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The impending rise of artificial intelligence (AI)-powered
healthcare offers exciting hope for improved care and out-
comes in children with serious illnesses.! The historical
precedent in healthcare, however, suggests that advance-
ments in adult care do not necessarily result in proportional
progress in pediatrics. This disparity was first noted in
the mid-20th century when tragedies that involved drugs
with well-studied and known adult safety profiles, such
as sulfonamide elixir and thalidomide, resulted in harm to
children due to limited pediatric clinical trial inclusion.?
As a result, legislation in 1962 required drug companies
to include package labels that restricted or dissuaded the
use of medications in children that were not properly stud-
ied in this population.” Subsequently, physicians became
reluctant to prescribe many medications, and pharmaceu-
tical companies had little incentive to enroll children in
trials as an unfavorable result could negatively impact sales
in the adult market, and a successful outcome would only
marginally increase the market pool.®> This lack of access
led Dr. Harry Shirkey to describe children as “therapeu-
tic orphans” in 1968.> After more than half a century of
legislation aimed at increasing pediatric representation in

research and drug development (Figure 1), enrollment of
children in clinical trials remains disproportionately low,*
with children included in as few as 12% of trials for dis-
eases with a burden equal to, or greater in, the pediatric
versus adult population.’

The growth of Al in healthcare has the potential to ben-
efit both children and adults, but without proactive steps,
this new technology threatens to widen the already exist-
ing therapeutic gap between adults and children. Just as the
safety of pharmaceuticals cannot be assumed in children
given they are not simply “little adults”,® this same ratio-
nale must be applied to the development of Al tools. It is
well recognized that the generalizability of Al models is
reflective of the data on which they are trained.” Abstract-
ing studies from clinicaltrials.gov that have been completed
or are actively recruiting as of August 11, 2023, that
include the keywords “Artificial Intelligence” or “Machine
Learning”, we identified 1426 relevant Al trials. Of these
trials, 281 (20%) are indexed to include children within
the study population. Of note, the number of these stud-
ies that ultimately included children is likely lower, as trials
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FIGURE 1 Timeline of significant events in pediatric therapeutic orphan history. FDA, Food and Drug Administration.

are included for conditions without relevant pediatric corre-
lates, such as prostate cancer (ie: NCT02943824), coronary
artery disease (NCT04146766), and Alzheimer’s disease
(NCTO05569083). Additionally, only 58 (4%) trials were
pediatric-specific (no adults included in the recruitment
cohort), further highlighting the limited focus on children
in these early Al clinical trials.

The insufficient inclusion of children in Al training and
development has multiple implications. First, this disparity
could result in fewer Al-powered clinical tools available for
children. A white paper by the American College of Radiol-
ogy provides early evidence of this disparity, reporting that
of the 200 Food and Drug Administration (FDA) approved
Al-powered radiologic devices, only 3% are labeled for
pediatric use.® Second, a model developed with adult data
may have poor predictive value if used in children, such as a
recent Al model to detect fractures in adults that was neither
reliable nor sensitive when used in children.’!? Similarly, a
model developed to identify pneumonia in adults underper-
formed a comparative model developed for children when
applied to a pediatric population.'! While only a few stud-
ies to date have specifically evaluated the impact of exclud-
ing children from AI development,®!” there is strong evi-
dence of bias and poor performance in patients from under-
represented racial, ethnic, and geographic backgrounds
as a result of these groups being excluded from model
development.'>!3 Even if a disease is present in both adults
and children, such as sepsis or pneumonia, the clinical man-
ifestations may be different and cannot be assumed from

adult data if children are not included in the development.
Moreover, the limited focus on developing models that are
relevant to pediatric-specific conditions suggests those with
diseases confined to childhood, such as diseases of prema-
turity and various genetic and metabolic diseases, may not
find similar advances as those that present across the lifes-
pan. Including sufficient pediatric data in model develop-
ment and validation is necessary to ensure children benefit
from and are not harmed by these technical advancements.
Below, we briefly highlight three potential contributors to
this disparity of pediatric inclusion in AI research and
development and propose possible mitigation strategies.

PROBLEM 1: LACK OF AWARENESS

While the harm of excluding children from clinical research
was brought to light in the mid-20th century through
tragedy and legislation, the broader impact of excluding
children from Al development is still nascent.3 At baseline,
clinicians report limited understanding of Al principles and
the implications of its impending role in patient care,'* with
fewer than half of clinicians possessing basic knowledge of
AL" and only 6% of medical students confident in explain-
ing the risks and benefits of AIL.'® At a larger scale, the FDA
has recently prioritized developing unbiased models in
terms of race, ethnicity, and socioeconomic status, however,
there is no mention of children in this discussion.!” If action
is not taken to increase clinician awareness and promote
policy prioritization of the importance of Al in pediatrics,
the quality of care received by children will suffer.
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Solution 1

Just as pediatricians learn to use a wide array of diagnos-
tic and therapeutic tools in their training, so too should
fundamentals of Al be incorporated into all levels of med-
ical education. It is not that pediatricians should become
computer scientists, but should rather be equipped in med-
ical school and beyond to critically assess new models.'®
This includes becoming familiar with common Al ter-
minology, understanding the appropriate role of various
Al-powered tools in clinical decision-making, and eval-
uating the appropriateness of a given model for use
in the pediatric population.'® Additionally, advocacy by
professional organizations, both pediatric and subspecialty-
specific, is imperative for the development of policies
to protect children, while simultaneously facilitating their
inclusion in Al research. The American Academy of Pedi-
atrics, for example, has played a leading role in child-health
advocacy that has impacted policy change at a national
level, 20 though the safe inclusion of children in Al devel-
opment has yet to be included among these initiatives.?!
The American College of Radiology has recently taken a
strong stance supporting the inclusion of children in Al
development,® a position if adopted by other organizations
can play a defining role in broader Al policy development,
such as in the FDA’s plans and guidelines for Al roll-out.!’

PROBLEM 2: LACK OF INVESTMENT

Companies developing Al-powered tools will likely aim
to enter a market with abundant data and a large pool
of consumers/patients anticipating the products’ release.
Given the rarity of many pediatric diseases and the smaller
proportion of ill children versus adults in the general pop-
ulation, a lack of investment in Al for childhood diseases
could threaten to recapitulate historical patterns seen in
drug development and approval.” The developer seeking
to design an Al model to identify novel cancer therapeu-
tics, for example, will be more inclined to target adult lung
carcinoma, a disease with over 234 000 new diagnoses in
the United States yearly,!” rather than the most common
pediatric solid tumor, neuroblastoma, which has about 700
new diagnoses per year.>> Moreover, as a vulnerable popu-
lation, including children in the design and application of
Al-powered tools is a more time-consuming and higher-
risk endeavor for developers,?® potentially compounding
the dissuading market influences.

Solution 2

In 2002, the Better Pharmaceutical for Children Act was
approved as a policy to provide limited market exclusiv-
ity for pharmaceutical companies that conducted pediatric
clinical trials.* Subsequently, the Pediatric Research Equity
Act in 2003 mandated that all new drug applications, bio-

logics, and supplements provide pediatric testing data.*
This carrot-and-stick approach proved effective at improv-
ing pediatric pharmaceutical trial inclusion. Amending
these laws to include healthcare-related AI may offer robust
motivation for commercial engagement to mitigate the
developing disparity. The Research to Accelerate Cure
and Equity Act passed in 2017 required all new targeted
therapies with a potential pediatric use to include chil-
dren in the trials without exemption, a model which if
adapted to Al development would help promote the inclu-
sion of children in device development for conditions with
relevant pediatric correlates.>* Additionally, the National
Institutes of Health (NIH) currently has an “Inclusion
across the lifespan” requirement for grant applications,”
a policy if closely enforced in Al-related funding decisions
has the potential to foster relevant research with children
in mind.

PROBLEM 3: LACK OF DATA

Perhaps the most pervasive barrier to the inclusion of chil-
dren in Al is the lack of pediatric data available for model
development and evaluation.! The reasons for this limited
data are multifactorial; only 22% of the US population
is younger than 18 years,’® children are less likely to
be hospitalized than adults (where most actionable clini-
cal data are collected),?’” and many pediatric diseases are
rarer and distinct from adult diseases.”® Further, few pub-
lic databases exist for children, and clinical data are often
buried within institutional medical records, making access
to a sufficient volume of high quality multi-institutional
data challenging.”® For example, of the 29 publicly avail-
able chest radiograph databases, only seven include any
pediatric data, and two are exclusively for children.?’ More-
over, companies employing Al in health care, such as
Google Health’s Deep Mind and IBM’s Watson Health,
have published landmark studies consisting of solely adult
data, suggesting the landscape of pediatric representation
among proprietary data is similarly limited.3-32

Solution 3

One method of streamlining pediatric data acquisition is the
use of learning health systems, such as PedsNET, a net-
worked institutional architecture that has been successfully
piloted and allows for observational research and clini-
cal trials to be completed in routine clinical encounters.?®
Additionally, creating robust publicly available clinical
databases, such as those available for adults,33* can fur-
ther increase developer access to pediatric data. Early
efforts include a recent $50-million allocation for the Child-
hood Cancer Data Initiative at the NIH,3® and the more
established Kids Inpatient Database, containing health sys-
tems data from roughly 7 million pediatric hospitalizations.
While these efforts are positive steps, further proactive
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efforts to establish additional multi-institutional databases
across a wide array of diseases and datatypes (genomic,
routine laboratory, clinical outcomes, etc) will be critical
for achieving the sample sizes and diversity of data nec-
essary to establish robust Al models.>> As of January 25,
2023, the NIH has made efforts to increase data availabil-
ity by requiring new grant applications to include a data
sharing budget and plan, however, early evidence suggests
the intended open data sharing has not yet materialized
in implicated publications.>® Further monitoring of com-
pliance to this policy in subsequent grant considerations
would be prudent, and further policy could facilitate these
data to be deposited in a public repository, as is common
practice in genomics.?’

ACKNOWLEDGING RISKS OF Al

As we enumerate the need to ensure children are not left
behind in Al development, we must also acknowledge
the potential harms and problems with including chil-
dren in Al research. As the efficacy of Al in healthcare
slowly emerges, establishing clear guidelines and regula-
tions around the use of pediatric data will be essential.
Currently, children are considered a protected population
in clinical research according to subpart D of the common
rule, which should continue to hold as they are integrated
into Al research and development.®® Inherently there will
be known and unknown risks to children participating in
these trials, including data breaches, emotional and psy-
chological distress, or even physical harm if the algorithm
is inaccurate, necessitating a need for clear consent and
assent with the guardians and patients, respectively.>® For
example, when considering sharing data with commercial
developers, even data that are de-identified present a linger-
ing risk of privacy breaches when large datasets are used,*
because Al could develop the ability to “re-identify” indi-
viduals despite removal of Health Insurance Portability and
Accountability Act identifiers. Moreover, while commer-
cialization of pediatric data may increase the number of
models applicable for children, these avenues may not offer
the same protections for children, nor will a company’s
primary interests necessarily align with that of the patient
and family.*! While no official guidelines have yet been
developed for pediatric inclusion in Al, a recent frame-
work called ACCEPT-AI outlines important considerations
for safely including children in these developments, offer-
ing recommendations that can be used independently or
integrated into existing/future AI guidelines.? Researchers
and regulatory bodies must anticipate and address these
issues so children are not harmed by reckless inclusion
nor excluded from potential future benefits of Al devel-
opment. Furthermore, the National Academy of Medicine
is developing recommendations for a governance frame-
work for AI use in medicine.*> This governance structure

must include pediatric-specific concerns to mitigate these
potential harms to children in the future.

CONCLUSION

While this commentary does not aim to be an exhaus-
tive review, it is clear from the current landscape of Al
clinical trials that applications toward child health are
lacking relative to adults, and failure to include children
could result in suboptimal Al tools for this population
in the future. Without proactively including children in
model development and implementation we risk further
cementing children in their status as therapeutic orphans.
By increasing awareness through education and advocacy,
providing proper incentives and mandates to developers
and clinicians, and streamlining data acquisition, however,
Al can instead serve as a powerful tool in pediatrics, and
potentially play a role in narrowing the therapeutic gap
between children and adults.
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