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Since the discovery of Endothelial Progenitor Cells (EPC) by Asahara and colleagues in

1997, an increasing number of preclinical studies have shown that EPC based therapy

is feasible, safe, and efficacious in multiple disease states. Subsequently, this has led to

several, mainly early phase, clinical trials demonstrating the feasibility and safety profile of

EPC therapy, with the suggestion of efficacy in several conditions including ischemic heart

disease, pulmonary arterial hypertension and decompensated liver cirrhosis. Despite the

use of the common term “EPC,” the characteristics, manufacturing methods and subset

of the cell type used in these studies often vary significantly, rendering clinical translation

challenging. It has recently been acknowledged that the true EPC is the endothelial

colony forming cells (ECFC). The objective of this review was to summarize and critically

appraise the registered and published clinical studies using the term “EPC,” which

encompasses a heterogeneous cell population, as a therapeutic agent. Furthermore,

the preclinical data using ECFC from the PubMed and Web of Science databases were

searched and analyzed. We noted that despite the promising effect of ECFC on vascular

regeneration, no clinical study has stemmed from these preclinical studies. We showed

that there is a lack of information registered onwww.clinicaltrials.gov for EPC clinical trials,

specifically on cell culture methods. We also highlighted the importance of a detailed

definition of the cell type used in EPC clinical trials to facilitate comparisons between

trials and better understanding of the potential clinical benefit of EPC based therapy. We

concluded our review by discussing the potential and limitations of EPC based therapy

in clinical settings.

Keywords: endothelial colony forming cells (ECFCs), Endothelial progenitor cell (EPC), clinical translation, clinical

trial, preclinical study

INTRODUCTION

The term “putative endothelial cell progenitors” was pioneered by Asahara et al in their seminal
publication in Science over two decades ago (1). They showed that this cell population can
be successfully isolated from peripheral blood derived mononuclear cells of healthy volunteers,
utilizing magnetic bead positive selection of two cell surface antigens, CD34, and Flk1. They
also demonstrated that EPCs could home specifically to areas of ischemia. This forms the basis
of vasculogenesis, whereby new blood vessels are formed by EPCs or angioblasts, which home,
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differentiate, proliferate, and incorporate into resident mature
vessels in response to various stimuli such as ischemia (2). Prior
to the discovery of this cell population, the principal mechanism
of vascularization after an ischemic event was thought to be
due to the process of angiogenesis, whereby new vessels are
formed by direct migration, differentiation, and proliferation
of the existing mature endothelial cells (3). Furthermore,
the discovery of this novel EPC concept has overturned the
previous dogma which suggested that vasculogenesis could only
occur during embryogenesis. In fact, both vasculogenesis and
angiogenesis may potentially have a synergistic role in postnatal
revascularization.

The new paradigm shift in the understanding of vascular
regeneration has led to multiple publications using the term
“EPC.” Specifically, this term has been widely utilized in
many studies as a surrogate biomarker to assess the risk
of cardiovascular disease in human subjects (4–6) and as a
potential novel therapeutic agent for vascular regeneration (7, 8).
The initial nomenclature of EPC encompasses a heterogeneous
cell population, including early EPC [or circulating angiogenic
cells (CAC), myeloid angiogenic cells (MACs), pro-angiogenic
haematopoietic cells (PACs)] and late EPC [or outgrowth
endothelial cells, endothelial colony forming cells (ECFC)] (9–
12).

Early EPCs typically are cultured on fibronectin coated plates
and appear early in culture (4–7 days). They are defined as
spindled shaped cells with low proliferative potential, with cells
only surviving up to 4 weeks in culture (13, 14). Functionally,
early EPCs neither form a colony in culture nor vessels in vitro in
2D Matrigel assays. They also do not integrate into pre-existing
vessels. Despite this, they have been found to have pro-angiogenic
paracrine capabilities, demonstrated by their ability to increase
the number of tubules formed by mature endothelial cells (13).
Medina et al. showed that early EPCs possessed an expression
profile more similar to monocytes than endothelial cells, with
cells expressing haematopoietic markers (RUNX1,WAS,LYN)
as well as inflammatory markers (TLRs,CD14,HLAs) (12).
Subsequently, Medina et al. showed that early EPCs were of
myeloid origin as opposed to endothelial in origin (10). In
contrast, late EPCs are cultured on collagen coated plates
and tend to appear later in culture (usually after 1 week) as
colonies with well circumscribed monolayers of cells pertaining
a cobblestone morphology. Late EPCs behave functionally like
endothelial cells with the ability to form vessels in 2D Matrigel
angiogenesis assays. They also have an expression profile similar
to mature endothelial cells (CD34+,VE-Cad+,vWF+) but have a
much higher proliferation rate, and survival, with cells surviving
up to 12 weeks. These cells secrete less angiogenic factors
compared to early EPCs (9, 10, 12, 14). A more in depth
comparison of these cell types can be found in a review byHirschi
et al. (15).

A recent Consensus Statement on Nomenclature of
endothelial progenitors has discouraged the current liberal
use of the term “EPCs,” and recommends the term “ECFC”
instead. They have also proposed a more precise characterization
of ECFCs based on a pre-defined cellular phenotype and function
(10). This is a crucial step in defining the term “EPC” which will
lead to the harmonization and standardization of the cell type

used in clinical studies, thus allowing comparisons to be made
across different studies.

The objective of this review was to search the current literature
and critically appraise the current use of EPCs as therapeutic
agents by summarizing: (a) clinical trials using EPCs as a
therapeutic agent currently registered in www.clinicaltrials.gov;
(b) published clinical trials using EPCs as a therapeutic agent; and
(c) the efficacy of ECFCs in preclinical and clinical studies. We
also highlight the potential and limitations of EPC based therapy
in clinical settings.

MATERIALS AND METHODS

Three separate literature searches were conducted to generate
the data presented here (Appendices 1–3). “EPC” was used as
the first search term and this was carried out using the www.
clinicaltrials.gov database, focusing specifically on interventional
therapies only. The second literature search focused on clinical
trials in humans using the term “EPCs” as a therapeutic
intervention using the PubMed and Web of Science databases
published within the last 10 years. The third literature search
(PubMed and Web of Science databases) was performed using
the synonymous names of ECFCs, “Endothelial Colony Forming
Cells or Outgrowth Endothelial Cells or Blood Outgrowth
Endothelial Cells or Endothelial Outgrowth Cells or Late
Endothelial Progenitor Cells or Late Outgrowth Endothelial
Progenitor Cells,” as defined by Medina et al. (10) as the search
term. Results were limited to primary interventional studies
carried out within the last 10 years.

RESULTS

Clinical Trials Using EPCs As Therapeutic
Agent, Registered Under
www.clinicaltrials.gov Registry
A total of 341 clinical trials were found when the term
“EPC” was searched using the www.clinicaltrials.gov registry
(22/09/05 to 12/04/17). Many of the registered trials related
to the assessment of EPCs across various clinical states and
were non-interventional in nature. There are 26 clinical trials
which utilized EPCs as a therapeutic agent currently registered in
www.clinicaltrials.gov (Table 1) with a total of 1,148 participants
expected to be enrolled into the trials. Approximately two
thirds of these registered clinical trials involved patients with
ischemic conditions such as peripheral artery disease (n = 8),
coronary artery disease (n = 7) and ischemic stroke (n = 2).
The remaining conditions registered were pulmonary arterial
hypertension (n = 4), liver cirrhosis (n = 2), lymphodema
(n = 1), erectile dysfunction (n = 1), and traumatic bone defects
(n= 1) (Table 1).

The majority of the 26 registered clinical trials specified
the source for EPC in the registry (n = 19), such as bone
marrow derived (n = 9) or peripheral blood derived (n = 10),
but only 10 trials specified the cell surface markers used for
EPC definition in the registry, including CD133+(n = 7),
CD34+(n = 2), and CD14−(n = 1). The status of half of
these trials were labeled as “complete” (n = 12). Two trials
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TABLE 1 | Clinical trials using EPCs as therapeutic agent, registered under www.clinicaltrials.gov registry (22nd Sept 2005–12th Apr 2017).

NCT Condition Phase n Cell type Cell surface

marker(s)

Cell culture

condition

Status Sponsor(s) Published

results

NCT00936819 Acute

Myocardial

Infarction

II 100 PB-EPCs or

eNOS-EPCs

CD31, CD34,

CD14, CXCR4,

VEGFR2

2-3 days

culture in

fibronectin

coated plates

Recruiting Ottawa Hospital

Research Institute

NR

NCT01049867 Coronary

Artery

Disease

I/II 10 BM-EPCs CD133+ NR Unknown Hospital y Clinica

OCA, S.A. de C.V.

NR

NCT00384514 Coronary

Artery

Disease

II 24 PB-EPCs NR NR Unknown TheraVitae Ltd NR

NCT00289822 Coronary

Artery

Disease

II 75 PB-EPCs NR 0 or 3 days

culture

Terminated Johann Wolfgang

Goethe University

Hospital

De Rosa

et al. (16)

NCT00629096 Dilated

Cardiomyopathy

II 27 BM-MNCs NR NR Completed Fundación Pública

Andaluza Progreso

y Salud

NR

NCT00221182 Heart Disease I/II 1 PB-EPCs CD34+ NR Terminated Foundation for

Biomedical

Research and

Innovation

NR

NCT00694642 Refractory

Angina

I/II 28 EPCs CD133+ N/A Completed Pilar Jimenez

Quevedo

Jimenez-

Quevedo

et al. (17)

NCT02605707 Chronic

Ischemic

Stroke

I/II 30 EPCs NR NR Unknown Southern Medical

University, China

NR

NCT01468064 Ischemic

Stroke

I/II 20 BM-EPCs NR NR Unknown Southern Medical

University, China

NR

NCT01595776 Critical Limb

Ischemia

I/II 8 PB-EPCs CD133+ NR Completed IRCCS Policlinico

S. Mattteo

Arici et al.

(18)

NCT02454231 Critical Limb

Ischemia

II/III 45 PB-EPCs CD14+, CD34+ NR Completed University of

Florence

NR

NCT00523731 Critical Limb

Ischemia

I 6 PB-EPCs NR Cells cultured

in X-vivo 15

serum free

medium

supplemented

with

autologous

human

serum, VEGF

and heparin

for 5 days

Completed TheraVitae Ltd Mutirangura

et al. (19)

NCT02287974 Critical Limb

Ischemia

I/II 20 BM-EPCs CD133+ NR Active Andalusian

Initiative for

Advanced

Therapies -

Fundación Pública

Andaluza Progreso

y Salud

NR

NCT02474381 Diabetic Foot NR 60 EPCs CD133+ NR Unknown Shanghai 10th

People’s Hospital

Zhang

et al. (20)

NCT00221143 No Option

Critical Limb

Ischemia

I/II 15 PB-EPCs CD34+ NR Completed Translational

Research

Informatics

Centre, Kobe,

Hyogo, Japan

Kawamoto

et al. (21),

Kinoshita

et al. (22)

(Continued)
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TABLE 1 | Continued

NCT Condition Phase n Cell type Cell surface

marker(s)

Cell culture

condition

Status Sponsor(s) Published

results

NCT02915796 Peripheral

Arterial

Disease

I 345 PB-EPCs CD133+ Mononuclear

cells isolated,

re-suspended

in RPMI-1640

and then

injected into

the ischemic

area

Recruiting Shanghai 10th

People’s Hospital

Huang

et al. (23)

NCT00306085 Peripheral

Atherosclerosis

I 20 BM-Cells CD34+ Cells sorted

by the

MarrowXpress

system and

immediately

transplanted

Unknown University of

Naples

Malone

et al. (24),

Cobellis

et al. (25)

NCT00641836 Idiopathic

PAH

NR 98 PB-EPCs VE-Cad+, KDR+,

CD34+, AC133+
Cultured on

fibronectin

coated flasks

in Medium

199 for 5

days

Completed Zhejiang University NR

NCT00257413 Idiopathic

PAH

NR 31 PB-EPCs VE-Cad+, KDR+,

CD34+, AC133+
Cultured on

fibronectin

coated flasks

in Medium

199 for 5

days

Completed Zhejiang University Wang et al.

(26)

NCT00372346 Idiopathic

PAH

NR 40 PB-EPCs vWF+, CD31+,

CD34+
Cultured on

fibronectin

coated flasks

in EGM-2 for

10-14 days

Unknown Zhejiang University NR

NCT00469027 PAH I 7 PB-eNOS-

EPCs

CD14+, CD31+ Isolated and

cultured on

fibronectin

coated flasks

for 7-12 days

Completed Northern

Therapeutics

Granton

et al. (27)

NCT01333228 Liver Cirrhosis I/II 14 BM-EPCs CD31, CD34,

CD14, VEGFR-2,

VEGFR-1, CD133,

CD90, CD117,

vWF, CXCR1,

CD45, ID1

BM-EPCs

isolated via

Ficoll

gradient,

cultured on

fibronectin

coated plates

in endothelial

complete

medium for 4

days

Completed Clinica Universidad

de Navarra +

Universidad de

Navarra

D’Avola

et al. (28)

NCT03109236 Liver Cirrhosis III 66 BM-EPCs CD133+ NR Recruiting National University

Hospital,

Singapore

NR

NCT01112189 Lymphedema I/II 20 BM-EPCs NR NR Completed Hospital

Universitario Dr.

Jose E. Gonzalez

Maldonado

et al. (29)

NCT01089387 Post

Prostatectomy

Erectile

Dysfunction

I/II 18 BM-MNCs NR NR Completed Institut National de

la Santé Et de la

Recherche

Médicale, France

NR

NCT03103295 Traumatic

Bone Defects

I/II 20 PB-EPCs NR Cultured in

EGM

Active A.A. Partners, LLC Vasyliev

et al. (30)

BM, Bone Marrow; eNOS, Endothelial Nitric Oxide Synthase; EPCs, Endothelial Progenitor Cells; MNC, Mononuclear Cells; N/A, Not Applicable; NR, Not Reported; PAH, Pulmonary

Arterial Hypertension; PB, Peripheral Blood.
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were labeled as “terminated.” Slow recruitment was noted for
one of these two trials (NCT00221182). The other trial was
subsequently published (NCT00289822) (16). The remaining
trials were labeled as “active” (n = 2), “recruiting” (n = 3), and
“unknown” (n= 7).

The results of this search showed that the term “EPC” has
been widely used to encompass a heterogeneous population of
cells. In addition, these results also highlight the paucity of
information registered within the www.clinicaltrials.gov for these
clinical trials, thereby preventing direct comparison with other
trials. A detailed definition of the cell type used in clinical trials
is warranted, to facilitate better understanding of the potential
clinical benefit of EPC based therapy.

Published Clinical Trials Using EPCs As the
Therapeutic Agent
Five relevant published clinical trials using EPCs were found
following the PubMed and Web of Science database searches
(01/05/2008 to 01/05/2018). These clinical trials involved various
disease states including peripheral arterial disease (31, 32),
coronary artery disease (33), pulmonary hypertension (34), and
liver cirrhosis (28) (Supplementary Table 1). Despite using the
term “EPC” as a therapeutic agent, the cell types used in all the
five published trials differ, specifically, in their methods of cell
isolation and culture, as well as the cell surface markers used for
phenotypic characterization. Furthermore, the cell dose, and the
route of administration varies between trials.

Lara-Hernandez et al. showed that intramuscular
administration of EPCs into the ischemic limbs of 28 patients
with no-option critical limb ischemia was safe and feasible (31).
They used 50 mls of G-CSF mobilized blood and then selected
for CD34+ and CD133+ cells. This treatment resulted in a
significant reduction in the pain score of no option CLI patients
with increased tissue perfusion and no adverse effects noted after
a follow-up of 14 months (31). Tanaka et al. also isolated EPCs
from G-CSF mobilized blood, but selected for CD34+ EPCs
prior to intramuscular administration into non-healing diabetic
feet. They demonstrated the safety of EPC therapy, no serious
adverse events noted, coupled with increased vascular perfusion
and complete wound closure after∼18 weeks (32).

Zhu et al. demonstrated the safety and feasibility of EPCs by
injecting thymosin β1 pre-treated EPCs, into patients with ST
segment elevated myocardial infarction, with some efficacy data
showing improved exercise capacity and left ventricular function
after 6 month follow-up (33). The EPCs used by Zhu et al.
were cultured on fibronectin and phenotypically characterized
as VE-Cadherin+, KDR+, CD34+, and CD133+ (33) cells.
Similarly, Zhu et al demonstrated the safety and feasibility of
intravenously administered CD34+, CD133+, and KDR+ EPCs
into children with idiopathic pulmonary arterial hypertension
(IPAH). Although safety was their primary endpoint, significant
increases in exercise capacity and pulmonary hemodynamics
were also noted (34).

D’Avola et al. showed that a single administration of EPCs
(maximum of 100 × 106 cells) via the hepatic artery in 12
patients with decompensated liver cirrhosis is safe and feasible

(28). No treatment-related severe adverse events were seen
for up to 1 year of follow up. Extensive characterization of
EPCs was performed following 7 days of ex vivo culture of
fibronectin adherent mononuclear cells (from 50-100mls of bone
marrow aspirate) using extensive cell surface markers (CD31,
CD34, CD14, VEGFR2, VEGFR1, CD133, CD90, CD117, vWF,
CXCR4, ID1, and CD45) and functionality assessment with DiL-
acetylated-LDL cholesterol uptake and lectin binding capacity as
well as demonstration of tube-structure formation over Matrigel
matrix (28).

While some of the clinical data from Table 1 was published,
several of these papers were not included in this section for
overall analysis for the following reasons: one paper did not use
the term EPC but instead used the term “angiogenic precursor
cells” (19), five papers included cells identified only using a
single cell surface marker [e.g., CD133+ (17, 18, 20) or CD34+

(21, 29)], and one did not specifically define the cell type
(24). It was concluded that these papers could not be classified
according to our search criteria as being interventional EPC
studies, and thus excluded. Two papers were published beyond
the date range specified in our search (23, 26). Finally, two
other papers from Table 1 met our classification criteria did
not appear in our literature search (27, 30). Granton et al.
used 7–50 × 106 peripheral blood eNOS modified EPCs for
pulmonary arterial hypertension and showed an improvement
in pulmonary resistance after treatment (27), whereas Vasyliev
et al. used 20–60× 106 autologous peripheral blood derived EPCs
in a scaffold of allogeneic bone and fibrin gel for bone fracture
repair and demonstrated an improvement in bone regeneration
(30). Of note, neither study had a control group to compare
against.

Overall, all trials were single arm trials, with four of the five
published trials being early phase clinical trials and demonstrated
safety and feasibility of EPC therapy. Only Zhu et al. conducted a
randomized controlled trial (33).

Efficacy Data Using ECFCs
In the previous sections, we examined human interventional
studies using “EPCs” as a therapeutic but had noted that
the field is moving toward a cell type that is considered
to be the “true EPC.” Thus, we examined the published
data on ECFCs, the novel and “bone-fide” EPC, using the
PubMed and Web of Science databases. From our search
using all the relevant search terms, only 39 out of 1,316
papers retrieved used hECFCs as an interventional therapy
in preclinical models (01/05/2008 to 01/05/2018) (Table 2).
The majority of the published articles assessed the potential
therapeutic role of ECFC in ischemic disease models including
hindlimb ischemia (n = 20), cerebral ischemia (n = 4), retinal
ischemia (n = 2), myocardial ischemia (n = 2), ischemic
acute kidney injury (n = 1) and ischemic reperfusion injury
(n = 1). However, ECFCs were also being investigated for
other conditions such as islet graft retention (n = 3), vascular
injury (n = 2), pulmonary arterial hypertension (n = 1),
bronchopulmonary dysplasia (n = 1) and traumatic brain injury
(n = 2). In these 39 papers, hECFCs were predominantly
derived from the umbilical cord (n = 31), followed by
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peripheral blood (n = 6) (Table 2). However, despite a robust
preclinical evidence to suggest the efficacy of ECFCs in several
conditions, this cell type has yet to be tested in human clinical
trials.

Medina et al. highlighted the importance of ECFC
identification with more than one surface marker (10).
Despite the use of the term “ECFC,” four preclinical studies
did not confirm the identity of ECFCs using surface expression
markers, with eight studies utilizing only one surface expression
marker. Of the papers which used multiple markers, the most
commonly used surface markers were: CD34+ (n = 11),
CD31+ (n = 16), VEGFR2/KDR+ (n = 13), and CD45−

(n= 14).

DISCUSSION

The results of our literature search showed that the term
“EPC” has been widely used to encompass a heterogeneous
population of cells in both the published and registered
clinical studies, thereby, rendering direct comparison amongst
studies impossible. Our findings also highlight the paucity of
information registered within www.clinicaltrials.gov for these
clinical trials, specifically, the cell phenotype that is being tested.
Approximately half of the EPC clinical trials (11 out of 26 trials)
did not define the culture conditions used for their therapeutic
product, and a majority of the trials (17 out of 26 trials) did
not specify the cell surface markers used to characterize the cell
therapy product used in their trials. Whilst the results frommany
of the ongoing clinical trials are yet to be published/released,
only 12 out of 26 trials have reached the completion
phase.

From the published EPC human clinical trials, there is a
marked inconsistency in terms of the culture conditions and
characterization of EPCs with D’Avola et al. and Vasyliev et al
using multiple different cell surface markers to identify the EPCs
they used (28, 30), Lara-Hernandez et al. and Granton et al using
two cell surface markers (27, 31), Tanaka et al. only utilizing one
cell surface marker (32), and Zhu et al. and Zhu et al. did not
mention the marker used for defining the EPCs in their studies
(33, 34). This lack of standardizationmakes it difficult to compare
the results of different clinical trials and will in the future hinder
the translation of these therapies into medical practice. A similar
lack of consistency is again observed with the methods to culture
EPCs with some reports administering EPCs without prior
culture (31, 32), some culturing on fibronectin before re-injection
into the patient (27, 28, 33, 34), and Vaysilev et al. culturing
cells on uncoated flasks with EGM-2 medium (30). Despite the
positive results from the above papers, EPC therapy is still limited
by the immunogenicity of allogeneic EPCs, along with its poor
definition, isolation and expansion standardization, as outlined
above.

From the above data it is clear that a detailed definition of
the cell type used in clinical trials is warranted, to facilitate
better understanding of the potential clinical benefit of EPC
based therapy. Consistent with the recommended nomenclature
by Medina et al. the term “ECFC,” a more accurate description

of a specific cell type within the EPC population can be carried
out, allowing the standardization of cell definition for potential
therapeutic use (10).

In fact, currently, there are an increasing number of preclinical
studies which have demonstrated the efficacy of ECFCs in
various disease models (36, 40, 56, 59, 61, 65, 68, 73). These
studies predominantly focus on ischemic conditions such as
limb ischemia, cerebral ischemia, myocardial ischemia, ischemic
reperfusion injury, and ischemic kidney injury. The likely reason
for this is beyond the scope of this review article but it may
be related to the angiogenic effect of these cells, which facilitate
the revascularization in these ischemic states; however these
cells may have other unexplained therapeutic effects, which may
not be related to its angiogenic properties. However, similar to
EPC studies, there is a lack of standardization of cell surface
markers and culture protocols when producing ECFCs for
therapeutic intervention between the different studies. This lack
of standardization, while addressed by Medina et al. (10), has not
yet been fully adopted by the field of vascular regeneration.

The ability to successfully isolate ECFCs is crucial prior to
its consideration for clinical use. We and others have previously
published methods for ECFC isolation (74–78). However, the
yield of ECFCs varies depending on the method used (9).
Most methods used collagen as the matrix molecule for cell
seeding, rather than fibronectin, suggesting that the former
molecule is a better cell selection method (74–78). Direct
comparison between collagen and fibronectin by Colombo
et al. showed the contrasting impact of the type of matrix
molecule used for cell seeding on the pharmacodynamics of
ECFC colonies. Seeding cells on fibronectin, as compared
with collagen, resulted in earlier appearance of ECFC
colonies. In contrast, ECFC colonies cultured on collagen
demonstrated a better cell proliferation and lifespan, which
might be IL-6 and IL-8 dependent (79). Interestingly, the
immunophenotype and the ability for in vitro tubule formation
remains similar despite the type of matrix molecule used for cell
seeding (79).

Tasev et al. have further refined the ECFC isolation method
with better cell expansion rates using platelet lysate supplemented
culture medium, for large scale propagation for potential clinical
use (80). Hofmann et al. have also described an easily applicable
method for isolating ECFCs directly using adult human blood
to generate more than 100 million functional ECFCs (77). They
collected 5ml of peripheral blood from patients and plated
directly into a T75 flask discarding supernatants at various
time points to remove any blood cells that were not ECFCs.
Their method used human platelet lysate, thereby making
it a xeno-free protocol, and they were able to consistently
isolate and expand ECFCs up to 30 population doublings
(81). Moreover, using the culture method outlined in their
paper, ECFCs can be cryopreserved without resulting in
genomic instability or changes in cell phenotype and function
(81).

Siegel et al. have successfully produced an ECFC product
by leukapheresis of peripheral blood in accordance with Good
Manufacturing Products (GMP) standard (82). Their isolation
method can produce approximately 1.44 × 108 ECFC per
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TABLE 2 | Preclinical work using ECFCs as a therapeutic agent.

Condition Cell source Cell number Cell surface

marker(s)

Administration

method

Recipient n Outcome References

Hind Limb

Ischemia

hUC-ECFCs

or EPO

Primed

hUC-ECFCs

1 × 105 CD131+, EPOR+ IV Athymic Nude

Mice

5–7 Primed ECFCs have

improved graft

efficiency, improved cell

survival and improved

angiogenic potential

Bennis et al.

(35)

Hind Limb

Ischemia

hUC-ECFCs 1 × 105 CD34+, CD31+,

Tie-2+, KDR+,

Flt-1+, CD144+,

CD14−, CD45−

IV Athymic Nude

Mice

10 Improved residual

muscle blood flow and

increased collateral

vessel formation

Sarlon et al.

(36)

Hind Limb

Ischemia

hUC-ECFCs 1 × 106 CD34, CD146,

CD45, KDR

IM injection to 3

sites (In 10 mice

VEGF was

blocked)

C57BL/6N

mice

50 ECFC treated mice

showed significantly

better outcomes in

recovery quality and

length

Flex et al.

(37)

Hind Limb

Ischemia

hUC-ECFCs 1 × 105 CD34+, CD31+,

Tie-2+, KDR+,

Flt-1+, CD144+,

CD14−, CD45−

IM injection to

ischemic area

Athymic nude

mice

6 Improved blood flow Mena et al.

(38)

Hind Limb

Ischemia

hUC-ECFCs 1 × 106 NR Injection into

three sites (20

µl/each site) of

the gracilis

muscle in the

medial thigh three

times/ week

Male

C57BL/6J

mice

8 Improved blood flow Kim et al.

(39)

Hind Limb

Ischemia

hUC-ECFCs 1 × 105 cells

dissolved in 500 µl

of PBS

CD34+ IV NOD/Shi-scid,

IL-2Rγnull

mice

15 Improved blood flow Goto et al.

(40)

Hind Limb

Ischemia

hUC-ECFCs (i) CAC-CM (50 µl)

(ii) ECFC-CM (50

µl) (iii) ECFC (2 ×

105 cells/50 µl),

(iv) CAC (106

cells/50 µl), (v) a

mix containing

CAC-CM (25 µl)

and ECFC

suspension

(105cells/25 µl), or

(vi) a mix

containing CAC

suspension (5 ×

105cells/25 µl)

and ECFC-CM (25

µl)

CD31+, CD144+,

KDR+, VEGF+,

Flk-1+, CD14−,

CD45−

Matrigel

implantation into

ischemic site

C57BL/6N

mice

3 Endothelial cell

retention and vascular

maturation

Odent

Grigorescu

et al. (41)

Hind Limb

Ischemia

hUC-ECFCs 5 × 105 cells (IM)

or 1 × 106 cells

(IV)

CD34+, vWF+,

CD133+, KDR+,

CD31+, c-kit+,

CXCR4+,

CD144+, eNOS+,

p-eNOS+,

VEGFR2+

IM or IV injection Balb/C Nude

Mice

5 Significantly enhanced

blood perfusion,

capillary density,

proliferation and

angiogenic cytokine

secretion

Lee et al.

(42)

Hind Limb

Ischemia

hUC/PB-

ECFCs &

hMSCs

NR CD31+, KDR+,

CD34+
IV Nude Mice 8–10 Enhanced

neovascularization

Schwarz

et al. (43)

Hind Limb

Ischemia

hUC-ECFC 1 × 105 CD34+ IV Type 2 diabetic

C56BL/6 J

male athymic

Nude mice

6 Increased blood flow

recovery and vascular

density, with reduced

inflammation

Mena et al.

(44)

(Continued)
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TABLE 2 | Continued

Condition Cell source Cell number Cell surface

marker(s)

Administration

method

Recipient n Outcome References

Hind Limb

Ischemia

Egfl7

repressed

hUC-ECFCs

1 × 105 CD31+, CD34+,

CD144+,

CD133−, CD45−,

CD90−

IV Athymic nude

mice

14 Improved

revascularisation

D’Audigier

et al. (45)

Hind Limb

Ischemia

hUC-ECFCs

treated with

epigenetic

drugs

(GSK-343

and

panobinostat)

5 × 105 CD31+, CD34+,

CD45−
IM NOD/SCID

and athymic

nude CD1

female mice

7–8 Increased

vasculogenesis

Fraineau

et al. (46)

Hind Limb

Ischemia

hBM-MSC

conditioned

medium +

hUC-ECFCs

1 × 105 CD34+, CD144+,

CD146+, KDR+,

CD45−, CD14−

IV NMRI-nude

mice

6 Increased blood

perfusion

Poitevin

et al. (47)

Hind Limb

Ischemia

Trichostatin A

treated

hUC-ECFCs

5 × 105 CD34+, CD31+,

CD105+,

CD144+,

VEGFR2+, vWF+,

CD45−, CD14−

IM Athymic nude

CD1 female

mice

3–4 Enhanced vascular

repair capacity

Palii et al.

(48)

Hind Limb

Ischemia

hUC-ECFCs 1 × 106 CD31+, Flk+,

vWF+, eNOS+,

phospho-eNOS+

IV Male

C57BL/6J or

BALB/c-nu/nu

mice

8 Improved

neovascularization and

limb salvage

Heo et al.

(49)

Hind Limb

Ischemia

α6

knockdown

hUC-ECFCs

1 × 105 CD31+, CD34+,

CD144+,

CD146+, CD45−,

CD14−

IV Male athymic

nuce Foxn-1

mice

5 No ECFC integration or

neovascularization

Bouvard

et al. (50)

Hind Limb

Ischemia

BMP2 or

BMP4 treated

hUC-ECFCs

+ hPB-ECFC

NR VEGFR2+,

CD31+, CD34+,

CD45−, CD14−

IV Nude mice NR Increased therapeutic

potential of ECFCs

exposed to BMP

Smadja

et al. (51)

Hind Limb

Ischemia

PB-ECFCs

derived from

white

European and

south Asian

males

3 × 105 CD31+, CD144+,

CD146+,

CD309+, CD45−,

CD14−

IV Male

immunodefic-

ient CD1 nude

mice

5 Superior recovery in

ECFCs from white

European compared to

those from South Asian

men

Cubbon

et al. (52)

Hind Limb

Ischemia

Non-diabetic

controls

(young + age

matched) +

type 2

diabetic

hPB-ECFCs

treated with

globular

adiponectin

5 × 105 CD34+, CD31+,

VEGFR2+
IV Diabetic

female athymic

NMRI nu/nu

mice

4–8 Increased and

prolonged

neovascularization in

adiponectin treated

diabetic ECFCs

compared to untreated

diabetic ECFCs

Leight et al.

(53)

Hind Limb

Ischemia

ECFCs +

hBM-MSCs

NR (1:1 ratio) NR Retro-orbital

injection

Athymic male

nude mice

6–7 Significantly higher

vessel perfusion in

ECFC only group, and

significantly higher

density and foot

perfusion after

co-transplantation

Rossi et al.

(54)

Ischemic

retina

hUC-ECFCs 1 × 103, 1 × 104,

1 × 105
CD31+, CD105+,

CD14−, and

CD45−

Intravitreal

Delivery

P13 mice 1–8 Low dose cohort

showed best

improvement

Reid et al.

(8)

(Continued)
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TABLE 2 | Continued

Condition Cell source Cell number Cell surface

marker(s)

Administration

method

Recipient n Outcome References

Ischemic

retina

Low passage

and late

passage

hPB-ECFCs

+

hUC-ECFCs

NR VEGFR2+,

Caveolin

1+,CD45−,

CD14−, CD31+,

CD105+,

CD146+, CD34+

Intravitreal

injection

C57BL/6 mice 6 Late passage ECFCs

had impaired

vasoreparative

properties

Medina

et al. (55)

Ischemic

Myocardium

OECs 5 × 106 CD45−, CD133+ Intramyocardial

injection

Rabbits 8 Improved cardiac

function

Tan et al.

(56)

Myocardial

Infarction

hUC-ECFCs 5 × 106 CD31+, CD34+,

CD105+,

CD144+,

CD146=, KDR,

Tie-2+, CD45−

Intramyocardial

injection

Male Sprague-

Dawley

rats

5 Increased angiogenesis

and improved cardiac

function

Kim et al.

(57)

Ischemia

Reperfusion

Injury

hUC-ECFC +

MPCs

2 × 106 (2:3) CD31+ Intracoronary

injection

Nude Rats 3–17 Higher LV dimensions,

higher heart weight to

tibia length ratio.

Improved cardiac

function

Kang et al.

(58)

Ischemic AKI hUC-ECFCs 1 × 106 CD31+,

VEGFR2+,

CD45−, CD14−,

CD133−

IV Male

NOD-SCID

(NOD.CB17-

Prkdcscid/J)

5-7 ECFCs protect against

ischemic AKI damage

Burger et al.

(59)

Vascular

Injury

MSC derived

ECFCs

5 × 105 CD133+ CD34+

KDR+, vWF+,

CD31−, CD45−

IV through tail

vein

Male nude

mice

120 Accelerated

re-endotheliazation and

inhibits neointimal

hyperplasia

Wang et al.

(60)

Vascular

Injury

hPB-ECFCs

pretreated

with

recombinant

BMP4

5 × 105 CD31+, KDR+,

Tie-2+
IV Male

NRMInu/nu

athymic nude

mice

5 Accelerated endothelial

repair capacity

Xia et al.

(61)

Traumatic

Brain injury

hUC-ECFCs 3 × 105 CD34+, KDR+,

vWF+, VE-Cad+,

UEA-1+

Intra-

cerebroventricular

Infusion

Balb/C Nude

Mice

36 Reduced Evans blue

extravasation, reduced

brain water content.

Increased

microvascular density.

Improved neurological

function

Huang et al.

(62)

Traumatic

Brain injury

hUC-ECFC 1 × 106 CD31+, vWF+,

VE-Cad+
IV Balb/C Nude

Mice

21 Improved rate of

neurologic disability.

Increased microvessel

density and

proangiogenic growth

factors SDF-1 + VEGF

Zhang et al.

(63)

Cerebral

Ischemia

hUC-ECFCs 4 × 106 CD146+ IV via tail vein Adult male

Sprague–

Dawley

rats

33 Erythropoietin primed

ECFCs showed best

improvement

Garrigue

et al. (64)

Transient

Focal

Cerebral

Ischemia

hUC-ECFCs

+ EPO

5 × 106 NR IV Sprague-

Dawley

Rats

24 Completely restored

neurological function

Pellegrini

et al. (65)

Stroke

(Middle

Cerebral

Artery

Occlusion)

hUC derived

ECFCs

4 × 106 CD54+, CD31+,

CD146+, CD34+,

CD144+, KDR+

CD45−, CD14−,

CD133−

IV via femoral vein Adult male

Sprague-

Dawley

rats

4–37 Improved functionality Moubarik

et al. (66)

Ischemic

Stroke

hUC-ECFCs 1 × 106 CD31+, CD34+,

VEGFR2+,

CD133−

Injected into the

left ventricle

Male

BALB/c-nu

mice

NR Functional recovery,

improved angiogenesis

+ neurogenesis with

reduced apoptosis

Ding et al.

(67)

(Continued)
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TABLE 2 | Continued

Condition Cell source Cell number Cell surface

marker(s)

Administration

method

Recipient n Outcome References

Islet Graft

Retention

hPB-ECFC 5 × 105 NR Infra-Kidney

Transplantation

Hypergylcaemic

NOD-SCID

Mice

6-9 Improved β-cell survival

and graft-vessel and

β-cell volume

Coppens

et al. (68)

Islet Graft

Retention

hUC-ECFCs 6 × 105 CD31+,

VE-Cad+,

CD105+, vWF+,

KDR+

Infra-Kidney Islet

Transplantation

Balb/C Nude

Mice

6-7 Absence of blood

inflammatory reaction

Kim et al.

(69)

Islet Graft

Retention

hUC-ECFCs NR VE-Cad+, KDR+,

Flt-1+, eNOS+,

vWF+, CD31+

Intraportal Islet

Transplantation

Diabetic

Balb/C Nude

Mice

23 Improved rate of

neurologic disability.

Increased microvessel

density and

proangiogenic growth

factors SDF-1 + VEGF

Jung et al.

(70)

PAH hPB-ECFCs

and

hPB-EPCs

1.5 × 106 CD31+, KDR+,

CD14−, CD34+
IV Male nude rats 4–22 ECFCs had poor

retention and no

efficacy. EPCs resulted

in right ventricular

hypertrophy and

increased right

ventricular systolic

pressure

Ormiston

et al. (71)

BD hUC-ECFCs 1 × 105 into mice,

2.5 × 105 into rats

CD31+, CD105+,

CD144+,

CD146+, CD14−,

CD45−

IV Rag–/– mice

and RNU nude

rats

5 No adverse effects with

improvements in lung

structure, exercise

capacity and

pulmonary

hypertension

Alphonse

et al. (72)

AKI, Acute Kidney Injury; BD, Bronchopulmonary Dysplasia; BM, Bone marrow; BOEC, Blood Outgrowth Endothelial Cells; CACs, Circulating Angiogenic Cells; CM, Conditioned Media;

IM, Intramuscular; IV, Intravenous; KDR, Kinase Insert Domain Receptor; LV, Left Ventricular; MPCs, Mesenchymal Progenitor Cells; m/r/pECFCs, Murine/Rabbit/Porcine Endothelial

Colony Forming Cells; MSCs, Mesenchymal Stem Cells; NR= Note reported; OECs, Outgrowth Endothelial Cells; PAEC, Pulmonary Arterial Endothelial cells; PAH, Pulmonary Arterial

Hypertension; PB, Peripheral Blood; PMVEC, Pulmonary microvascular endothelial cells; SDF-1, Stromal Cell-Derived Factor-1; UC, Umbilical Cord; vWF, VonWillebrands Factor;

VE-Cad, Vascular Endothelial Cadherin; VEGFR2, Vascular Endothelial Growth Factor Receptor 2.

white blood cell, following leukaparesis of up to 6.8 liters
of peripheral blood. These ECFCs showed a significant Dil-
AcLDL uptake and showed CD29+, CD31+, CD34+, CD44+,
CD105+, CD117+, CD133+, CD144+, CD146+, and VEGFR2+

expression. Furthermore, they showed that their ECFCs could
reach up to twelve cumulative population doublings. More
importantly, these ECFCs showed no evidence of telomerase
activity, as well as capable of in vitro tubule formation and
secretion of epidermal growth factor, HGF, VEGF-A, platelet
derived growth factor-B, IL-8, and monocyte chemoattractant
protein-1 (82).

The major limitations of ECFC therapy are the long
culture times to generate a therapeutic dose, due to its
low frequency in peripheral and cord blood, and that it
can only be administered in an autologous fashion due
to its inherent immunogenicity. Furthermore, despite the
potential for ECFC cryopreservation for future use, the
intrinsic function of autologous ECFC may be impaired due
to the underlying diseased state such as diabetes mellitus,
with Jarajapu et al. reporting to be able to isolate ECFC
from three in every ten diabetic patients, compared to eight
out of nine in non-diabetic controls (83). However, ECFCs
can be genetically modified to augment their function in

vivo which may facilitate correction of disease-induced cell
dysfunction. Examples of genetic modification include β1
integrin overexpression to improve blood perfusion in CLI (40),
erythropoietin overexpression to promote erythropoiesis (84), or
GSK-3β inhibition which improves the angiogenic capabilities of
ECFCs (85).

In addition to genetic modification, ECFCs can be combined
with other cell types to improve a specific aspect of ECFC therapy,
such as combining them with mesenchymal stem cells (MSCs)
or mesenchymal progenitor cells to reduce the immunogenic
effect of allogeneic ECFCs and to increase cell survival post
transplantation (86). This is due to the anti-inflammatory
effects of mesenchymal stem cells. Reports have also noted that
MSCs can differentiate into pericyte like cells which act to
stabilize the vasculature formed (86–90). Based on the results
of the above studies, next generation vascular cell therapies
will likely consist of genetically modified ECFCs or ECFC
combination.

CONCLUSIONS

To date, EPC based therapy has been shown to be feasible
and safe with suggestion of efficacy. However, it is important
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to note that only one trial included a control arm. While
EPCs have been previously the favored cell type utilized
for vascular therapeutics, they consist of a heterogeneous
population of cells which will produce challenges in terms
of GMP compliant cell manufacturing and definition of a
cell product. “ECFCs,” as defined by Medina et al. have
several advantages over EPCs as a therapeutic product, as
outlined above, including being a more defined cell type
with enhanced proliferation, and possessing the ability to
form new vessels, while also integrating into pre-existing
vasculature. The use of ECFCs facilitates the harmonization
and standardization of the cell type used in clinical studies,
allowing direct comparison between studies (10). To translate
ECFCs into routine clinical practice, issues surrounding their
immunogenicity will need to be overcome, along with the
issues regarding the standardization of markers used to identify
them. To date, there have been no clinical trials using this cell
type.
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