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Abstract

Motivation

Systems biology faces two key challenges when dealing with large amounts of disparate

data produced by different experiments: the integration of results across different experi-

ments, and the extraction of meaningful information from the data produced by these experi-

ments. An ongoing challenge is to provide better tools that can mine data patterns that could

not have been discovered through simple visualization. Such mining capabilities also need to

be coupled with intuitive visualization to portray those findings. We introduce a software

toolbox entitled BioNetApp to mine these patterns and visualize them across all experiments.

Results

BioNetApp is an interactive visual data mining software for analyzing high-volume molecular

expression data obtained from multiple ‘omics experiments. By integrating visualization, sta-

tistical methods, and data mining techniques, BioNetApp can perform interactive correlative

and comparative analysis along time-course studies of molecular expression data. Correla-

tion analysis provides several visualization features such as Kamada-Kawai, Fruchterman-

Reingold Spring embedding network layouts, in addition to single circle, multiple circle and

heatmap layouts, whereas comparative analysis presents expression-data distributions

across samples, groups, and time points with boxplot display, outlier detection, and data

curve fitting. BioNetApp also provides data clustering based on molecular concentrations

using Self Organizing Maps (SOM), K-Means, K-Medoids, and Farthest First algorithms.

Conclusion

BioNetApp has been utilized in a metabolomics study to investigate the metabolite abundance

changes in alcohol induced fatty liver, where pair-wise analyses of metabolome concentration

revealed correlation networks and interesting patterns in the metabolomics dataset. This

study case demonstrates the effectiveness of the BioNetApp software as an interactive visual

analysis tool for molecular expression data in systems biology. The BioNetApp software is
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freely available under GNU GPL license and can be downloaded (including the case-study

data and user-manual) at: https://doi.org/10.5281/zenodo.2563129.

Introduction

Experiments conducted in the omics arena generate a substantial amount of data. This infor-

mation is the key to analyze biological behavior through a systems level understanding in

which groups of component biomolecules and pathways are connected and operate interde-

pendently. Representation of relationships among biomolecules is also an intensive field of

research in systems biology [1]. Correlation and comparative analyses as well as clustering are

key elements in understanding such relationships across experiments. Correlation analysis

measures the strength of any relationship between the variables. This analysis is useful in test-

ing hypotheses about cause-effect relationships between molecules. Comparative analysis com-

pares the results between experiments. Finally, clustering helps understand the structure of the

data and detect anomalies.

With the increased need to perform analysis on large datasets, more attention has been

directed to provide data visualization capabilities on top of data mining techniques. On one

hand, data visualization plays a very important role in systems biology; it allows for describing

complex interactions in a visually analyzable form, which helps identify patterns that may

prove useful in hypotheses generation. Visualization across numerous samples simultaneously

allows for discovering new interesting information, where diverse layout display is one

adopted method of feasible visualization. On the other hand, datamining is at the intersection

of multiple fields of research including machine learning, statistics, and database systems. It

serves two important goals, insight and prediction. Insight comes from the ability to identify

patterns within the data. Such patterns could include the anomalies and features that stand out

from the rest of the data population. Prediction is being able to generate a model that would

generalize to a population. Prediction could be either discrete (known as classification) or con-

tinuous (known as regression). Data mining on molecular expression data can assist in discov-

ering patterns and anomalies that could not have been discoverable otherwise.

The coupling of data visualization and data mining has led to the burgeoning of Interactive

Visual Data Mining (IVDM) [2] which aims at supporting knowledge discovery coupled with

rich interactions and feasible visualization. The IVDM tools are used to extract meaningful

patterns from data sets. Data mining techniques embedded within those tools enable patterns

discovery across different experiments. Several visualization software packages have been

developed for the interactive visualization of molecular networks, such as Mzmine2 [3,4],

Cytoscape [5,6], Graphle [7], BiologicalNetworks [8,9], PathSys [10], SphinGOMAP [11], Sun-

gear [12], ProteoLens [13], CFinder [14], and BisoGenet [15].These tools can be used to dis-

play various biomolecular correlation and interaction networks, however some provide

limited data mining capabilities (see Table 1) or they may lack the full integration of both

information presentation through visualization and instant information discovery through

analytical techniques. Most tools require scientists to generate the visualization data indepen-

dently (through some data analysis tool) and then start visualizing the data through their soft-

ware package. Others require the data to be in a specific file format (or for specific

spectrometry separation method as LC or GC but not both) without providing the user with

the means to assist in the automated creation of such formats, adding a limitation to what type

of data the user can readily utilize. A comparison between BioNetApp, Mzmine2, Graphle,

and Biological Networks is shown in Table 1.

BioNetApp: An interactive visual data analysis platform for molecular expressions
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The main objective of our research was to employ the IVDM approach to develop a user-

friendly software package for omics expression data analyses that combines intuitive and inter-

active visualization with strong instantaneous data mining capabilities, namely BioNetApp.

The BioNetApp software toolbox is designed to be independent of the type of mass spectrome-

try system used, as it operates on input files containing the molecular expression data and fea-

tures to be studied. By integrating visualization, statistical methods, and data mining

techniques, BioNetApp is able to perform interactive correlative, comparative, and clustering

analysis combined with time-course studies of molecular expression data. Users are able to

seamlessly navigate through the analysis results and dynamically interact with the system. We

demonstrate the application of BioNetApp using a metabolomics dataset generated in a study

on mice to investigate the metabolite abundance changes in alcohol induced fatty liver. Such

observations can be used to test the hypothesis that alcohol exposure can disturb lipid homeo-

stasis at the white adipose tissue (WAT)-liver axis towards triacylglycerol epitomic deposition

in the liver. Using BioNetApp analysis to find a possible mechanistic link, such as regulation

changes of fold increase (up-regulation), between adipose fat loss and hepatic fat gain in alco-

holic fatty liver, would prove such effects of alcohol exposure.

The dataset being used in this paper is from a lab experiment (detailed in [16])on mice at

two months old that were given an initial priming dose of 2H2O for five weeks (stage one, time

point 0 week). The mice were then randomly grouped into two cohorts(stage two, a 4-week of

alcohol exposure): the control cohort (control liquid diet), referred to as group ‘D’ in the experi-

ment with its samples prefixed with the letter ‘C’; and the test cohort (alcohol liquid diet),

referred to as group ‘DE’ with its samples prefixed with the letter ‘T’. There were 5, 5, 3 and 5, 7,

5 mice at time point 0, 2, 4 weeks for the control cohort and the test cohort, respectively.

Pair-wise analyses of metabolome concentration and the use of BioNetApp revealed rele-

vant correlation networks and interesting patterns in this metabolomics dataset. BioNetApp

was developed using the Java language to provide cross-platform compatibility and easy

deployment.

Table 1. A comparison between BioNetApp, Mzmine2, Graphle, and Biological Networks.

Specs BioNetApp Mzmine2 Graphle Biological Networks

Data type

supported

Supports all data types represented

in a comma or tab delimited text

file (csv).

Requires Thermo MSFileReader

library for some data types.

Supports network data as nodes

and edges in the form of key/

value pairs in tables.

Supports values of biological

network datasets.

Statistical

Analysis

Interactive visual data mining of

molecular correlations,

comparative, and clustering

analysis across samples, groups, and

time points.

Basic methods for statistical analysis

of processed data.

Development of such methods is not

considered high priority, as

processed data can be exported to a

third-party statistical software.

Search and visualization engine to

view functional relationship

networks predicted by the

bioPIXIE system and a collection

of microarray data.

Lacks mining techniques to

discover interesting patterns.

Visualization and analysis services

over PathSys.

Queries databases for known and

predicted interactions.

Relies on its querying system for

information analysis and discovery

with no mining capabilities.

Visualization Comparative analysis uses boxplot

display, outlier detection, and data

curve fitting. Clustering uses SOM,

K-Means, K-Medoids, and Farthest

First algorithms. Correlation uses

Kamada-Kawai, Fruchterman-

Reingold Spring network layouts,

with single/multiple circle and heat

map layouts.

Can visualize raw data with peak

picking and identification results,

such as chromatogram plot and 2D

plot Shows detected peaks, peak

areas, and pal component analysis

plots.

Displays dense biological

networks as network graphs.

Targeted for gene interaction

networks.

Can build pathways and common

targets, find intersections with

curated pathways, and view

genome-scale integrated networks of

protein-protein, protein-DNA and

genetic interactions networks.

Observing the

results

Produced graphic presentations can

be exported as images, and the

molecular correlation information

as simple flat text format.

Can report the quantification results

in table form or using charts.

Allows exploring networks,

scaling between different details

of visualizations, and saving

images and data.

Imported network interactions and

components can be annotated and

saved, along with related graphs.

https://doi.org/10.1371/journal.pone.0211277.t001
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Materials and methods

The BioNetApp software package went through two main development stages. At first, a pro-

totype initial system called “SysNet” [17] was developed using C++ language, which demon-

strated how the core functionalities could be integrated into one system. It also showed how it

could be used in the process of hypothesis generation for ionomics data. The latest develop-

ment stage produced the current BioNetApp software package, a platform for visualizing and

mining various relationships between molecular expression data. BioNetApp includes signifi-

cant additions and improvements (Demonstrated in the Results Section) over its predecessor,

such as:

• Developed using Java language instead of C++ to provide cross-platform compatibility and

ease of deployment

• Project creation and management interface with generic data importing capabilities

• Various detailed and fast-loading visualization algorithms

• A wide set of operations to interactively manipulate the visualized data and analyze time-

course studies.

• A comprehensive molecule information panel with all available identifiers

• Diverse data filtering methods for molecules, samples, and groups

• Rich data mining capabilities and clustering analysis

BioNetApp provides the user with a project management interface that helps to seamlessly

design projects and experiments with added meta-data, and also import data into existing

projects from various platforms, given the data is represented in a comma or tab delimited file.

This functionality significantly enhanced the user experience, since other software packages

requires the data to be in a specific format without providing methods to assist in creating

such a format.

The visualization algorithms of BioNetApp include Kamada-Kawai [18], Random, and

Fruchterman-Reingold Spring Layouts [19],in addition to single circle, multiple circle and heat-

map layouts. BioNetApp also provides a set of operations to interactively manipulate the visual-

ized data, such as selecting and hiding highlighted or orphan nodes, hiding outliers, split-screen

for comparing sample groups, and displaying multiple circles for up/down regulation expres-

sion data. The addition of an integrated information panel provides detailed information dis-

play, including molecule/correlation values, display conditions, and graphs for topological

information, node-degree distribution, correlation distribution, and neighborhood connectiv-

ity. The enhanced data mining capabilities include the use of Self Organizing Maps (SOM) [20]

and K-means [21] to perform data clustering, which aids in discovering interesting data pat-

terns, structures, and assess the level of similarity between molecular expression data. BioNe-

tApp is also capable of analyzing time-course studies by introducing the time feature as one of

the means to categorize the data and visualize it across time projections, with the ability to create

groups based on multiple features including time, and to view split screens for efficient compar-

ative analysis. The BioNetApp software is freely available under GNU GPL license and can be

freely downloaded at the provided link (including the case-study data and user-manual).

Project management

The BioNetApp software allows intuitive mapping of experimental results into the system by

the concept of a project and a panel for managing the project information and samples data.

BioNetApp: An interactive visual data analysis platform for molecular expressions
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Each project may contain multiple experiments, each with its own sample data. Experimental

information is specified as part of the input including fields such as the analytical platform and

MS-mode. Samples names are imported automatically when an experiment is imported into

an analysis project. Samples features, such as time and group, are specified by the user and

automatically saved into the project. This information acts as meta-data during the analysis

phase. A single window of BioNetApp is dedicated to displaying data from a single project at a

time, with the ability of opening multiple project windows simultaneously.

Input files format support

Users are able to create a new project and import data into it or to an existing project, with the

data being from various platforms, given it is represented in a comma or tab delimited file. A

dialog box allows the user to select which columns of the input file represent the samples

response data. This data becomes part of the project and is stored to disk for direct access. To

prevent errors, BioNetApp only allows columns which consist entirely of numerical data to be

selected as expression data columns. Entered sample metadata can also be amended at any

time and used as the basis for sample grouping.

The data obtained from the experiments is handled in two different files. The first file is

“Normalization.csv” which includes all the molecular expression information for all samples

used to conduct the experiment, and also any meta-data information about each molecule

including identification information. This file is usually ready for analysis and contains data

that has already been aligned and normalized (hence the name) in a previous step using the

instrument vendor’s software or in-house developed tools. The Normalization file is the main

input to the analysis. Each line of the input consists of a comma separated list of the (customiz-

able) molecule ID, followed by the molecule concentration values in all the samples in the

experiment. Each sample concentration is then mapped into the BioNetApp system where sci-

entists can control its participation in the analysis.

The second input file, “project_info.csv”, includes the name and details of the experiment,

including the experiment ID, description, analytical platform, MS method and mode, time

unit (for time-course data), samples’ IDs used in the experiment, meta data, and any special

remarks about the experiment. This file describes features (metadata) about the samples and

experiment groups, such as group category, time, radiation, background, gender, age, drug,

and race. This versatile metadata allows users to run comparative, correlative, and clustering

analysis on the data by choosing the features they are interested in to design the test groups.

BioNetApp allows saving all experiment analysis results to persistent storage. This in turn

provides a convenient way of performing experiments and saving the outcomes for later

inspection or for use in publications. Scientists could share interesting analysis images includ-

ing the graphical layout display and their corresponding information.

Visual data mining

BioNetApp analysis system provides three main functionalities (detailed in the Results section)

to explore molecular expression data and aid in the hypothesis generation process: (i) molecular

correlation analysis, (ii) distribution analysis with time-course study, and (iii) data clustering,

presented across the experiment time points. The correlation analysis provides strong means

for understanding the relationship between molecules. It provides different (network graph)

layouts for visualizing the molecular concentration and correlation between molecules, using

multiple calculation methods such as Pearson product-moment correlation, non-parametric

Spearman correlation [22], and non-parametric Kendall Tau-b rank correlation [23]. Through

the graphical interface, scientists can visualize useful information by interactively exploring

BioNetApp: An interactive visual data analysis platform for molecular expressions
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molecules and correlations, and also dynamically select, hide, and filter displayed molecules and

correlations. This makes BioNetApp very unique and functionally rich compared to existing

tools in terms of molecular expression data.

As for distribution analysis, it enables integration of molecular expression data across sam-

ples, groups, and also time points with boxplot display, outlier detection, and data curve fitting.

This integration is done based on common attributes found between molecular expression

data in the selected time points. And finally, data clustering allows analysis of how a sample

concentration changes at different time instances. Since the clustering graph represents the

change in concentrations of hundreds of molecules over time, it cannot be easily compre-

hended visually. Accordingly, those molecules are clustered based on the similarity of changes

in their concentrations. This avoids having an overwhelming set of molecules on a graph to

visualize the concentration change over time. Instead, the results can be presented as a clus-

tered set of molecules displayed as one line on the graph over different time spans. BioNetApp

provides four algorithms for clustering: Self Organizing Maps (SOM), K-Means clustering,

K-Medoids, and Farthest First.

Experimental data

The test case data used here is from metabolite abundance profiles of mouse liver extracted

and measured on a linear trap quadrupole—Fourier transform ion cyclotron resonance mass

spectrometer (LTQ-FTICR MS) equipped with a chip-based nano-electrospray ionization

(nESI) ion source. Exact details of the lab experiments and methods of data pre-processing are

described elsewhere[16]. After metabolite peak detection and alignment are done, an aligned

metabolite peak table is generated and used as the input to BioNetApp.

The peak table contains information about every metabolite peak, across all the samples

used in the experiment, i.e.ID, M/Z, molecule concentration values per sample, and a list of

assigned metabolites retrieved via database and MS/MS spectrum matching.

Results and discussion

BioNetApp provides interactive analysis and graphic visualization of molecular expression

data. It provides three main functionalities to explore molecular expression data and aid in the

hypothesis generation process: molecular correlation analysis, comparative and data distribu-

tion analysis, and data clustering, with time-course study based on molecular concentrations.

A unique feature of BioNetApp is its ability to analyze data across multiple time points. It

provides a selection window for filtering the experiment data based on the meta-features,

which includes: timepoints, molecules (peaks) frequency filter, and the analysis type to per-

form (Fig 1).The “Frequency Filter” uses the meta-features specified as column titles in the

project information file and can include features like time, age, radiation, and background.

The frequency settings allow to filter data prior to visualization based on data presence fre-

quency in samples and groups, which allows for the omission of molecules that were not

detected in a specific percentage of samples, specified by the user. This percentage can be

based either on user-specified groups of samples or the overall sample set. The rationale

behind this filter is that there are usually many random peaks present in the data that are actu-

ally noise. Therefore, we can filter these peaks based on their detection frequency, which equals

to the number of samples a peak is detected in, divided by the total number of samples. The fil-

ter works on two levels, the first is across all samples in the experiment where at least one

group must meet this condition to retain the peak. The second is group-based, where groups

that fail to meet the condition will have their molecule concentration values set to zero. The

user defines the filter groups by selecting any combination of features from the provided list.

BioNetApp: An interactive visual data analysis platform for molecular expressions
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This selection power gives a great flexibility for performing the analysis multiple times with

different parameters, while dynamically selecting a portion of the data according to a specific

hypothesis, and where the results can be easily observed and compared. There are three types

of data analysis as explained in detail next.

1) Interactive molecular correlation analysis

The objective of correlation analysis is to measure how strong molecules are related to one

another. After choosing the desired experiment data and the molecules of interest, the correla-

tion visualization module (Fig 2) displays all the molecules available in that experiment with

their related information and the correlation between the molecules. This module provides

diverse views of the molecules and their relationships by supporting a number of layouts (cho-

sen from the layout menu), such as single or multiple circle layout, random layout, Kamada-

Kawai, heat map and Fruchterman-Reingold spring embedding. The single circle layout (Fig

2B)plots interconnected components in ring and star topologies. It is used in applications such

as social networking and network management.

Edge coloring between molecules (network nodes) is used to indicate positive and negative

correlation values. The color spectrum indicates the correlation value range in terms of colors

on the edges. This range enables users to visually spot the differences in correlation in terms of

color on the graph instead of inspecting the values of each and every edge.

Random layout is also used to plot molecular relationships in random order. Kamada-

Kawai [18] layout is an iterative layout algorithm which starts in a flux state when loaded. This

is because it is a force directed layout algorithm that considers the force between two nodes or

molecules. This could be represented as rings and springs where the rings denote the mole-

cules and the springs denote the relationships. The main idea of the algorithm is that it

attempts to minimize the energy of the system by moving the molecules and changing the

forces. The algorithm achieves fast convergence and can be used to layout networks of mole-

cules of different sizes. Fruchterman-Reingold [19] algorithm is often used to obtain a more

aesthetically pleasing layout over Kamada-Kawai. It is useful for visualizing large networks and

it guarantees that topologically near molecules are placed closer together, whereas far away

Fig 1. Experiment selection window. (A) Time points available for this experiment (in our case study we chose all three time points). (B) Analysis

type to perform. (C) Molecules (peaks) frequency filter across all samples (cross-board filter) and also per group of selected features (group-based

filter).

https://doi.org/10.1371/journal.pone.0211277.g001
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molecules will be placed further away from each other. Several methods of correlation calcula-

tion are supported, such as Pearson, Spearman rank correlation [22], and Kendall Tau-b rank

correlation [23].

The correlation visualization includes by default all molecules in an experiment, however,

molecules can also be easily selected/unselected from the analysis using the provided molecule

list (Fig 2A).For viewing the detailed analysis on a specific list of molecules, the software user

can select the molecules of interest directly on the graph(using the mouse) and the selected ele-

ments along with all their information will dynamically appear in the molecule information

tab (Fig 2C). This enables extended flexibility for the targeted analysis approach. The provided

Fig 2. Correlation analysis window with single circle layout. (A) Molecular IDs. (B) Interactive graphic display of molecular correlations in a single circle display while

applying the Pearson correlation calculation. (C) Information panel display for rich set of information about the selected (highlighted) molecules in the graph. Color

scheme is used to show the correlation directions: red indicates positive correlation while blue indicates negative correlation. The encircled color areas readily demonstrate

clusters of strong molecular correlation.

https://doi.org/10.1371/journal.pone.0211277.g002
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view menu in the interface allows for multiple manipulations of the network graph, like hiding

selected or unselected nodes, hiding orphaned nodes, re-displaying hidden nodes, or manipu-

lating the current set of selected nodes. There are also menu items for zooming in or out on

the graph, which can also be accomplished using the mouse wheel for ease of use.

Further filtering of what molecules to include in an analysis could be controlled through

the main correlation analysis window. Filtering the molecules’ list can be performed in two

ways. The first is through the molecules’ list check boxes: if the user is interested in filtering a

specific set of molecules, the search box on top allows for narrowing down this list. The search

box supports wild-card matching and regular expressions matching. The second filter is the

correlation filter which allows for specifying the range for the correlation values to be visible

on the graph. Using a layout such as the provided heat map, it is easy to distinguish any mole-

cule outside the correlation range as it will have a neutral (background) color and its details

window will be disabled. The operations mentioned could also be done using the mouse

directly to drag nodes, zoom in and out, and select nodes correlated to each other.

The information panel (Fig 2C) contains a detailed set of information about the selected

molecules in the graph, including molecule concentrations, current display conditions, and

topological information, as well as histograms of various distributions including node degree

distribution, correlation distribution, and neighborhood connectivity. The information is

organized into a set of tabs that are automatically updated as the user manipulates the graph or

changes display conditions through the left side filtering panel and menus. The molecules tab

contains a brief description about the molecules currently selected from the graph. The corre-

lation tab contains details about the selected correlations relations in the graph. The topologi-

cal information panel displays some statistics regarding the currently displayed molecules

including the number of correlated molecules and the average number of neighbors. The node

degree distribution tab describes the number of neighbors for each molecule in the graph. The

correlation distribution tab displays the distribution of correlations between molecules on the

graph regardless of being visible or not. The last tab is the neighborhood connectivity where it

plots the relationship between the number of neighbors a molecule has and the average degree

of each of those neighbors.

While single-circle layout displays all molecules in one circle, multiple-circle layout (Fig 3)

is used to organize molecules based on the molecular expression data as being up or down reg-

ulated between two user-defined groups. In our specific test case where the two groups were

defined as the control cohort and the test cohort from the fatty acid liver study, this visualiza-

tion provides a very powerful distinction and efficient separation of the molecules based on

their fold change values across the groups.

Quantitative results in the form of molecule concentrations and correlation information for

a selected element can be observed using the sample concentrations plot and the correlation

plot, accordingly (Fig 4). In our specific case, we were interested in molecule 901.7314 that is

strongly interacting with several other molecules. The concentration visualization instantly

provides the attached information for the selected molecule, including its name, label, and

identification information (Fig 4A), and a list of the correlated molecules (Fig 4B) with infor-

mation on their ID, M/Z value, and the correlation value. The correlation graph (Fig 4F) plots

the correlations between any two molecules in 2D space. Each point corresponds to the con-

centration of each sample between the two molecules. It provides important information, such

as the used correlation calculation method and the level of significance on one-tailed and two-

tailed levels. Both those measures are used in order to describe the statistical significance

between the two molecules, assuming a normal distribution. A one-tailed test is used to test

the null hypotheses, which means an initial assumption that the significance is based upon.

The null hypothesis predicts the direction of the difference. A two-tailed test is used to test the
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statistical significance of the null hypotheses. The one-tailed probability is half the value of the

two-tailed probability.

2) Molecular distribution analysis with time-course study

Distribution analysis of molecular expression data enables scientists to integrate experimental

results into one unified display. This creates a more global view of the data across all experi-

ments and facilitates comparative analysis. This feature allows scientists to be shielded from

the merging details and only concentrate on the aggregated information. It plots expression-

data distribution across samples, groups, and time points, with boxplot display, outliers detec-

tion, and data curve fitting using either Robust Linear or Chi square fitting (Fig 5).

Fig 3. Correlation analysis window with multiple circle layout. Three-circle network graph display illustrating the up-regulated molecules in green borer nodes(A),

down-regulated in red border (B), and other (not differentially expressed) molecules with no border (C). The fold change threshold is set at 2, meaning that molecules

regulation that don’t meet this threshold are grouped in the third neutral circle (C). The fold change value can be adjusted accordingly.

https://doi.org/10.1371/journal.pone.0211277.g003
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The comparative and distribution analysis information may be observed using a boxplot

displaying the concentration of the selected molecule across time points while for example, as

in our specific case, applying the Robust Linear fitting (Fig 5B) and a scatter plot of the

Fig 4. Correlation analysis. (A) Meta information for molecule 901.7314. (B) List of correlated molecules. Further molecule details can be invoked by highlighting a

molecule in this list and choosing wither the “Show Element” or “Show Correlation” buttons. (C) Molecular concentration levels across all samples. (D) Concentration

details for molecule 901.7314. (E) Concentration details for correlated molecule 903.7465. (F) Correlation graph showing the expression data of the two molecules. Each

point represents the expression levels of both molecules (x-axis and y-axis) in the same sample.

https://doi.org/10.1371/journal.pone.0211277.g004
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molecules concentrations across all samples (Fig 5C). This provides a refined method of ana-

lyzing how a sample concentration varies for a certain molecule across time points. The inter-

active interface in BioNetApp allows to select/deselect single molecules, samples, and even

time points from the tree view (Fig 5A) to dynamically explore its effect at any given time. The

quantitative results of two sample groups (e.g. control and test) can be observed side-by-side

for efficient comparison of multiple time points and samples (Fig 5D and 5E).

3) Data clustering with time-course study

Data clustering is used to measure how concentrations change for molecules over time and to

cluster similar molecules together based on their concentrations. The basic idea is to capture

similarities between groups of molecules that share similar concentration trends and patterns

and illustrate them across different time spans. The objective is to model the concentrations in

order to discover similarities between the molecules represented in clusters.

Clusters generation passes through a set of phases in order to create the final graph. The

first phase deals with reformulating the internal molecule representation into one molecule

per line on the graph. This means that we represent all the concentrations obtained into one

entry per molecule. This allows us to capture the concentration trends for each molecule across

samples. The next step is to determine similar molecules by performing the clustering.

Several clustering methods are implemented in BioNetApp including Self Organizing Maps

(SOM) and K-Means clustering for identifying clusters of molecules in the data. SOM is a

powerful clustering mechanism used for data mining tasks involving high dimensional data-

sets. It initially populates its clusters by randomly sampling the data based on the initialization

condition and then refines the clusters based on its objective function. K-Means clustering on

the other hand partitions the observations into k clusters with each observation belonging to

the cluster with the nearest mean value. Unlike K-Means, SOM does not require specifying the

number of clusters beforehand. Another advantage of SOM is that it provides some

Fig 5. Comparative and distribution analysis. (A) A tree describing the molecules and their corresponding samples and time points. (B) Box plot displaying the

concentration of a selected molecule across time points while applying the Robust Linear fitting. (C) Concentration distribution plot of the molecule across all samples. (D)

and (E) display the same plots but for two sample groups (control and test) side-by-side for ease of comparison.

https://doi.org/10.1371/journal.pone.0211277.g005
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information on the similarity between nodes in its map. In order for clustering to capture the

similarity between molecules, the input data is modeled one molecule per entry. This configu-

ration allows accommodating of much information and samples as possible for each molecule

in order for the clustering algorithm to discriminate between molecules.

The output of clustering is a numerical representation for each molecule indicating its simi-

lar cluster. The generated clusters are further used in order to plot the clustering graph (Fig 6).

This is done by taking the average concentration for molecules in the same cluster per sample.

Other measures could be used instead of average including the mode, maximum, and mini-

mum concentrations. In our specific test case, clustering was generated to study the differences

Fig 6. Clustering. (A) Clustering averages across all samples, (B) Cluster 2 molecules concentration details across all samples.

https://doi.org/10.1371/journal.pone.0211277.g006
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of the metabolite expression profiles acquired under different physiological conditions, with

temporal analysis focused on the trajectory correlation of each metabolite between the sample

cohorts. Five clusters are detected in the data (Fig 6A), where we were able to quickly identify

interesting patterns. In this example we are interested in molecules that become up-regulated

across groups. Cluster 2 shows the highest expression values while being up-regulated across

time points (samples are sorted on x-axis by time points first, then alphabetically).This analysis

can be taken further by exploring the molecules grouped in this cluster (Fig 6B). This detailed

view offers a quick way to inspect the molecules expression values across samples, in both con-

trol and test groups, and to identify interesting ones. Similar to the functionalities in the distri-

bution plots, two groups can also be set to display two side-by-side graphs representing each

group, to easily compare differences in data patterns across groups and time points. This func-

tionality allowed us great efficiency in studying the data and discovering interesting patters

and behaviors.

Conclusions

The objective of our work is to enhance the experience of users when performing data analysis

with a large amount of data, including time-points, by providing powerful visualization capa-

bilities that are integrated with data mining and statistical techniques. The BioNetApp software

takes data from high volume molecular expression experiments as its input and enables inter-

active visual data mining of molecular correlations, comparative, and clustering analysis with

time-course study. It provides a project management GUI interface that enables users to easily

manage different projects, import experiment data, and manipulate the meta-data associated

with the project and experiment samples.

The correlation functionality supports several visualization features and is presented with

circular and heatmap layouts. The software provides a common framework, allowing presenta-

tion of molecular correlations from multiple omics experiments in a single environment. The

user is capable of intuitively and interactively manipulating the data during visualization, such

as restricting the viewed items based on correlation strength, selecting and hiding nodes,

highlighting neighbors, and selecting molecular expression regulation sub-networks. An infor-

mation panel presents molecule/correlation details, topological information, and graphs for

node-degree distribution, correlation distribution, and neighborhood connectivity. Search can

also be performed to filter out molecules from selection.

BioNetApp also provides the capability for comparative analysis of molecular expression

data through analyzing expression-data distribution across samples, groups, and time points

with a boxplot display, outlier detection, and data curve fitting. It also provides data clustering

features based on molecular concentrations using Self Organizing Maps (SOM), K-Means,

K-Medoids, and Farthest First algorithms, with time-course projections. All produced graphic

presentations can be exported as image files for printing or use in publication, as well as the

molecular correlation information that can be exported in a simple flat text format.

As a data mining tool for molecular expression studies, the BioNetApp software has been

successfully used in our case to indicate elemental level correlations and to investigate the

metabolite abundance changes in alcohol induced fatty liver.

Supporting information

S1 File. BioNetApp.zip. The BioNetApp software including the case-study data and user-

manual.
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