the ant-mediated reduction in damage by
herbivores and pathogens (Trager et al., 2010). Although the fitness benefits through the
attraction of carnivores are intuitive, the net effect of indirect defenses remains largely
elusive on flowering plants, as it depends on the relative abundance of carnivores and
herbivores in a plant population (Romero & Vasconcellos-Neto, 2004; Knauer, Bakhtiari &
Schiestl, 2018; Villamil, Boege & Stone, 2019; Benoit & Kalisz, 2020). Also, the effect of
carnivores on the host plant’s reproductive fitness by interfering with pollinators or
directly damaging reproductive organs cannot be ignored (Martinez-Bauer et al., 2015;
Knauer, Bakhtiari & Schiestl, 2018; Villamil, Boege & Stone, 2019; Benoit & Kalisz, 2020).

SURVEY METHODOLOGY
In this article, we reviewed the available academic articles published between 1980 and
2021 in the National Center for Biotechnology Information (NCBI), Web of Science, and
the University’s databases (Ocean University of China) for books and journals.

We used “floral/flower mutualist” or “floral/flower antagonist” as a basic query and
added terms “flowering phenology”, “floral/flower color”, “floral/flower display”, “floral/
flower shape”, “floral/flower scent”, “floral/flower volatile organic compounds”,
“pollinator”, “herbivore”, “florivore” or “predator” to search for information about the
effect of mutualistic or antagonistic interactions on floral traits. We used “flower/
flowering”, “select/selection”, and “evolution” queries to search for information about the
biotic factor that promotes the evolution of flowers. Reference lists of the included studies
were hand-searched to identify any additional relevant studies.

The inclusion criteria were as follows: only English articles were included, and
duplicates were removed via Endnote (X9). The title and abstract of the related studies
were then screened in duplicate by two independent reviewers. After full-text screening for
studies relevant to the evolution of floral diversity selected by insect mediators, we reduced
the number of papers to 541. The publication dates of these studies ranged from 1980 to
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2021, with a marked increase in the number from 2012–2021. Since there were excellent
reviews describing the evolution of flowers in the early years, we mainly focus on the works
from the past 10 years. Of 541 identified studies, 145 were included in the review. The title
and abstract of the included studies were added to the Supplemental Material.

Flowering phenology
For plants that live in seasonally changing environments, timing is critical (Blackman,
2017). The timing of flowering onset reflects the environmental conditions experienced
during the development of pollen, ovules, and seeds, as well as the nature of interactions
with mutualists and antagonists (Austen et al., 2017). Therefore, flowering phenology
should be under the strong selective pressure of mutualists and antagonists, which
combine together to signal the optimal time for reproduction (Körner & Basler, 2010;
Block, Alexander & Levine, 2020).

Pollinators and predators are the main biotic selective agents acting on flowering
phenology (Sercu et al., 2020). Decades of studies on natural plant populations have
revealed a pervasive phenotypic selection of early flowering in the year, especially for plants
that rely on pollinators (Munguia-Rosas et al., 2011; Austen et al., 2017; Sercu et al., 2020).
Adamidis et al. (2019) elucidated that insect pollination increases the reproductive output
of canola by advancing flower phenology, promoting a higher number of flowers at the
peak of flowering. In general, the flowering time and the flowering duration are positively
correlated, individuals that flower early often flower longer than those that flower late
(Hendry & Day, 2005; Austen et al., 2017). However, while advancing phenology can help
plants exploit longer reproductive seasons, allow earlier access to pollinators and resources,
and avoid harsh environmental conditions later, can also result in mismatches with the
timing of activity of mutualists and increase interspecific competition (Rafferty,
CaraDonna & Bronstein, 2015; Austen et al., 2017; Block, Alexander & Levine, 2020).
Moreover, delayed flowering is generally correlated with large, highly fecund flowers,
whereas rapid flowering is correlated with small flowers that set fewer seeds (Kudoh et al.,
2002; Austen et al., 2017). A study on Mimulus guttatus indicated that alternative alleles
control trade-offs between “large size and slow flowering” and “small size and rapid
flowering” (Troth et al., 2018). But Bemmels & Anderson (2019) showed that rapid
flowering was genetically correlated with greater size at reproduction in Boechera stricta.
However, the above two studies only reveal the selection of ‘time-size’ genetic variation by
climate change, not ecological interactions. Considering the phenological synchrony
within and between communities, the net impact of early flowering onset on individual
reproduction and population dynamics is so far unclear.

Although natural selection for earlier flowering plants seems to be widespread, the
significant directional selection was found to favor later flowering plants in wild sunflowers
to avoid damage by a high abundance of herbivores (Pilson, 2000; Munguia-Rosas et al.,
2011). In a review study, Elzing et al. (2007) found that in more than 80% of the tested
species, pre-dispersal seed predators acting as selective agents in flower phenology favor
off-peak or late flowering. This strategy of flowering plants to avoid antagonist-induced
damage can be classified as phenology avoidance. There is growing evidence that
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antagonists visiting early in the season can also induce compensatory flowering via the
production of a higher proportion of flowers within the same growing season (Brody &
Irwin, 2012). In Brassica rapa, herbivore-infested plants produced more flowers during
early flowering, effectively compensating for the lower olfactory attractiveness of flowers to
pollinators (Schiestl et al., 2014). However, Sercu et al. (2020) indicated that there is no
indication for within-season compensatory flowering with the effect of pre-dispersal seed
predation in Geum urbanum, but the predation induces phenological avoidance in the
subsequent year. In general, the induced compensatory flowering and phenological
avoidance responses to herbivory are expected to be adaptive, and the two defense
strategies are not necessarily mutually exclusive. In short, the optimal timing of flowering
is a balance between avoiding the harsh environment and maximizing reproductive
efficiency in the growing season. But the net consequences of altered biotic interactions will
vary across species and ecosystems (Block, Alexander & Levine, 2020), and the results of
studies on plant reproduction with early- and late-flowering species are inconsistent, with
either positive, neutral, or negative effects, therefore, more research is needed in the future.

Visual guides
Flowers have evolved multisensory (visual, olfactory) guides to mediate the attraction of
pollinators and deterrence of antagonists, resulting in fitness advantages in terms of
increased receipt and export of intraspecific pollen, and decreased damage caused by
illegitimate visits (Schiestl, 2015; Harder et al., 2019). Visual guides, such as flower shape,
display and color, and olfactory guides, such as flower volatiles, play a role in ensuring
reproductive efficiency, which is fundamental to plant fitness.

Floral shape
The shape of flowers plays an irreplaceable role in the functional fit between the pollinator
and the flower, which is related to the handling effectiveness in reward retrieval and pollen
placement (Gómez et al., 2008a; Kaczorowski et al., 2012). At first, pollinators may directly
promote the selection of flower shapes if the trait covaries with reward (pollen and nectar)
(Gómez et al., 2008b; Gómez & Perfectti, 2010). Secondly, flower shape may depend on
pollinator specialization (Reich et al., 2020; Niet, 2021). Specialized pollinators may
promote the evolutionary transitions of floral shapes (Schemske & Bradshaw, 1999;
Moyroud & Glover, 2017). For example, plants pollinated by hawkmoth Agrius convolvuli
tend to have a very long and narrow flower tube or spur, white flowers and large volumes
of dilute nectar (Johnson & Raguso, 2016). In lilies, large trumpet-shaped may have evolved
as a response to selection by long-tongued hawkmoths, without excluding the
short-tongued ones. This evolutionary pathway leads to a functionally more generalized
pollination system instead of an increasingly specialized one (Liu et al., 2019).
Furthermore, bilateral symmetry is thought to have evolved independently from radial
symmetry as a consequence of strong selection exerted by specialized pollinators because it
increases both flower attractiveness to pollinators and pollen transfer efficiency (Gómez,
Perfectti & Camacho, 2006; Moyroud & Glover, 2017).
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The change of flower shape is not only determined by pollinator-mediated selection.
Although plants with specific morphology can be pollinated only by a set of pollinators,
they can receive visits from floral visitors that remove pollen and/or nectar and did not
pollinate the flower. They are commonly assumed to be detrimental to plant fitness
because subsequent beneficial visitors seem likely to be deterred or to make shorter visits to
drained flowers (Bronstein, Alarcon & Geber, 2006). Thus, these floral visitors can also
exert selection on flower traits. In Polemonium viscosum, although bumblebees prefer open
flared corollas, the final shape of the flower is a compromise to limit nectar thieving ants’
feeding (Galen & Butchart, 2003). Although floral shape has long been regarded as a factor
in floral isolation and evolutionary shifts between pollinator affinities, more research on
the fine structure of flowers is needed in the future to clarify the mode of the coevolution
between interacting organisms and floral shape (Kaczorowski et al., 2012; Bronstein &
Richman, 2015).

Floral display
Similar to flower shape, selection on flower display (including floral size, number of flowers
and floral longevity) is rather a pluralistic process in which not only pollinators are
involved, but also some antagonists (Galen, 1999; Teixido, Barrio & Valladares, 2016).
In general, larger floral sizes are more attractive to many pollinators because the quantity
and quality of nectar and pollen often positively correlate with corolla size, and larger sizes
are more easily detected (Benitez-Vieyra et al., 2010; Venail, Dell’olivo & Kuhlemeier, 2010;
Kaczorowski et al., 2012). Teixido, Barrio & Valladares (2016) have documented
pollinator-mediated phenotypic selection for larger flowers. In the same way, the larger
number of flowers has also been associated with higher pollinator attraction and, as a
result, an increase in cross-pollination and reproductive success (Harder & Johnson, 2005;
Teixido, Méndez & Valladares, 2011). In Jasminum fruticans, short-tongued bees showed a
positive relationship between visitation rate and the number of open flowers, hawkmoths
and butterflies made more visits to plants with larger flowers (Thompson, 2001). However,
Sargent et al. (2007) proposed a negative trade-off between the size and number of flowers
and inflorescences because of the resource costs. On the other hand, large floral displays
have also to deal with additional costs imposed by antagonists that obtain food and
rewards from plants without offering benefits to pollination (Teixido, Barrio & Valladares,
2016; Gélvez-Zúñiga et al., 2018). There is evidence that florivory increases with increasing
components of plant attractiveness to pollinators such as the number of flowers displayed
and flower size (Galen, 1999; Mosleh Arany, de Jong & van der Meijden, 2008). In the
hummingbird-pollinated Collaea cipoensis, floral antagonists (ants and bees) exert
negative selective pressures on flower size and number, counteracting pollinator-mediated
selection on floral attractiveness traits (Gélvez-Zúñiga et al., 2018).

The longevity of a flower determines the probability and the number of times that a
flower will be visited by pollinators, affects the total number of flowers open at any one
time on the plant, with consequent implications for the level of outcrossing and the
effectiveness of the overall floral display in attracting pollinators (Primack, 1985). Longer
floral longevity should also increase the risk of florivory. In Cistus ladanifer, larger and
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longer-lived flowers tended to be affected by florivores more frequently, and moderate
florivory levels open the possibility of exerting selection towards smaller and shorter-lived
flowers (Teixido, Méndez & Valladares, 2011).

Why are the benefits of large, long-lived flowers so obvious, selections still favor tiny or
shorter-lived flowers? First and foremost, the production and maintenance of large floral
displays are highly costly, especially in areas with limited resources such as the
Mediterranean (Teixido, Barrio & Valladares, 2016). Thus, documenting spatial variation
of herbivory and pollination is important to understand differences in floral display related
traits among populations (Teixido, Méndez & Valladares, 2011). Secondly, reducing the
size of flowers is not always synonymous with reducing the floral signaling units.
For example, the inflorescence of sunflower, which is composed of many greatly reduced
flowers, can still produce dense clusters of flowers resembling large flowers to effectively
attract pollinators (Moyroud & Glover, 2017). Thirdly, smaller or shorter-lived flowers may
have potential advantages against antagonists (Galen, 1999; Teixido, Barrio & Valladares,
2016; Roguz et al., 2021). In Trifolium repens, herbivores weakened selection for increased
inflorescence production, suggesting that large displays are costly in the presence of
herbivores (Santangelo & Johnson, 2019).

Floral color
The traditional concept of pollinator syndrome also includes flower color, as a flower
signal associated with particular kinds of pollinators (Campbell et al., 2010; Santangelo &
Johnson, 2019). Different flower colors seem to be related to both the reliability of finding
high nectar rewards and the average amount of sugar produced by particular flower species
(Giurfa, Nunez & Backhaus, 1994; Raine et al., 2006; Raine & Chittka, 2007). Pollinator
preference for different colors contributed to floral evolution and reproductive isolation
(Schemske & Bradshaw, 1999; Sobral et al., 2015). In the New Zealand alpine, the insect
pollinators show preferences based on color, leading to a high preponderance of white
flowers in the area (Campbell et al., 2010). However, changes in floral color are not always
driven by pollinators: in wild radish (Raphanus sativus), the pollinator preferences do not
coincide with realized changes in flower color; florivores prefer white flowers to pink ones,
which suggests that herbivores could also act as selective forces shaping floral color in
nature (McCall et al., 2013).

When two agents are using the same color to select plants, the final display of flower
color may be a compromise of plants to maximize reproduction. The opposed selection
from pollinators and pre-dispersal seed predators maintains flower color variation in a
population of Gentiana lutea (Veiga et al., 2015). In Raphanus sativus, differential
preference and performance of herbivores (generalist and specialist Lepidoptera, slugs,
aphids, and thrips) for color morphs may counteract selection on flower color exerted by
pollinators (Irwin et al., 2003). An alternative hypothesis to pollinator- (or herbivore-)
mediated selection is that flower color could be selected due to pleiotropic effects on other
traits (Armbruster, 2002). Biochemical pathways that produce floral pigments (or volatiles)
often also produce secondary compounds which are believed to protect plants from natural
enemies or environmental stress (Brack, 1995; Fineblum & Rausher, 1997). For example,

Huang et al. (2022), PeerJ, DOI 10.7717/peerj.14107 10/23

http://dx.doi.org/10.7717/peerj.14107
https://peerj.com/


anthocyanins are omnipresent in angiosperms and probably evolved in early land plants
long before the evolution of flowers. These pigments may have arisen in vegetative tissues
in response to drought stress, heat stress and herbivore pressures, and were then
subsequently co-opted by flowers to attract pollinators (Hanley, Lamont & Armbruster,
2009; Arista et al., 2013; Narbona et al., 2018). Thus, researchers could focus on more than
one trait with the deepening of research, including color.

Olfactory guides
Of all plant organs, flowers generally emit the highest amounts and most diverse blends of
VOCs, which function as olfactory cues for the attraction of mutualists and/or the
deterrence of antagonists to ensure plant reproductive success (Jurgens, Dotterl & Meve,
2006; Dudareva et al., 2013; Kessler et al., 2019). To date, over 1,700 VOCs have been
identified from the headspace of flowers, which belong to seven major compound classes
(Knudsen et al., 2006; Dudareva et al., 2013). The information transmitted by flower
volatiles depends on the composition, content, and context of their emissions, and causes
different behavioral responses of their visitors (Muhlemann, Klempien & Dudareva, 2014).
Schiestl (2010) found an overlap of 87% in VOCs produced by plants and interacting
insects. Analysis of the moth’s naturally attractive flowers shows that all volatiles are
converged on a similar chemical profile, which in turn is uniquely reflected in the moth’s
antennal lobe (Riffell et al., 2013). Similar to flower color we mentioned in the previous
section, it is still unknown whether this similarity in secondary metabolites stems from
pleiotropic effects on other traits.

There is evidence that the relatively simple change of flower fragrance can drive
pollinator shifts and lead to rapid reproductive isolation of plants within a short period,
such as in Ficus carica and Ophrys arachnitiformis x O. lupercalis hybrids (Vereecken,
Cozzolino & Schiestl, 2010; Muhlemann, Klempien & Dudareva, 2014). VOCs analysis of
pollination mutualism between the Ficus carica and its specific pollinator Blastophaga
psenes revealed that a blend with a particular proportion of four of these VOCs is as
attractive as the odor of receptive figs (Proffit et al., 2020). In Ophrys, variations in floral
scent composition and proportions induced by the hybridization process can drive
pollinator shifts and rapid reproductive isolation in highly specific plant-pollinator
interactions (Vereecken, Cozzolino & Schiestl, 2010). Olfactory cues are particularly
important for nocturnal visitors. Plants pollinated by nocturnal insects often exhibit
characteristic odor compositions and temporal patterns (day/night) of emission (Balao
et al., 2011). Temporal patterns of scent release can be species-specific and usually match
the activity patterns of nocturnal pollinators (Dotterl, Wolfe & Jurgens, 2005).
In nocturnally pollinated Dianthus inoxianus, the proportion of VOCs that elicited a
physiological response differed between day and night. In moth-pollinated flowers (night-
blooming), floral scents are often dominated by oxygenated terpenes and aromatic esters
(Balao et al., 2011).

However, VOC production may also attract floral enemies beyond pollinators, and the
emission of VOCs generates a trade-off to maximize reproduction (Schiestl & Johnson,
2013). If volatile attract both pollinators and antagonists, the fitness benefits of attracting
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pollinators by increasing volatiles emission may depend on the cost of attracting
antagonists. In the wild Texas gourd, enhanced floral volatile can increase the attraction of
detrimental florivores, rather than pollinators, and decrease plant reproduction (Theis &
Adler, 2012). Also, certain volatiles may repel both floral enemies and pollinators. Nectar
repellents (nicotine) in tobacco decreased nectaring time of pollinators and visiting
frequency of nectar thieves, but increased pollinators’ visitation number, suggesting that
there is a high variation of strategies to optimize reproduction (Kessler & Baldwin, 2007).
In another research, both repellent (nicotine) and attractant (benzyl acetone) in tobacco
were required to maximize pollinator visits and seed productivity (Kessler, Gase &
Baldwin, 2008). In Biscutella laevigata, both pollinators (bees) and carnivores (crab
spiders) were attracted by the floral volatile β-ocimene, the crab spider reduces bee visits to
flowers but also benefits plants by feeding on florivores, demonstrating the
context-dependence of selection (Knauer, Bakhtiari & Schiestl, 2018). Besides, because the
biosynthesis of volatiles competes with the synthesis of defense compounds, antagonists
may impose indirect selections on volatiles (Agrawal, 2011b). Antagonist-induced changes
in the volatiles of flowers can affect the perception of plants by carnivores looking for prey
and host. Flowers of cowpea emit volatiles attracting parasitoids (Apanteles taragamae)
when attacked by herbivores (Maruca vitrata) (Dannon et al., 2010). Likewise, parasitoids
of the pollen beetle use a volatile blend released by antagonist-attacked flowering rape to
locate their herbivorous host (Jönsson & Anderson, 2007). In this way, flower scent can
mediate predator-prey interactions, and both predator and prey are the driving forces on
floral VOCs evolution.

Interestingly, pollinators themselves can also induce changes in the volatiles of flowers
(Rodriguez-Saona et al., 2011). In Brassica nigra, pollination status influenced the profile of
volatiles and changed the behavior of later butterflies (Lucas-Barbosa et al., 2015).
In highbush blueberries, open-pollinated flowers were detected with less volatile emissions
than pollinator-excluded flowers to reduce ecological costs. Otherwise, more volatile
emissions may play a vital role in guiding pollinators to visit unpollinated flowers, which
cannot only improve plant fitness but also increase the energy return of pollinators when
they are foraging (Rodriguez-Saona et al., 2011). The reduction of volatile emission of
flowers after pollination may be adaptive, which cannot only save the cost of scent
production but also prevent further damage to flowers by later visitors (Muhlemann et al.,
2006; Muhlemann, Klempien & Dudareva, 2014). Therefore, flowers can optimize visitors’
behavior through floral volatiles, and volatiles at least evolved under multiple biotic
pressured exerted by mutualists and antagonists (Schiestl & Johnson, 2013).

CONCLUSIONS
Ecological interaction and adaptation of flowering plants largely depend on flower traits.
The diversity of traits likely results in a highly connected network of interactions within the
complete flower-associated community, including flowers, mutualists, and antagonists.
Changes in flower traits in response to each interacting visitor will alter multiple linked
indirect interaction groups. The evolutionary diversity of flowers cannot be fully explained
by a single medium alone, such as pollinators, but is driven by combinatorial selection
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imposed by associated communities. Likewise, focusing on herbivores alone cannot fully
explain the evolution of plant defense traits, which may have originated from plant
reproduction. To date, several published studies have adopted a community perspective to
understanding the evolution of flowers, but these studies have limitations in demonstrating
the adaptive consequences for plants. We still lack detailed knowledge about the relative
degree to which these traits are affected by the insect visitors, how these traits contribute to
the changes in interactors’ behavior, how these traits respond to sequential induction by
different interactors and multiple interactors at the same time, and how much time
adaptative/non-adaptative responses take to appear. Thus, except for common garden
experiments, fitness consequences of flower responses to pollination, herbivory and
parasitization need to be investigated in the field for a long time, where the full related
community associated with the flower can be included.

Natural selection cannot possibly produce any modification in a species exclusively for
the good of another species (Darwin, 1859). To fully understand the evolutionary process
of floral diversity, tracing the evolutionary history of flowering plants and their visitors is
as important as studying the adaptive consequences of floral signaling. However, the
evolutionary mechanisms underlying the different sensory abilities of flowering plant
visitors remain poorly understood. It is generally believed that the innate sensory
preferences of the visitors are the result of their unilateral adaptation to flowers or mutual
adaptation leading to co-evolution; however, some of these preferences did not evolve in
the context of flower visits and are evolutionarily older than the signal itself. For example,
most receiver biases of insects are related to animal communication in the context of sexual
selection. In future research, it is necessary to take the evolutionary time or the
evolutionary history of some groups or interactions into account, which help to explain
adaptive evolution of flowering plants. Answers to these questions will facilitate the
integration of evolutionary theories on plant survival and reproduction and help to explain
floral trait diversity in response to multiple interactors.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Key Research and Development Program
(2017YFC1701503) (2017YFC1702705) and the National Natural Science Foundation of
China (81872963) (81903750) (82004233). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Key Research and Development Program: 2017YFC1701503, 2017YFC1702705.
National Natural Science Foundation of China: 81872963, 81903750, 82004233.

Competing Interests
The authors declare that they have no competing interests.

Huang et al. (2022), PeerJ, DOI 10.7717/peerj.14107 13/23

http://dx.doi.org/10.7717/peerj.14107
https://peerj.com/


Author Contributions
� Luyao Huang conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

� Yang Liu analyzed the data, authored or reviewed drafts of the article, and approved the
final draft.

� Liwen Dou analyzed the data, prepared figures and/or tables, and approved the final
draft.

� Shaobin Pan analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

� Zhuangzhuang Li conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

� Jin Zhang conceived and designed the experiments, performed the experiments,
prepared figures and/or tables, authored or reviewed drafts of the article, and approved
the final draft.

� Jia Li conceived and designed the experiments, authored or reviewed drafts of the article,
and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

This is a literature review and does not use raw data.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.14107#supplemental-information.

REFERENCES
Abdala-Roberts L, Puentes A, Finke DL, Marquis RJ, Montserrat M, Poelman EH, Rasmann S,

Sentis A, van Dam NM, Wimp G, Mooney K, Bjorkman C. 2019. Tri-trophic interactions:
bridging species, communities and ecosystems. Ecology Letters 22(12):2151–2167
DOI 10.1111/ele.13392.

Adamidis GC, Cartar RV, Melathopoulos AP, Pernal SF, Hoover SE. 2019. Pollinators enhance
crop yield and shorten the growing season by modulating plant functional characteristics: a
comparison of 23 canola varieties. Scientific Reports 9(1):14208
DOI 10.1038/s41598-019-50811-y.

Agerbirk N, Chew FS, Olsen CE, Jorgensen K. 2010. Leaf and floral parts feeding by orange tip
butterfly larvae depends on larval position but not on glucosinolate profile or nitrogen level.
Journal of Chemical Ecology 36(12):1335–1345 DOI 10.1007/s10886-010-9880-5.

Agrawal AA. 2000. Mechanisms, ecological consequences and agricultural implications of
tri-trophic interactions. Current Opinion in Plant Biology 3(4):329–335
DOI 10.1016/S1369-5266(00)00089-3.

Agrawal AA. 2011a. Current trends in the evolutionary ecology of plant defence. Functional
Ecology 25(2):420–432 DOI 10.1111/j.1365-2435.2010.01796.x.

Huang et al. (2022), PeerJ, DOI 10.7717/peerj.14107 14/23

http://dx.doi.org/10.7717/peerj.14107#supplemental-information
http://dx.doi.org/10.7717/peerj.14107#supplemental-information
http://dx.doi.org/10.1111/ele.13392
http://dx.doi.org/10.1038/s41598-019-50811-y
http://dx.doi.org/10.1007/s10886-010-9880-5
http://dx.doi.org/10.1016/S1369-5266(00)00089-3
http://dx.doi.org/10.1111/j.1365-2435.2010.01796.x
http://dx.doi.org/10.7717/peerj.14107
https://peerj.com/


Agrawal AA. 2011b. New synthesis—trade-offs in chemical ecology. Journal of Chemical Ecology
37(3):230–231 DOI 10.1007/s10886-011-9930-7.

Aleklett K, Hart M, Shade A. 2014. The microbial ecology of flowers: an emerging frontier in
phyllosphere research. Botany 92(4):253–266 DOI 10.1139/cjb-2013-0166.

Altshuler D. 1999. Novel interactions of non-pollinating ants with pollinators and fruit consumers
in a tropical forest. Oecologia 119(4):600–606 DOI 10.1007/s004420050825.

Arista M, Talavera M, Berjano R, Ortiz PL, Whitney K. 2013. Abiotic factors may explain the
geographical distribution of flower colour morphs and the maintenance of colour polymorphism
in the scarlet pimpernel. Journal of Ecology 101(6):1613–1622 DOI 10.1111/1365-2745.12151.

Armbruster WS. 2002. Can indirect selection and genetic context contribute to trait
diversification? A transition-probability study of blossom-colour evolution in two genera.
Journal of Evolutionary Biology 15(3):468–486 DOI 10.1046/j.1420-9101.2002.00399.x.

Ashman T-l. 2002. The role of herbivores in the evolution of separate sexes from hermaphroditism.
Ecology 85:1175–1184 DOI 10.2307/3071932.

Ashman TL, Majetic CJ. 2006. Genetic constraints on floral evolution: a review and evaluation of
patterns. Heredity 96(5):343–352 DOI 10.1038/sj.hdy.6800815.

Austen EJ, Rowe L, Stinchcombe JR, Forrest JRK. 2017. Explaining the apparent paradox of
persistent selection for early flowering. New Phytologist 215(3):929–934
DOI 10.1111/nph.14580.

Balao F, Herrera J, Talavera S, Dotterl S. 2011. Spatial and temporal patterns of floral scent
emission in Dianthus inoxianus and electroantennographic responses of its hawkmoth
pollinator. Phytochemistry 72(7):601–609 DOI 10.1016/j.phytochem.2011.02.001.

Bemmels JB, Anderson JT. 2019. Climate change shifts natural selection and the adaptive
potential of the perennial forb Boechera stricta in the Rocky Mountains. Evolution
73(11):2247–2262 DOI 10.1111/evo.13854.

Benitez-Vieyra S, Ordano M, Fornoni J, Boege K, Dominguez CA. 2010. Selection on
signal-reward correlation: limits and opportunities to the evolution of deceit in Turnera
ulmifolia L. Journal of Evolutionary Biology 23(12):2760–2767
DOI 10.1111/j.1420-9101.2010.02132.x.

Benoit AD, Kalisz S. 2020. Predator effects on plant-pollinator interactions, plant reproduction,
mating systems, and evolution. Annual Review of Ecology, Evolution, and Systematics
51(1):319–340 DOI 10.1146/annurev-ecolsys-012120-094926.

Blackman BK. 2017. Changing responses to changing seasons: natural variation in the plasticity of
flowering time. Plant Physiology 173(1):16–26 DOI 10.1104/pp.16.01683.

Block S, Alexander JM, Levine JM. 2020. Phenological plasticity is a poor predictor of subalpine
plant population performance following experimental climate change. OIKOS 129(2):184–193
DOI 10.1111/oik.06667.

Boaventura MG, Villamil N, Teixido AL, Tito R, Vasconcelos HL, Silveira FAO, Cornelissen T.
2021. Revisiting florivory: an integrative review and global patterns of a neglected interaction.
New Phytologist 233(1):132–144 DOI 10.1111/nph.17670.

Brack DLE. 1995. Natural selection against white petals in Phlox. Evolution 49(5):1017–1022
DOI 10.1111/j.1558-5646.1995.tb02336.x.

Brody AK, Irwin RE. 2012. When resources don’t rescue: flowering phenology and species
interactions affect compensation to herbivory in Ipomopsis aggregata.OIKOS 121(9):1424–1434
DOI 10.1111/j.1600-0706.2012.20458.x.

Huang et al. (2022), PeerJ, DOI 10.7717/peerj.14107 15/23

http://dx.doi.org/10.1007/s10886-011-9930-7
http://dx.doi.org/10.1139/cjb-2013-0166
http://dx.doi.org/10.1007/s004420050825
http://dx.doi.org/10.1111/1365-2745.12151
http://dx.doi.org/10.1046/j.1420-9101.2002.00399.x
http://dx.doi.org/10.2307/3071932
http://dx.doi.org/10.1038/sj.hdy.6800815
http://dx.doi.org/10.1111/nph.14580
http://dx.doi.org/10.1016/j.phytochem.2011.02.001
http://dx.doi.org/10.1111/evo.13854
http://dx.doi.org/10.1111/j.1420-9101.2010.02132.x
http://dx.doi.org/10.1146/annurev-ecolsys-012120-094926
http://dx.doi.org/10.1104/pp.16.01683
http://dx.doi.org/10.1111/oik.06667
http://dx.doi.org/10.1111/nph.17670
http://dx.doi.org/10.1111/j.1558-5646.1995.tb02336.x
http://dx.doi.org/10.1111/j.1600-0706.2012.20458.x
http://dx.doi.org/10.7717/peerj.14107
https://peerj.com/


Bronstein JL, Alarcon R, Geber M. 2006. The evolution of plant—insect mutualisms. New
Phytologist 172(3):412–428 DOI 10.1111/j.1469-8137.2006.01864.x.

Bronstein JL, Richman SK. 2015. Active pollinator choice by Heliconia ‘fits the bill’. Trends in
Plant Science 20(7):403–404 DOI 10.1016/j.tplants.2015.04.010.

Bronstein JL, Wilson WG, Morris WF. 2003. Ecological dynamics of mutualist/antagonist
communities. The American Naturalist 162(S4):S24–S39 DOI 10.1086/378645.

Campbell DR, Bischoff M, Lord JM, Robertson AW. 2010. Flower color influences insect
visitation in alpine New Zealand. Ecology 91(9):2638–2649 DOI 10.1890/09-0941.1.

Caruso CM, Eisen KE, Martin RA, Sletvold N. 2019. Ameta-analysis of the agents of selection on
floral traits. Evolution 73(1):4–14 DOI 10.1111/evo.13639.

Chen C, Song Q, Proffit M, Bessière J-M, Li Z, Hossaert-McKey M. 2009. Private channel: a
single unusual compound assures specific pollinator attraction in Ficus semicordata. Functional
Ecology 23(5):941–950 DOI 10.1111/j.1365-2435.2009.01622.x.

Cozzolino S, Fineschi S, Litto M, Scopece G, Trunschke J, Schiestl FP. 2015.Herbivory increases
fruit set in Silene latifolia: a consequence of induced pollinator-attracting floral volatiles? Journal
of Chemical Ecology 41(7):622–630 DOI 10.1007/s10886-015-0597-3.

Dannon EA, Tamo M, Van Huis A, Dicke M. 2010. Effects of volatiles fromMaruca vitrata larvae
and caterpillar-infested flowers of their host plant Vigna unguiculata on the foraging behavior of
the parasitoid Apanteles taragamae. Journal of Chemical Ecology 36(10):1083–1091
DOI 10.1007/s10886-010-9859-2.

Darwin C. 1859. On the origin of species by means of natural selection, or the preservation of
favoured races in the struggle for life. London: John Murray.

Dellinger AS. 2020. Pollination syndromes in the 21(st) century: where do we stand and where
may we go? New Phytologist 228(4):1193–1213 DOI 10.1111/nph.16793.

Dicke M. 2000. Chemical ecology of host-plant selection by herbivorous arthropods: a multitrophic
perspective. Biochemical Systematics and Ecology 28(7):601–617
DOI 10.1016/S0305-1978(99)00106-4.

Dotterl S, Wolfe LM, Jurgens A. 2005. Qualitative and quantitative analyses of flower scent in
Silene latifolia. Phytochemistry 66(2):203–213 DOI 10.1016/j.phytochem.2004.12.002.

Dudareva N, Klempien A, Muhlemann JK, Kaplan I. 2013. Biosynthesis, function and metabolic
engineering of plant volatile organic compounds. New Phytologist 198(1):16–32
DOI 10.1111/nph.12145.

Elzing JA, Atlan A, Biere A, Gigord L, Weis AE, Bernasconi G. 2007. Time after time: flowering
phenology and biotic interactions. Trends in Ecology & Evolution 22(8):432–439
DOI 10.1016/j.tree.2007.05.006.

Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD. 2004. Pollination syndromes
and floral specialization. Annual Review of Ecology, Evolution, and Systematics 35(1):375–403
DOI 10.1146/annurev.ecolsys.34.011802.132347.

Fineblum WL, Rausher MD. 1997. Do floral pigmentation genes also influence resistance to
enemies? The W locus in Ipomoea Purpurea. Ecology 78(6):1646–1654
DOI 10.1890/0012-9658(1997)078[1646:DFPGAI]2.0.CO;2.

Galen C. 1999.Why Do Flowers Vary? The functional ecology of variation in flower size and form
within natural plant populations. BioScience 49(8):631–640 DOI 10.2307/1313439.

Galen C, Butchart B. 2003. Ants in your plants: effects of nectar-thieves on pollen fertility and
seed-siring capacity in the alpine wildflower, Polemonium Uiscosum. OIKOS 101(3):521–528
DOI 10.1034/j.1600-0706.2003.12144.x.

Huang et al. (2022), PeerJ, DOI 10.7717/peerj.14107 16/23

http://dx.doi.org/10.1111/j.1469-8137.2006.01864.x
http://dx.doi.org/10.1016/j.tplants.2015.04.010
http://dx.doi.org/10.1086/378645
http://dx.doi.org/10.1890/09-0941.1
http://dx.doi.org/10.1111/evo.13639
http://dx.doi.org/10.1111/j.1365-2435.2009.01622.x
http://dx.doi.org/10.1007/s10886-015-0597-3
http://dx.doi.org/10.1007/s10886-010-9859-2
http://dx.doi.org/10.1111/nph.16793
http://dx.doi.org/10.1016/S0305-1978(99)00106-4
http://dx.doi.org/10.1016/j.phytochem.2004.12.002
http://dx.doi.org/10.1111/nph.12145
http://dx.doi.org/10.1016/j.tree.2007.05.006
http://dx.doi.org/10.1146/annurev.ecolsys.34.011802.132347
http://dx.doi.org/10.1890/0012-9658(1997)078[1646:DFPGAI]2.0.CO;2
http://dx.doi.org/10.2307/1313439
http://dx.doi.org/10.1034/j.1600-0706.2003.12144.x
http://dx.doi.org/10.7717/peerj.14107
https://peerj.com/


Gélvez-Zúñiga I, Teixido AL, Neves ACO, Fernandes GW. 2018. Floral antagonists counteract
pollinator-mediated selection on attractiveness traits in the hummingbird-pollinated Collaea
cipoensis (Fabaceae). Biotropica 50(5):797–804 DOI 10.1111/btp.12574.

Gigord LD, Macnair MR, Stritesky M, Smithson A. 2002. The potential for floral mimicry in
rewardless orchids: an experimental study. Proceedings of the Royal Society of London. Series B:
Biological Sciences 269(1498):1389–1395 DOI 10.1098/rspb.2002.2018.

Giurfa M, Nunez J, Backhaus W. 1994. Odour and colour information in the foraging choice
behaviour of the honeybee. Journal of Comparative Physiology A 175(6):773–779
DOI 10.1007/BF00191849.

Gorden NLS, Adler LS. 2016. Florivory shapes both leaf and floral interactions. Ecosphere 7(6):669
DOI 10.1002/ecs2.1326.

Gómez JM, Bosch J, Perfectti F, Fernandez JD, Abdelaziz M, Camacho JP. 2008a. Association
between floral traits and rewards in Erysimum mediohispanicum (Brassicaceae). Annals of
Botany 101(9):1413–1420 DOI 10.1093/aob/mcn053.

Gómez JM, Bosch J, Perfectti F, Fernandez JD, Abdelaziz M, Camacho JP. 2008b. Spatial
variation in selection on corolla shape in a generalist plant is promoted by the preference
patterns of its local pollinators. Proceedings of the Royal Society B: Biological Sciences
275(1648):2241–2249 DOI 10.1098/rspb.2008.0512.

Gómez JM, Perfectti F. 2010. Evolution of complex traits: the case of Erysimum corolla shape.
International Journal of Plant Sciences 171(9):987–998 DOI 10.1086/656475.

Gómez JM, Perfectti F, Camacho JPM. 2006. Natural selection on Erysimum mediohispanicum
flower shape: insights into the evolution of zygomorphy. American Naturalist 168(4):531–545
DOI 10.1086/507048.

Guimarães PR. 2020. The structure of ecological networks across levels of organization. Annual
Review of Ecology, Evolution, and Systematics 51(1):433–460
DOI 10.1146/annurev-ecolsys-012220-120819.

Hagler JR. 1990. Honey bee (Apis mellifera L) response to simulated onion nectars containing
variable sugar and potassium concentrations. Apidologie 21(2):115–121
DOI 10.1051/apido:19900204.

Hanley ME, Lamont BB, Armbruster WS. 2009. Pollination and plant defence traits co-vary in
Western Australian Hakeas. New Phytologist 182(1):251–260
DOI 10.1111/j.1469-8137.2008.02709.x.

Harder LD, Johnson SD. 2005. Adaptive plasticity of floral display size in animal-pollinated
plants. Proceedings of the Royal Society B: Biological Sciences 272(1581):2651–2657
DOI 10.1098/rspb.2005.3268.

Harder LD, Strelin MM, Clocher IC, Kulbaba MW, Aizen MA. 2019. The dynamic mosaic
phenotypes of flowering plants. New Phytologist 224(3):1021–1034 DOI 10.1111/nph.15916.

Haverkamp A, Bing J, Badeke E, Hansson BS, Knaden M. 2016. Innate olfactory preferences for
flowers matching proboscis length ensure optimal energy gain in a hawkmoth. Nature
Communications 7(1):11644 DOI 10.1038/ncomms11644.

Heil M, Koch T, Hilpert A, Fiala B, Boland W, Linsenmair KE. 2001. Extrafloral nectar
production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive
response elicited by jasmonic acid. Proceedings of the National Academy of Sciences of the
United States of America 98(3):1083–1088 DOI 10.1073/pnas.98.3.1083.

Hempel de Ibarra N, Langridge KV, Vorobyev M. 2015.More than colour attraction: behavioural
functions of flower patterns. Current Opinion in Insect Science 12:64–70
DOI 10.1016/j.cois.2015.09.005.

Huang et al. (2022), PeerJ, DOI 10.7717/peerj.14107 17/23

http://dx.doi.org/10.1111/btp.12574
http://dx.doi.org/10.1098/rspb.2002.2018
http://dx.doi.org/10.1007/BF00191849
http://dx.doi.org/10.1002/ecs2.1326
http://dx.doi.org/10.1093/aob/mcn053
http://dx.doi.org/10.1098/rspb.2008.0512
http://dx.doi.org/10.1086/656475
http://dx.doi.org/10.1086/507048
http://dx.doi.org/10.1146/annurev-ecolsys-012220-120819
http://dx.doi.org/10.1051/apido:19900204
http://dx.doi.org/10.1111/j.1469-8137.2008.02709.x
http://dx.doi.org/10.1098/rspb.2005.3268
http://dx.doi.org/10.1111/nph.15916
http://dx.doi.org/10.1038/ncomms11644
http://dx.doi.org/10.1073/pnas.98.3.1083
http://dx.doi.org/10.1016/j.cois.2015.09.005
http://dx.doi.org/10.7717/peerj.14107
https://peerj.com/


Hendry AP, Day T. 2005. Population structure attributable to reproductive time: isolation by time
and adaptation by time. Molecular Ecology 14(4):901–916
DOI 10.1111/j.1365-294X.2005.02480.x.

Inouye DW. 1980. The terminology of floral larceny. Ecology 61(5):1251–1253
DOI 10.2307/1936841.

Irwin RE, Adler LS, Brody AK. 2004. The dual role of floral traits: pollinator attraction and plant
defense. Ecology 85(6):1503–1511 DOI 10.1890/03-0390.

Irwin RE, Bronstein JL, Manson JS, Richardson L. 2010. Nectar robbing: ecological and
evolutionary perspectives. Annual Review of Ecology, Evolution, and Systematics 41(1):271–292
DOI 10.1146/annurev.ecolsys.110308.120330.

Irwin RE, Strauss SY, Storz S, Emerson A, Guibert G. 2003. The role of herbivores in the
maintenance of a flower color polymorphism in wild radish. Ecology 84:1733–1743
DOI 10.1890/0012-9658(2003)084[1733:TROHIT]2.0.CO;2.

Johnson SD, Raguso RA. 2016. The long-tongued hawkmoth pollinator niche for native and
invasive plants in Africa. Annals of Botany 117(1):25–36 DOI 10.1093/aob/mcv137.

Joly S, Lambert F, Alexandre H, Clavel J, Leveille-Bourret E, Clark JL. 2018. Greater pollination
generalization is not associated with reduced constraints on corolla shape in Antillean plants.
Evolution 72(2):244–260 DOI 10.1111/evo.13410.

Jönsson M, Anderson P. 2007. Emission of oilseed rape volatiles after pollen beetle infestation;
behavioural and electrophysiological responses in the parasitoid Phradis morionellus.
Chemoecology 17(4):201–207 DOI 10.1007/s00049-007-0379-7.

Jurgens A, Dotterl S, Meve U. 2006. The chemical nature of fetid floral odours in stapeliads
(Apocynaceae-Asclepiadoideae-Ceropegieae). New Phytologist 172(3):452–468
DOI 10.1111/j.1469-8137.2006.01845.x.

Kaczorowski RL, Seliger AR, Gaskett AC, Wigsten SK, Raguso RA. 2012. Corolla shape vs. size
in flower choice by a nocturnal hawkmoth pollinator. Functional Ecology 26(3):577–587
DOI 10.1111/j.1365-2435.2012.01982.x.

Kessler D, Baldwin IT. 2007. Making sense of nectar scents: the effects of nectar secondary
metabolites on floral visitors of Nicotiana attenuata. Plant Journal 49(5):840–854
DOI 10.1111/j.1365-313X.2006.02995.x.

Kessler D, Bing J, Haverkamp A, Baldwin IT, Manson J. 2019. The defensive function of a
pollinator-attracting floral volatile. Functional Ecology 33(7):1223–1232
DOI 10.1111/1365-2435.13332.

Kessler D, Diezel C, Clark DG, Colquhoun TA, Baldwin IT. 2013. Petunia flowers solve the
defence/apparency dilemma of pollinator attraction by deploying complex floral blends. Ecology
Letters 16(3):299–306 DOI 10.1111/ele.12038.

Kessler D, Gase K, Baldwin IT. 2008. Field experiments with transformed plants reveal the sense
of floral scents. Science 321(5893):1200–1202 DOI 10.1126/science.1160072.

Kessler A, Halitschke R. 2009. Testing the potential for conflicting selection on floral chemical
traits by pollinators and herbivores: predictions and case study. Functional Ecology
23(5):901–912 DOI 10.1111/j.1365-2435.2009.01639.x.

Knauer AC, Bakhtiari M, Schiestl FP. 2018. Crab spiders impact floral-signal evolution indirectly
through removal of florivores. Nature Communications 9(1):1367
DOI 10.1038/s41467-018-03792-x.

Knudsen JT, Eriksson R, Gershenzon J, Ståhl B. 2006. Diversity and distribution of floral scent.
The Botanical Review 72(1):1–120 DOI 10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2.

Huang et al. (2022), PeerJ, DOI 10.7717/peerj.14107 18/23

http://dx.doi.org/10.1111/j.1365-294X.2005.02480.x
http://dx.doi.org/10.2307/1936841
http://dx.doi.org/10.1890/03-0390
http://dx.doi.org/10.1146/annurev.ecolsys.110308.120330
http://dx.doi.org/10.1890/0012-9658(2003)084[1733:TROHIT]2.0.CO;2
http://dx.doi.org/10.1093/aob/mcv137
http://dx.doi.org/10.1111/evo.13410
http://dx.doi.org/10.1007/s00049-007-0379-7
http://dx.doi.org/10.1111/j.1469-8137.2006.01845.x
http://dx.doi.org/10.1111/j.1365-2435.2012.01982.x
http://dx.doi.org/10.1111/j.1365-313X.2006.02995.x
http://dx.doi.org/10.1111/1365-2435.13332
http://dx.doi.org/10.1111/ele.12038
http://dx.doi.org/10.1126/science.1160072
http://dx.doi.org/10.1111/j.1365-2435.2009.01639.x
http://dx.doi.org/10.1038/s41467-018-03792-x
http://dx.doi.org/10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2
http://dx.doi.org/10.7717/peerj.14107
https://peerj.com/


Körner C, Basler D. 2010. Phenology under global warming. Science 327(5972):1461–1462
DOI 10.1126/science.1186473.

Koski MH. 2020. The role of sensory drive in floral evolution. New Phytologist 227(4):1012–1024
DOI 10.1111/nph.16510.

Kudoh H, Kachi N, Kawano S, Ishiguri Y. 2002. Intrinsic cost of delayed flowering in annual
plants: negative correlation between flowering time and reproductive effort. Plant Species Biology
17(2–3):101–107 DOI 10.1046/j.1442-1984.2002.00080.x.

Kuppler J, Kotowska MM. 2021. A meta‐analysis of responses in floral traits and flower–visitor
interactions to water deficit. Global Change Biology 27(13):3095–3108 DOI 10.1111/gcb.15621.

Liu CQ, Gao YD, Niu Y, Xiong YZ, Sun H. 2019. Floral adaptations of two lilies: implications for
the evolution and pollination ecology of huge trumpet-shaped flowers. American Journal of
Botany 106(5):622–632 DOI 10.1002/ajb2.1275.

Lucas-Barbosa D. 2016. Integrating studies on plant–pollinator and plant–herbivore interactions.
Trends in Plant Science 21(2):125–133 DOI 10.1016/j.tplants.2015.10.013.

Lucas-Barbosa D, Poelman EH, Aartsma Y, Snoeren TA, van Loon JJ, Dicke M. 2014. Caught
between parasitoids and predators—survival of a specialist herbivore on leaves and flowers of
mustard plants. Journal of Chemical Ecology 40(6):621–631 DOI 10.1007/s10886-014-0454-9.

Lucas-Barbosa D, Sun P, Hakman A, Beek TA, Loon JJA, Dicke M, Koricheva J. 2015. Visual
and odour cues: plant responses to pollination and herbivory affect the behaviour of flower
visitors. Functional Ecology 30(3):431–441 DOI 10.1111/1365-2435.12509.

Martinez-Bauer AE, Martinez GC, Murphy DJ, Burd M. 2015. Multitasking in a plant-ant
interaction: how does Acacia myrtifolia manage both ants and pollinators? Oecologia
178(2):461–471 DOI 10.1007/s00442-014-3215-0.

McCall AC, Irwin RE. 2006. Florivory: the intersection of pollination and herbivory. Ecology
Letters 9(12):1351–1365 DOI 10.1111/j.1461-0248.2006.00975.x.

McCall AC, Murphy SJ, Venner C, BrownM. 2013. Florivores prefer white versus pink petal color
morphs in wild radish, Raphanus sativus. Oecologia 172(1):189–195
DOI 10.1007/s00442-012-2480-z.

Moreira X, Castagneyrol B, Abdala-Roberts L, Traveset A. 2019. A meta-analysis of herbivore
effects on plant attractiveness to pollinators. Ecology 100:e02707 DOI 10.1002/ecy.2707.

Mosleh Arany A, de Jong TJ, van der Meijden E. 2008.Herbivory and local genetic differentiation
in natural populations of Arabidopsis thaliana (Brassicaceae). Plant Ecology 201(2):651–659
DOI 10.1007/s11258-008-9530-y.

Moyroud E, Glover BJ. 2017. The evolution of diverse floral morphologies. Current Biology
27(17):R941–R951 DOI 10.1016/j.cub.2017.06.053.

Muhlemann JK, Klempien A, Dudareva N. 2014. Floral volatiles: from biosynthesis to function.
Plant, Cell & Environment 37(8):1936–1949 DOI 10.1111/pce.12314.

Muhlemann JK, Waelti MO, Widmer A, Schiestl FP. 2006. Postpollination changes in floral odor
in Silene latifolia: adaptive mechanisms for seed-predator avoidance? Journal of Chemical
Ecology 32(8):1855–1860 DOI 10.1007/s10886-006-9113-0.

Munguia-Rosas MA, Ollerton J, Parra-Tabla V, De-Nova JA. 2011.Meta-analysis of phenotypic
selection on flowering phenology suggests that early flowering plants are favoured. Ecology
Letters 14(5):511–521 DOI 10.1111/j.1461-0248.2011.01601.x.

Narbona E, Wang H, Ortiz PL, Arista M, Imbert E. 2018. Flower colour polymorphism in the
Mediterranean Basin: occurrence, maintenance and implications for speciation. Plant Biology
20(Suppl 1):8–20 DOI 10.1111/plb.12575.

Huang et al. (2022), PeerJ, DOI 10.7717/peerj.14107 19/23

http://dx.doi.org/10.1126/science.1186473
http://dx.doi.org/10.1111/nph.16510
http://dx.doi.org/10.1046/j.1442-1984.2002.00080.x
http://dx.doi.org/10.1111/gcb.15621
http://dx.doi.org/10.1002/ajb2.1275
http://dx.doi.org/10.1016/j.tplants.2015.10.013
http://dx.doi.org/10.1007/s10886-014-0454-9
http://dx.doi.org/10.1111/1365-2435.12509
http://dx.doi.org/10.1007/s00442-014-3215-0
http://dx.doi.org/10.1111/j.1461-0248.2006.00975.x
http://dx.doi.org/10.1007/s00442-012-2480-z
http://dx.doi.org/10.1002/ecy.2707
http://dx.doi.org/10.1007/s11258-008-9530-y
http://dx.doi.org/10.1016/j.cub.2017.06.053
http://dx.doi.org/10.1111/pce.12314
http://dx.doi.org/10.1007/s10886-006-9113-0
http://dx.doi.org/10.1111/j.1461-0248.2011.01601.x
http://dx.doi.org/10.1111/plb.12575
http://dx.doi.org/10.7717/peerj.14107
https://peerj.com/


Ness JH. 2006. A mutualism’s indirect costs: the most aggressive plant bodyguards also deter
pollinators. OIKOS 113(3):506–514 DOI 10.1111/j.2006.0030-1299.14143.x.

Ollerton J. 2017. Pollinator diversity: distribution, ecological function, and conservation. Annual
Review of Ecology, Evolution, and Systematics 48(1):353–376
DOI 10.1146/annurev-ecolsys-110316-022919.

Ollerton J, Alarcon R, Waser NM, Price MV, Watts S, Cranmer L, Hingston A, Peter CI,
Rotenberry J. 2009. A global test of the pollination syndrome hypothesis. Annals of Botany
103(9):1471–1480 DOI 10.1093/aob/mcp031.

Ollerton J, Winfree R, Tarrant S. 2011. How many flowering plants are pollinated by animals?
OIKOS 120(3):321–326 DOI 10.1111/j.1600-0706.2010.18644.x.

Pereira RAS, Kjellberg F. 2021. Mutualism as a source of evolutionary innovation: insights from
insect-plant interactions. In: Del-Claro K, Torezan-Silingardi HM, eds. Plant-Animal
Interactions. Cham: Springer, 307–332.

Pilson D. 2000. Herbivory and natural selection on flowering phenology in wild sunflower,
Helianthus annuus. Oecologia 122(1):72–82 DOI 10.1007/PL00008838.

Primack RB. 1985. Longevity of individual flowers. Annual Review of Ecology & Systematics
16(1):15–37 DOI 10.1146/annurev.es.16.110185.000311.

Proffit M, Lapeyre B, Buatois B, Deng X, Arnal P, Gouzerh F, Carrasco D, Hossaert-McKey M.
2020. Chemical signal is in the blend: bases of plant-pollinator encounter in a highly specialized
interaction. Scientific Reports 10(1):10071 DOI 10.1038/s41598-020-66655-w.

Rafferty NE, CaraDonna PJ, Bronstein JL. 2015. Phenological shifts and the fate of mutualisms.
OIKOS 124(1):14–21 DOI 10.1111/oik.01523.

Raine NE, Chittka L. 2007. The adaptive significance of sensory bias in a foraging context: floral
colour preferences in the bumblebee Bombus terrestris. PLOS ONE 2(6):e556
DOI 10.1371/journal.pone.0000556.

Raine NE, Ings TC, Dornhaus A, Saleh N, Chittka L. 2006. Adaptation, genetic drift, pleiotropy,
and history in the evolution of bee foraging behavior. Advances in the Study of Behavior
36:305–354 DOI 10.1016/S0065-3454(06)36007-X.

Reich D, Berger A, von Balthazar M, Chartier M, Sherafati M, Schonenberger J, Manafzadeh S,
Staedler YM. 2020. Modularity and evolution of flower shape: the role of function,
development, and spandrels in Erica. New Phytologist 226(1):267–280 DOI 10.1111/nph.16337.

Riffell JA, Lei H, Abrell L, Hildebrand JG. 2013. Neural basis of a pollinator’s buffet: olfactory
specialization and learning in Manduca sexta. Science 339(6116):200–204
DOI 10.1126/science.1225483.

Roddy AB, Martínez-Perez C, Teixido AL, Cornelissen TG, Olson ME, Oliveira RS,
Silveira FAO. 2020. Towards the flower economics spectrum. New Phytologist 229(2):665–672
DOI 10.1111/nph.16823.

Rodriguez-Saona C, Parra L, Quiroz A, Isaacs R. 2011. Variation in highbush blueberry floral
volatile profiles as a function of pollination status, cultivar, time of day and flower part:
implications for flower visitation by bees. Annals of Botany 107(8):1377–1390
DOI 10.1093/aob/mcr077.

Roguz K, Hill L, Koethe S, Lunau K, Roguz A, Zych M. 2021. Visibility and attractiveness of
Fritillaria (Liliaceae) flowers to potential pollinators. Scientific Reports 11(1):11006
DOI 10.1038/s41598-021-90140-7.

Romero GQ, Vasconcellos-Neto J. 2004. Beneficial effects of flower-dwelling predators on their
host plant. Ecology 85(2):446–457 DOI 10.1890/02-0327.

Huang et al. (2022), PeerJ, DOI 10.7717/peerj.14107 20/23

http://dx.doi.org/10.1111/j.2006.0030-1299.14143.x
http://dx.doi.org/10.1146/annurev-ecolsys-110316-022919
http://dx.doi.org/10.1093/aob/mcp031
http://dx.doi.org/10.1111/j.1600-0706.2010.18644.x
http://dx.doi.org/10.1007/PL00008838
http://dx.doi.org/10.1146/annurev.es.16.110185.000311
http://dx.doi.org/10.1038/s41598-020-66655-w
http://dx.doi.org/10.1111/oik.01523
http://dx.doi.org/10.1371/journal.pone.0000556
http://dx.doi.org/10.1016/S0065-3454(06)36007-X
http://dx.doi.org/10.1111/nph.16337
http://dx.doi.org/10.1126/science.1225483
http://dx.doi.org/10.1111/nph.16823
http://dx.doi.org/10.1093/aob/mcr077
http://dx.doi.org/10.1038/s41598-021-90140-7
http://dx.doi.org/10.1890/02-0327
http://dx.doi.org/10.7717/peerj.14107
https://peerj.com/


Rosas-Guerrero V, Aguilar R, Marten-Rodriguez S, Ashworth L, Lopezaraiza-Mikel M,
Bastida JM, Quesada M. 2014. A quantitative review of pollination syndromes: do floral traits
predict effective pollinators? Ecology Letters 17(3):388–400 DOI 10.1111/ele.12224.

Ruedenauer FA, Spaethe J, Leonhardt SD. 2015. How to know which food is good for you:
bumblebees use taste to discriminate between different concentrations of food differing in
nutrient content. Journal of Experimental Biology 218(14):2233–2240 DOI 10.1242/jeb.118554.

Rusman Q, Lucas-Barbosa D, Hassan K, Poelman EH. 2020. Plant ontogeny determines strength
and associated plant fitness consequences of plant-mediated interactions between herbivores
and flower visitors. Journal of Ecology 108(3):1046–1060 DOI 10.1111/1365-2745.13370.

Rusman Q, Lucas-Barbosa D, Poelman EH, Dicke M. 2019a. Ecology of plastic flowers. Trends in
Plant Science 24(8):725–740 DOI 10.1016/j.tplants.2019.04.007.

Rusman Q, Lucas-Barbosa D, Poelman EH, Koricheva J. 2018. Dealing with mutualists and
antagonists: specificity of plant-mediated interactions between herbivores and flower visitors,
and consequences for plant fitness. Functional Ecology 32(4):1022–1035
DOI 10.1111/1365-2435.13035.

Rusman Q, Poelman EH, Nowrin F, Polder G, Lucas-Barbosa D. 2019b. Floral plasticity:
herbivore-species-specific-induced changes in flower traits with contrasting effects on pollinator
visitation. Plant, Cell & Environment 42(6):1882–1896 DOI 10.1111/pce.13520.

Sahli HF, Conner JK. 2011. Testing for conflicting and nonadditive selection: floral adaptation to
multiple pollinators through male and female fitness. Evolution 65(5):1457–1473
DOI 10.1111/j.1558-5646.2011.01229.x.

Santangelo TKA, Johnson M. 2019. Herbivores and plant defences affect selection on plant
reproductive traits more strongly than pollinators. Journal of Evolutionary Biology 32(1):4–18
DOI 10.1111/jeb.13392.

Sargent RD, Goodwillie C, Kalisz S, Ree RH. 2007. Phylogenetic evidence for a flower size and
number trade-off. American Journal of Botany 94(12):2059–2062 DOI 10.3732/ajb.94.12.2059.

Schemske DW, Bradshaw HD. 1999. Pollinator preference and the evolution of floral traits in
monkeyflowers (Mimulus). Proceedings of the National Academy of Sciences, USA
96:11910–11915 DOI 10.1073/pnas.96.21.11910.

Schiestl FP. 2010. The evolution of floral scent and insect chemical communication. Ecology Letters
13(5):643–656 DOI 10.1111/j.1461-0248.2010.01451.x.

Schiestl FP. 2015. Ecology and evolution of floral volatile-mediated information transfer in plants.
New Phytologist 206(2):571–577 DOI 10.1111/nph.13243.

Schiestl FP. 2017. Innate receiver bias: its role in the ecology and evolution of plant-animal
interactions. Annual Review of Ecology, Evolution, and Systematics 48(1):585–603
DOI 10.1146/annurev-ecolsys-110316-023039.

Schiestl FP, Johnson SD. 2013. Pollinator-mediated evolution of floral signals. Trends in Ecology &
Evolution 28(5):307–315 DOI 10.1016/j.tree.2013.01.019.

Schiestl FP, Kirk H, Bigler L, Cozzolino S, Desurmont GA. 2014. Herbivory and floral signaling:
phenotypic plasticity and tradeoffs between reproduction and indirect defense. New Phytologist
203(1):257–266 DOI 10.1111/nph.12783.

Sercu BK, Moeneclaey I, Bonte D, Baeten L. 2020. Induced phenological avoidance: a neglected
defense mechanism against seed predation in plants. Journal of Ecology 108(3):1115–1124
DOI 10.1111/1365-2745.13325.

Silveira TA, Sanches PA, Zazycki LCF, Costa-Lima TC, Cabezas-Guerrero MF, Favaris AP,
Goulart HF, Bento JMS, Santana AEG. 2018. Phloem-feeding herbivory on flowering melon

Huang et al. (2022), PeerJ, DOI 10.7717/peerj.14107 21/23

http://dx.doi.org/10.1111/ele.12224
http://dx.doi.org/10.1242/jeb.118554
http://dx.doi.org/10.1111/1365-2745.13370
http://dx.doi.org/10.1016/j.tplants.2019.04.007
http://dx.doi.org/10.1111/1365-2435.13035
http://dx.doi.org/10.1111/pce.13520
http://dx.doi.org/10.1111/j.1558-5646.2011.01229.x
http://dx.doi.org/10.1111/jeb.13392
http://dx.doi.org/10.3732/ajb.94.12.2059
http://dx.doi.org/10.1073/pnas.96.21.11910
http://dx.doi.org/10.1111/j.1461-0248.2010.01451.x
http://dx.doi.org/10.1111/nph.13243
http://dx.doi.org/10.1146/annurev-ecolsys-110316-023039
http://dx.doi.org/10.1016/j.tree.2013.01.019
http://dx.doi.org/10.1111/nph.12783
http://dx.doi.org/10.1111/1365-2745.13325
http://dx.doi.org/10.7717/peerj.14107
https://peerj.com/


plants enhances attraction of parasitoids by shifting floral to defensive volatiles. Arthropod-Plant
Interactions 12(5):751–760 DOI 10.1007/s11829-018-9625-x.

Smallegange RC, van Loon JJ, Blatt SE, Harvey JA, Agerbirk N, Dicke M. 2007. Flower vs. leaf
feeding by Pieris brassicae: glucosinolate-rich flower tissues are preferred and sustain higher
growth rate. Journal of Chemical Ecology 33(10):1831–1844 DOI 10.1007/s10886-007-9350-x.

Sobral M, Veiga T, Dominguez P, Guitian JA, Guitian P, Guitian JM. 2015. Selective pressures
explain differences in flower color among Gentiana lutea populations. PLOS ONE
10(7):e0132522 DOI 10.1371/journal.pone.0132522.

Soltis PS, Soltis DE. 2014. Flower diversity and angiosperm diversification. Methods in Molecular
Biology 1110(1):85–102 DOI 10.1007/978-1-4614-9408-9_4.

Strauss SY, Agrawal AA. 1999. The ecology and evolution of plant tolerance to herbivory. Trends
in Ecology & Evolution 14(5):179–185 DOI 10.1016/S0169-5347(98)01576-6.

Strauss SY, Whittall JB. 2006. Non-pollinator agents of selection on floral traits. Oxford: Oxford
University Press.

Teixido AL, Barrio M, Valladares F. 2016. Size matters: understanding the conflict faced by large
flowers in mediterranean environments. The Botanical Review 82(2):204–228
DOI 10.1007/s12229-016-9168-8.

Teixido AL, Méndez M, Valladares F. 2011. Flower size and longevity influence florivory in the
large-flowered shrub Cistus ladanifer. Acta Oecologica 37(5):418–421
DOI 10.1016/j.actao.2011.05.007.

Theis N, Adler LS. 2012. Advertising to the enemy: enhanced floral fragrance increases beetle
attraction and reduces plant reproduction. Ecology 93(2):430–435 DOI 10.1890/11-0825.1.

Thompson JD. 2001.How do visitation patterns vary among pollinators in relation to floral display
and floral design in a generalist pollination system? Oecologia 126(3):386–394
DOI 10.1007/s004420000531.

Trager MD, Bhotika S, Hostetler JA, Andrade GV, Rodriguez-Cabal MA, McKeon CS,
Osenberg CW, Bolker BM. 2010. Benefits for plants in ant-plant protective mutualisms: a
meta-analysis. PLOS ONE 5(12):e14308 DOI 10.1371/journal.pone.0014308.

Troth A, Puzey JR, Kim RS, Willis JH, Kelly JK. 2018. Selective trade-offs maintain alleles
underpinning complex trait variation in plants. Science 361(6401):475–478
DOI 10.1126/science.aat5760.

Niet T. 2021. Paucity of natural history data impedes phylogenetic analyses of pollinator-driven
evolution. New Phytologist 229(3):1201–1205 DOI 10.1111/nph.16813.

van der Kooi CJ, Vallejo-Marin M, Leonhardt SD. 2021. Mutualisms and (A)symmetry in
plant-pollinator interactions. Current Biology 31(2):R91–R99 DOI 10.1016/j.cub.2020.11.020.

Van Kleunen M, Nanni I, Donaldson JS, Manning JC. 2007. The role of beetle marks and flower
colour on visitation by monkey beetles (hopliini) in the greater cape floral region, South Africa.
Annals of Botany 100(7):1483–1489 DOI 10.1093/aob/mcm256.

Veiga T, Guitián J, Guitián P, Guitián J, Sobral M. 2015. Are pollinators and seed predators
selective agents on flower color in Gentiana lutea? Evolutionary Ecology 29(3):451–464
DOI 10.1007/s10682-014-9751-6.

Venail J, Dell’olivo A, Kuhlemeier C. 2010. Speciation genes in the genus Petunia. Philosophical
Transactions of the Royal Society B: Biological Sciences 365(1539):461–468
DOI 10.1098/rstb.2009.0242.

Huang et al. (2022), PeerJ, DOI 10.7717/peerj.14107 22/23

http://dx.doi.org/10.1007/s11829-018-9625-x
http://dx.doi.org/10.1007/s10886-007-9350-x
http://dx.doi.org/10.1371/journal.pone.0132522
http://dx.doi.org/10.1007/978-1-4614-9408-9_4
http://dx.doi.org/10.1016/S0169-5347(98)01576-6
http://dx.doi.org/10.1007/s12229-016-9168-8
http://dx.doi.org/10.1016/j.actao.2011.05.007
http://dx.doi.org/10.1890/11-0825.1
http://dx.doi.org/10.1007/s004420000531
http://dx.doi.org/10.1371/journal.pone.0014308
http://dx.doi.org/10.1126/science.aat5760
http://dx.doi.org/10.1111/nph.16813
http://dx.doi.org/10.1016/j.cub.2020.11.020
http://dx.doi.org/10.1093/aob/mcm256
http://dx.doi.org/10.1007/s10682-014-9751-6
http://dx.doi.org/10.1098/rstb.2009.0242
http://dx.doi.org/10.7717/peerj.14107
https://peerj.com/


Vereecken NJ, Cozzolino S, Schiestl FP. 2010.Hybrid floral scent novelty drives pollinator shift in
sexually deceptive orchids. BMC Evolutionary Biology 10(1):103
DOI 10.1186/1471-2148-10-103.

Villamil N, Boege K, Stone GN. 2019. Testing the Distraction Hypothesis: do extrafloral nectaries
reduce ant-pollinator conflict? Journal of Ecology 107(3):1377–1391
DOI 10.1111/1365-2745.13135.

Von Arx M, Goyret J, Davidowitz G, Raguso RA. 2012. Floral humidity as a reliable sensory cue
for profitability assessment by nectar-foraging hawkmoths. Proceedings of the National Academy
of Sciences, USA 109:9471–9476 DOI 10.1073/pnas.1121624109.

Huang et al. (2022), PeerJ, DOI 10.7717/peerj.14107 23/23

http://dx.doi.org/10.1186/1471-2148-10-103
http://dx.doi.org/10.1111/1365-2745.13135
http://dx.doi.org/10.1073/pnas.1121624109
http://dx.doi.org/10.7717/peerj.14107
https://peerj.com/

	Mutualist- and antagonist-mediated selection contribute to trait diversification of flowers
	Introduction
	Selection agents
	Survey methodology
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


