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Hypoxia and the hypoxia-inducible factor (HIF) transcription factor drive pathological 
bone loss in conditions including rheumatoid arthritis (RA), osteoarthritis, osteoporosis, 
primary bone tumours, and bone metastatic cancer. There is therefore considerable 
interest in determining the function(s) of HIF-induced genes in these pathologies. 
Angiopoietin-like 4 (ANGPTL4) is an adipose-derived, HIF-1α- and PPARγ-induced 
gene that was originally discovered as an endocrine and autocrine/paracrine regulator 
of lipid metabolism. Given the inverse relationship between bone adiposity and fracture 
risk, ANGPTL4 might be considered a good candidate for mediating the downstream 
effects of HIF-1α relevant to osteolytic disease. This review will consider the possible 
roles of ANGPTL4 in regulation of osteoclast-mediated bone resorption, cartilage deg-
radation, angiogenesis, and inflammation, focusing on results obtained in the study of 
RA. Possible roles in other musculoskeletal pathologies will also be discussed. This will 
highlight ANGPTL4 as a regulator of multiple disease processes, which could represent 
a novel therapeutic target in osteolytic musculoskeletal disease.

Keywords: angiopoietin-like 4, bone resorption, cartilage degradation, angiogenesis, inflammation, rheumatoid 
arthritis

inTRODUCTiOn

Bone remodelling is a carefully regulated process that requires the coordinated actions of osteoclasts, 
which resorb bone, and osteoblasts, which form new mineralised bone. The remodelling process 
is essential for formation, development, and maintenance of the skeleton. Disruption of the bal-
ance between bone formation and bone resorption in favour of osteoclast overactivation results in 
pathological bone loss, as evident in osteolytic conditions including rheumatoid arthritis (RA) (1, 2), 
osteoporosis (3), primary bone tumours (4–6), and bone metastatic cancer (7). The same conditions 
are associated with microenvironmental hypoxia, which correlates with disease progression and 
reduced chance of survival (8–11).

Hypoxia-inducible factor (HIF) is a critical mediator of cellular responses to hypoxia. HIF is a 
heterodimeric transcription factor that is regulated at the level of the stability and transcriptional 
activity of the alpha subunits (HIF-1α, HIF-2α). In normoxic conditions, HIF-α is posttranslationally 
hydroxylated by the prolyl hydroxylase domain enzymes (PHD1–3), which target it for proteasomal 
degradation, and asparagine hydroxylase factor-inhibiting HIF (FIH), which inhibits any remaining 
transcriptional activity. However these enzymes are oxygen dependent, allowing HIF-α to stabilise 
under hypoxia and bind to the hypoxia-response element of HIF target genes to initiate hypoxia-
induced transcription (12).

As hypoxia and HIF drive disease progression in various musculoskeletal conditions, there is 
considerable interest in the pathological function(s) of HIF-induced genes. Angiopoietin-like 4 
(ANGPTL4) is a secreted adipokine and a member of a family of eight angiopoietin-like (ANGPTL1–8) 
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proteins. Hypoxic induction of ANGPTL4 by the HIF-1α isoform 
of HIF was initially described in cardiomyocytes (13) but also 
occurs in other musculoskeletal cells including adipocytes (14), 
endothelial cells (15), chondrocytes (16), monocytes, osteoclasts, 
and osteoblasts (17).

Despite being structurally similar to the angiopoietins, 
ANGPTLs do not bind either the Tie1 or Tie2 receptor and have 
no identified cognate receptors, rendering them orphan ligands. 
Full-length ANGPTL4 (flANGPTL4) contains a signal peptide 
mediating its secretion, an N-terminal coiled-coil domain, 
a linker, and a C-terminal fibrinogen-like domain (18). This 
406 amino acid glycosylated protein, with a molecular mass 
of approximately 65  kDa, can be proteolytically cleaved at the 
linker region by proprotein convertases to generate N-terminal 
(nANGPTL4) and C-terminal (cANGPTL4) fragments (19). 
Both flANGPTL4 and nANGPTL4 oligomerise in vivo, whereas 
cANGPTL4 dissociates into monomers (20, 21). Cleavage of 
ANGPTL4 appears to be tissue dependent; the human liver 
secretes cleaved ANGPTL4, whereas adipocytes secrete the full-
length form (22, 23). The three forms of ANGPTL4 exert distinct 
physiological functions; regulation of lipid metabolism is the 
primary function of N-terminal ANGPTL4 (20, 22).

Angiopoietin-like 4 was initially discovered as a central regu-
lator of lipid metabolism that was induced by PPARγ under 
fasting conditions, accounting for its initial nomenclature of 
fasting-induced adipose factor (FIAF) (24). It is also transcrip-
tionally regulated by PPARα and β/δ (22, 25). ANGPTL4 is 
the primary physiological regulator of lipoprotein lipase (LPL) 
activity, stimulating conversion of catalytically active LPL dimers 
into inactive monomers. This causes increased levels of plasma 
triacylglycerol, specifically VLDL, and non-esterified fatty acids, 
with subsequent depletion of adipose tissue stores (26, 27).

The relationship between fat and bone is complex. Body weight 
positively associates with bone mineral density, but bone marrow 
adiposity and bone mass exhibit an inverse relationship, and 
many conditions associated with increased fracture risk display 
increased marrow adiposity (28, 29). As an adipose-derived factor, 
it seems likely that ANGPTL4 might also play physiological and 
pathological roles within the skeleton. This review will consider 
possible roles for ANGPTL4 in osteolytic disease, particularly 
focussing on the pathogenesis of RA.

PATHOLOGiCAL FUnCTiOnS  
OF AnGPTL4 in RA

Rheumatoid arthritis is a chronic inflammatory disease charac-
terised by the formation of a hyperplastic synovium containing 
synovial fibroblasts, macrophages, CD4+ T cells, B cells, and 
plasma cells. The synovium is locally invasive and, alongside 
activated osteoclasts, erodes articular cartilage and subchon-
dral bone causing progressive destruction of the affected 
joints, associated with joint pain and compromised function. 
Synovial hyperplasia increases the distance between synovial 
lining cells and the nearest blood vessel. This ultimately exceeds 
the diffusion limit for oxygen, resulting in the development 
of a hypoxic microenvironment within the RA synovium 
that correlates with the intensity of inflammation and is a 

poor prognostic indicator (11). Both HIF-1α and HIF-2α are  
overexpressed in RA, and the HIF pathway is considered a 
target for therapy (30).

Angiopoietin-like 4 overexpression was first described in stro-
mal fibroblasts within the joints of mice with collagen-induced 
arthritis (31). It has since been reported in RA articular chon-
drocytes (16) and in stromal fibroblasts, macrophages, plasma 
cells, endothelial cells, and osteoclasts within the hyperplastic 
synovium (32). Such widespread induction could rapidly provide 
a large local pool of ANGPTL4 to regulate a variety of disease 
processes. ANGPTL4 was also elevated in the serum and syno-
vial fluid of RA patients in comparison with non-inflammatory 
osteoarthritis (OA) or normal controls (32).

Osteoclast-Mediated Bone Resorption
Osteoclasts are large multi-nucleated cells that form by fusion 
of CD14+ monocytic precursors in the presence of macrophage 
colony-stimulating factor (M-CSF) and receptor activator of 
nuclear factor kappa B ligand (RANKL). Osteoclast differentia-
tion is stimulated by hypoxia–reoxygenation, rather than hypoxia 
per se, and is not apparently dependent on HIF (33). However, 
bone resorption by mature osteoclasts is induced by hypoxia in a 
HIF-1α-dependent manner in vitro (17, 34–36) and in vivo (10). 
Similarly, PPARγ promotes osteoclast differentiation and bone 
resorption (37).

We reported hypoxia-inducible, HIF-1α-dependent induc-
tion of ANGPTL4 by human osteoclasts, as well as monocytes 
and osteoblasts (17). Exposure of mature human osteoclasts 
to flANGPTL4 stimulated a twofold to threefold increase in 
lacunar bone resorption that was independent of RANKL, 
while not affecting osteoclast differentiation (17). In contrast, 
Lin et al. reported neither flANGPTL4 nor cANGPTL4 to affect 
either murine osteoclast formation or bone resorption, whereas 
nANGPTL4 inhibited both activities (38). Effects of nANGPTL4 
were apparently mediated by reduced expression of RANKL, 
M-CSF, and connective tissue growth factor (CTGF) by stromal 
cells within the marrow culture, resulting in reduced expression 
of osteoclastogenic NFATc1 and DC-STAMP (38). The differ-
ences between the two studies may be due to interspecies effects 
or to the different osteoclast culture methods used.

It is currently unknown whether ANGPTL4 cleavage occurs in 
skeletal tissue, although adipocytes, which are numerous in the 
bone marrow, secrete the full-length protein (22, 23). We could 
detect only flANGPTL4 in human osteoclasts, but primary human 
osteoblasts produced both flANGPTL4 and cANGPTL4 in vitro 
(17). In support of a role for ANGPTL4 in osteoclast-mediated 
bone resorption, we correlated high serum concentrations of 
ANGPTL4 in RA with elevated levels of circulating RANKL, a 
serum marker of bone resorption (32).

Cartilage Destruction
Articular cartilage is composed predominantly of chondrocytes 
and is avascular, meaning that the chondrocytes normally reside 
in a hypoxic environment. Destruction of articular cartilage in 
RA is associated with increased expression and activity of matrix 
metalloproteinases (MMPs). In vitro work on RA synovial 
fibroblasts describes hypoxia- and HIF-1α-driven induction of 
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MMP expression by these cells (30), which could drive hypoxic 
enhancement of cartilage destruction.

Angiopoietin-like 4 might mediate a component of the hypoxic 
induction of MMPs. RA articular chondrocytes cultured in vitro 
exhibited hypoxia-inducible ANGPTL4 secretion. Similarly, nor-
mal human cartilage expressed little ANGPTL4 whereas strong 
cytoplasmic staining of articular chondrocytes occurred in more 
severely hypoxic rheumatoid cartilage (16). Exposure of articular 
chondrocytes to flANGPTL4 increased expression of MMP-1 
and MMP-3 (16). cANGPTL4 also promoted cartilage matrix 
remodelling during chondrogenic differentiation, inhibiting 
aggrecan and type II collagen expression and inducing expres-
sion of MMP-1, MMP-3, and MMP-13 (39). ANGPTL4 might 
therefore contribute to cartilage matrix destruction in RA via 
induction of MMPs.

Angiopoietin-like 4 could also exacerbate cartilage destruction 
via promotion of osteoclast-mediated resorption pathways. Multi-
nucleated cells resorbing cartilage in RA have an osteoclast-like 
phenotype, and human monocyte-derived osteoclasts can digest 
cartilage matrix in vitro (40, 41). As the erosive effect of osteoclasts 
on cartilage appear to be MMP-mediated (41), ANGPTL4 might 
induce cartilage erosion in RA, via effects on MMP production 
and osteoclast activation, to increase joint destruction.

Angiogenesis
Synovial angiogenesis in RA probably occurs as a consequence 
of synovial hypoxia. Hypoxia-induced HIF induces expression of 
pro-angiogenic mediators including vascular endothelial growth 
factor (VEGF), interleukin 8 (IL-8), macrophage inflammatory 
protein 3α (MIP-3a), and stromal-derived factor 1 (SDF-1). The 
increased blood supply transports nutrients and immune cells to 
the inflammatory synovium but cannot provide sufficient oxygen 
to negate the hypoxic stimulus (30, 42). Increased ANGPTL4 
expression during early stages of murine collagen-induced arthri-
tis occurred specifically in stromal fibroblasts adjacent to blood 
vessels, suggestive of a role in angiogenesis (31).

Besides lipid regulation, the other main function of ANGPTL4 
is vascular, with roles in angiogenesis and vessel permeability 
mediated by flANGPTL4 and cANGPTL4. ANGPTL4 is reported 
to inhibit endothelial apoptosis and stimulate endothelial cell 
migration and tube formation, so inducing angiogenesis in vivo 
(15, 18, 25, 31, 43–47). However, anti-angiogenic effects are also 
reported (48–52). The complexity of the response is highlighted 
by reports from the same group describing pro- and anti-
angiogenic effects of ANGPTL4 (15, 49, 53) and by reports of 
opposing effects for both flANGPTL4 and cANGPTL4. There is 
similar controversy regarding whether ANGPTL4 promotes or 
inhibits vascular permeability (54, 55).

inflammation
Synovitis is a major characteristic of RA and HIF acts as a key 
regulator of the associated inflammation, being highly expressed 
in immune cells, especially macrophages, in the RA synovium 
(42, 56). Conditional knockout of HIF-1α in myeloid cells in a 
murine model of RA significantly reduced synovial inflammation 
and disease progression (57). Similarly, HIF-1α played a critical 

role in hypoxia-induced synovial hyperplasia and inflammatory 
cell infiltration in murine collagen-induced arthritis (58). HIF 
also induces expression of inflammatory cytokines including IL-6, 
IL-8, TNF-α, and IL-1β in rheumatoid synovial fibroblasts (59).

Angiopoietin-like 4 is also overexpressed in inflammation. 
ANGPTL4 was induced by IL-1β in osteoblasts (60) and by IL-1β, 
TNF-α, IFNγ, or LPS in adipocytes (61). LPS activates toll-like 
receptor 4 (TLR4), one of the TLR family of pattern recognition 
receptors that regulate inflammatory responses in RA. Treatment 
of mice with LPS induced ANGPTL4 expression in adipose tis-
sue and muscle that was dependent on TLR4 signalling (61, 62). 
Additionally, circulating levels of ANGPTL4 positively correlate 
with the inflammatory marker C reactive protein in patients with 
inflammatory conditions such as metabolic syndrome, type 2 
diabetes, and chronic obstructive pulmonary disease (63–65) as 
well as within the general population (66). These extra-articular 
conditions often accompany RA and also relate to insulin resist-
ance, leading to suggestions that ANGPTL4 might represent a 
molecular link between insulin resistance and RA (67).

However, few direct effects of ANGPTL4 on inflammation 
are yet described. ANGPTL4 protected against the lethal inflam-
mation induced by dietary saturated fat in mice, by reducing 
inflammatory gene expression and macrophage foam cell forma-
tion (68). However, it was shown to expand the proliferation 
and formation of myeloid progenitors (69). Further studies are 
required to determine whether ANGPTL4 mediates pro- or anti-
inflammatory effects in RA.

AnGPTL4 in OTHeR MUSCULOSKeLeTAL 
COnDiTiOnS

Cancer in Bone
Angiopoietin-like 4 is overexpressed in the hypoxic peri-necrotic 
regions of solid tumours and has central roles in cancer growth, 
anoikis resistance, angiogenesis, and metastasis (54, 55). These 
pro-tumourigenic mechanisms are covered in other reviews, 
although pro-metastatic effects generally relate to promotion of 
angiogenesis and vascular permeability.

There are, however, few descriptions of ANGPTL4 in primary 
bone tumours or cancer metastasis to bone. Breast cancer, 
prostate cancer, and lung cancer most commonly metastasise to 
bone. ANGPTL4 has only been described in relation to breast 
cancer metastasis, but its pro-metastatic role was largely related 
to distant lung or brain metastases with little mention of bone 
metastatic disease.

Angiopoietin-like 4 is part of gene signatures associated with 
distant metastasis (70) and tumour aggressiveness (71) in breast 
cancer and is overexpressed in high-grade breast carcinoma (72). 
However, bone metastatic disease was not apparently included in 
these analyses. Padua et  al. showed ANGPTL4 knock-down to 
reduce breast cancer lung metastasis, but with no effect on either 
local lymph node metastasis or bone metastasis (73). Similarly, 
ANGPTL4 overexpression increased breast cancer lung metasta-
sis by MDA-MB-231 cells (74).

Osteosarcoma, Ewing’s sarcoma, and chondrosarcoma are the 
most common primary bone tumours, and HIF promotes disease 
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progression in each (75–78), as well as in giant cell tumour of bone 
(GCTB) (79) and multiple myeloma (80). We detected ANGPTL4 
expression in osteoclasts and mononuclear cells present in GCTB 
(17). Contact of multiple myeloma cells with mesenchymal stem 
cells or pre-osteoblasts increased expression of ANGPTL4 in the 
non-malignant population and enhanced myeloma cell adhesion 
(81). Considering the pro-tumourigenic effects of HIF in these 
cancers, ANGPTL4 might be expected to also exert tumour-
promoting effects, but this has not been investigated.

Bone Fracture and Osteoporosis
Hopwood et  al. compared gene expression in trabecular bone 
from the proximal femur of osteoporotic (OP) individuals who 
had suffered a fragility fracture of the femur with bone from 
age-matched controls (82). Three groups of genes overexpressed 
in OP were involved in osteoclast differentiation and function, 
inhibition of osteoblast differentiation and mineralisation, or 
were genes involved in adipogenesis, lipid metabolism, glucose 
metabolism, and insulin resistance. ANGPTL4 was one of these 
genes (82) and, with roles in all three disease processes, could be 
considered a critical mediator of OP pathology.

Angiopoietin-like 4 overexpression occurred in newly min-
eralising osteoblasts in a murine model of stabilised femoral 
fracture (83), and ANGPTL4 mRNA expression was elevated 
during osteogenic differentiation of MC3T3-E1 and periodontal 
ligament cells (83, 84). Exogenous ANGPTL4 enhanced osteo-
blastogenic gene expression in MC3T3-E1 cells but did not affect 
mineralisation (83). In osteoblastic Saos2 cells, high ANGPTL4 
concentrations promoted proliferation but inhibited osteoblas-
togenesis, whereas lower concentrations promoted osteoblast 
differentiation (17). Further definition of the effects of ANGPTL4 
on osteoblast formation and function is still required.

Osteoarthritis
Overexpression of ANGPTL4 also occurs in OA. Microarray 
studies described ANGPTL4 overexpression in cartilage from 
non-traumatic osteonecrosis of the femoral head, OA (85), and 
porcine osteochondrosis (86) versus control cartilage, as well as 
in damaged versus undamaged cartilage from individuals with 
anteromedial knee OA (87). We observed immunohistochemical 
overexpression of ANGPTL4 within the OA synovium, although 
to a lesser extent than in RA. However, secretion of ANGPTL4 
was not elevated in non-inflammatory OA serum (32). Coupled 
with ANGPTL4-mediated induction of MMP expression and 
cartilage matrix remodelling in chondrocytes (16, 39), this sug-
gests ANGPTL4 as a potential mediator of pathogenic cartilage 
destruction in OA.

SUMMARY

Multiple physiological and pathological roles associated with 
osteolytic disease are ascribed to ANGPTL4 including promotion 
of osteoclast-mediated bone resorption, cartilage degradation, 
angiogenesis and vascular permeability, as well as tumour cell 
growth and metastasis. However research into the musculo-
skeletal functions of ANGPTL4 is in its infancy, resulting in some 
controversy or lack of comprehensive research regarding the 
precise role(s) of ANGPTL4 in different disease processes. This 
is further complicated by the assignation of alternative cellular 
functions to the three cleavage products of ANGPTL4. Direct 
investigation of effects of ANGPTL4 in the varied and different 
pathologies is yet to be performed and will need to consider the 
different cleavage products as well as combined effects of modify-
ing multiple disease processes on overall disease activity.

Despite this, ANGPTL4 must be considered an attractive 
potential therapeutic target, blockade of which might dramati-
cally affect disease progression via inhibition of multiple disease 
processes. HIF-1α itself is considered a good target for treat-
ment of RA. However, advancement of this hypothesis is limited 
by the lack of drugs that specifically block the HIF pathway, 
precluding detailed analysis of specific effects of HIF inhibition 
on RA progression. Neutralising anti-ANGPTL4 antibod-
ies have been developed for use in murine models of disease  
(88, 89) and, as interest grows in targeting ANGPTL4 therapeu-
tically, humanised neutralising anti-ANGPTL4 antibodies will 
likely also be developed. With the ability to specifically inhibit 
ANGPTL4-mediated disease processes, the path is open for new 
research into emerging effects of this adipokine in osteolytic 
disease.
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