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Abstract: The lack of reliable biomarkers is a significant challenge impeding progress in orphan
drug development. For appropriate interpretation of intervention-based results or for evaluating
candidate biomarkers, other things being equal, lower variability in biomarker measurement would
be helpful. However, variability in rare disease biomarkers is often poorly understood. Type 1
Gaucher disease (GD1) is one such rare lysosomal storage disorder. Oxidative stress and inflammation
have been linked to the pathophysiology of GD1 and validated measures of these processes can
provide predictive value for treatment success or disease progression. This study was undertaken to
investigate and compare the extent of longitudinal biological variation over a three-month period
for various blood-based oxidative stress and inflammation markers in participants with GD1 on
stable standard-of-care therapy (N = 13), treatment-naïve participants with GD1 (N = 5), and in
age- and gender-matched healthy volunteers (N = 18). We utilized Bland–Altman plots for visual
comparison of the biological variability among the three measurements. We also report group-wise
means and the percentage of coefficient of variation (%CV) for 15 biomarkers. Qualitatively, we show
specific markers (IL-1Ra, IL-8, and MIP-1b) to be consistently altered in GD1, irrespective of therapy
status, highlighting the need for adjunctive therapies that can target and modulate these biomarkers.
This information can help guide the selection of candidate biomarkers for future intervention-based
studies in GD1 patients.

Keywords: Gaucher disease; oxidative stress; inflammation; biomarkers; variability; therapy;
Bland–Altman

1. Introduction

Type 1 Gaucher disease (GD1) is rare, yet the most common autosomal recessive
lysosomal storage disorder [1]. It is caused by mutations in the GBA1 gene leading to gluco-
cerebrosidase (GCase) enzyme deficiency [2]. Additionally, there is evidence of misfolded
GCase protein exacerbating the effects of accumulation of its substrates (glucosylceramide
and glucosylsphingosine) [3,4]. An abnormal accumulation of glycosphingolipids within
the lysosomes results in the appearance of pathological ‘Gaucher cells’, the hallmark sign
of GD1, leading to hepatosplenomegaly [5–8]. Gaucher disease is a multisystem disorder
that spans beyond the liver and spleen and includes immune and oxidative imbalances,
contributing to the local and systemic manifestations. Involvement of inflammation and
oxidative stress, either of primary or indirect importance in the complex manifestations of
GD, has long been speculated, hypothesized, and studied [9–12].

In the United States, five treatments are FDA-approved for treating the non-neuronopathic
manifestations of GD. These treatments augment the deficient enzyme through enzyme
replacement (enzyme replacement therapy, ERT, e.g., imiglucerase, velaglucerase alfa, tal-
iglucerase alfa) or relieve substrate accumulation by acting upstream to suppress the synthesis
of substrates (substrate reduction therapy, SRT, e.g., miglustat and eliglustat) [13,14]. All of
these treatments manage GD to varying extents and the results are often variable. While
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bone pain and chronic fatigue are the most debilitating problems for some patients [15],
current treatments only partially address these issues, and the molecular mechanisms con-
tributing to these symptoms remain poorly understood [16]. Many patients, despite being
disease stable on one of the approved treatments, continue to experience symptoms related
to pain and fatigue, potentially due to unresolved or partially resolved inflammation and
oxidative stress [17].

Several molecular biomarkers have been explored in the clinical development of GD1
treatments. For instance, chitotriosidase (CHITO), glucosylceramide (GL1), angiotensin-
converting enzyme (ACE), tartrate-resistant acid phosphatase (TRAP), chemokine lig-
and 18 (CCL18, previously known as pulmonary and activation-regulated chemokine
PARC), macrophage inflammatory protein-1 beta (MIP-1b) etc. [18,19]. A recent report
suggests that compared to a placebo, eliglustat treatment in treatment-naïve adults with
GD 1 resulted in statistically significant improvements in organ volumes, hemoglobin
concentration, and platelet count, with a commensurate decrease in inflammatory biomark-
ers [20,21]. However, these biomarkers were only of exploratory importance. Moreover,
those explorations did not put forth disease targets beyond glucosylceramide synthase.
Improvements in liver and spleen size were mostly the primary outcome measures in
these pivotal studies. Although the current treatments are beneficial in improving these
aspects of GD, hepatosplenomegaly-related evaluations fall short in acknowledging the
multisystem nature of this disease. The glycosphingolipid accumulation and the release of
pro-inflammation biomolecules by the affected macrophages can contribute to the patho-
physiology and chronic manifestations of the disease such as pain and fatigue, and there
is interest in exploring key players in these processes as potential biomarkers [22]. The
Gaucher cells are mainly macrophages infiltrated into the bone, brain, visceral organs,
and other tissues [23]. The abnormal macrophages can produce and release macrophage-
derived factors (chemokines) and cytokines. An imbalance in the levels of reactive oxygen
species (ROS) and antioxidants through the pathological accumulation of glycosphin-
golipids results in oxidative stress. Several biomarkers of oxidative stress have also been
widely investigated. However, small population sizes, phenotypic differences, the cross-
sectional nature of the studies with single measurements, assay differences, and a focus on
specific biomarkers have made interpretation of the results difficult.

Having a reasonable estimate of baseline values for inflammation and oxidative stress
markers with some confidence in the repeatability of measurements that captures inherent
biological variability is an important first step in evaluating the treatment effect in any
intervention-based cohort study. In this study our objective was to estimate plausible
baseline values of 15 biomarkers of interest along with the extent of the inherent variability,
both intra-subject and inter-subject, observed in their repeated measurements. We also
highlight the importance of adopting new adjunctive treatments such as antioxidants
and/or anti-inflammatory agents to manage patients with GD.

2. Results
2.1. Participant Demographics

A total of 36 participants were recruited for our study: 5 participants were treatment-
naïve, 13 were stable on a GD1 therapy, and 18 were healthy controls. The GD-naïve par-
ticipants in our study were distinctly older than the other two groups; however, due to the
rarity of the treatment-naïve GD1 population, in an era with five approved treatments, our
recruitment options for this study were limited (Table 1). The ratio of males to females in all
three groups was approximately 1. All three groups were predominantly Caucasian. Clini-
cal records for patients with GD1 were explored and measures of chitotriosidase (CHITO),
angiotensin-converting enzyme (ACE), and tartrate-resistant acid phosphatase (TRAP) were
retrospectively summarized. Literature-reported normal ranges in healthy individuals for
CHITO, ACE, and TRAP are included in Table 1 [24]. It can be noted that in the GD-treated
group, TRAP and ACE concentrations were within the normal healthy range. Although the
CHITO concentrations were lower in the GD-treated group compared with the GD-naïve
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group, the values were higher than the normal levels. Seventeen participants had a known
genotype: 4/5 (80%) of the GD-naïve and 5/13 (38.5%) of the GD-treated group were ho-
mozygous while the rest were compound heterozygotes. The most common second allele was
L444P (p.L483P) (N = 5). There was a wide range of comedications used by the participants
with GD to primarily treat symptoms such as pain, anxiety, depression, etc.

Table 1. Participant demographics.

Characteristic Healthy Control (N = 18)
Gaucher Disease Type 1 (GD1)

GD-Naïve (N = 5) GD-Treated (N = 13)

Female 9 (50%) 3 (60.0%) 8 (61.5%)

Caucasian 12 (75.0%) 5 (100%) 12 (92.3%)

Age (in years) 40.8 (15.3) 60.0 (9.3) 46.9 (12.0)

GD1 biomarkers

CHITO (nmoles/h/mL) <78.5 * 3590 (4182.5) 1 220 (224.2) 7

ACE (IU/L) 32.8–107.9 * 95.6 (86.7) 2 62.8 (35.2) 5

TRAP (IU/L) 0.28–9.84 * 25.2 (11.7) 3 7.18 (2.6) 8

Complete blood count

Hemoglobin (g/L)

ND

13.6 (1.7) 14.4 (1.7) 2

Hematocrit (%) 39.4 (5.6) 1 42.3 (4.9) 2

Neutrophil (%) 72.5 (0.7) 3 55.2 (7.4) 6

Lymphocyte (%) 23.3 (9.2) 2 34.0 (6.8) 5

Eosinophils (%) 1.5 (0.7) 3 2.83 (3.4) 6

WBC (×109/L) 5.62 (1.0) 6.02 (2.5) 3

Platelets (×109/L) 122 (28.1) 189 (65.5) 3

Mutational status

N370S/N370S

NA

4 (80%) 5 (38.5%)

N370S/L444P 5 (38.5%)

N370S/unknown 1 (7.7%)

N370S/R463C 1 (7.7%)

Unknown 1 (20%) 1 (7.7%)

GD1 therapy

Years on therapy NA NA 16.1 (8.3)

ERT NA 6 (46.1%)

SRT NA 7 (53.8%)
Values presented are mean (SD) or N (%) as indicated. Superscript denotes the number of missing values. * The
values are reported from literature [24] and are presented as a range where applicable; NA, Not applicable;
or ND, not available. Abbreviations: CHITO, chitotriosidase; ACE, angiotensin-converting enzyme; TRAP,
tartrate-resistant acid phosphatase; ERT, enzyme replacement therapy; SRT, substrate reduction therapy.

2.2. Variability in Measures Related to Oxidative Stress

Glutathione: For total GSH the data are largely distributed evenly throughout the
measured range for all the three groups (Figure 1A). There is a pattern of increasing
variability with increasing mean values in all three groups. In GD-naïve participants, the
redox ratio was lower and more tightly clustered compared with the other two groups
(Figure 1B). Overall, total GSH was less variable compared with the redox ratio, as evident
in a distinctly higher %CV for the latter (Table 2).
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Figure 1. Bland–Altman plots for total GSH and GSH/GSSG comparing agreement between three
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Table 2. Variability expressed as %CV, tabulated either overall or within different groups.

Biomarker %CV
Overall

%CV
Healthy Control

%CV
GD-Naïve

%CV
GD-Treated

Total GSH 25.5 23.2 17.2 23.6

Ratio GSH/GSSG 82.6 58.6 16.7 86.7

CAT Activity 74.0 65.9 17.4 38.4

SOD Activity 55.7 66.4 29.7 42.7

GPx Activity 33.3 32.2 31.9 30.9

Protein Carbonyl 162.3 143.9 104.7 63.6

MDA 51.1 46.3 25.6 42.6

IL1RA 81.5 41.6 38.0 66.0

IL-6 60.4 69.8 39.3 56.5

IL-8 76.3 38.1 36.5 82.2

MCP1 51.0 50.6 36.7 54.1

MIP-1a 164.7 81.3 205.9 173.1

MIP-1b 138.1 87.5 60.9 84.0

TNFa 85.9 113.7 52.7 67.1

IL-10 701.6 * 129.4 138.5 484.4 *
* When the data for one participant from the GD-treated group was omitted because of apparent outlying
measurements, %CV overall, %CV GD-treated were 114.1 and 86.1, respectively.

Among other measures of oxidative stress including CAT, SOD, GPx activity, protein
carbonyl, and MDA, protein carbonyl showed the highest %CV for healthy controls and GD-
naïve individuals (143.9 and 104.7, respectively) (Table 2). Protein carbonyl values in the
GD-treated group were more tightly clustered around the lower end of the measured range
(Figure 2D). Except for GPx activity, where observations from all three groups overlapped
(Figure 2C), we found that measurements in healthy volunteers were more variable in
terms of the range they spanned and intra-subject values. (Table 1 and Figure 2A,B,D,E). In
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contrast, patients with GD showed lower values and less variability (both inter- and intra-
subject), especially for the antioxidant CAT (Figure 2A), whereas the lipid peroxidation
measure MDA showed the opposite trend (Figure 2E).
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2.3. Variability in Measures Related to Inflammation

Among all the inflammation biomarkers, IL-6, MCP1, and TNFa showed a distinct
random scatter of measurement differences along entire concentration ranges. Higher
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measurements of IL-8, MCP1, and MIP-1b showed more variable repeat values for the
GD-treated group. Measurements of IL1RA, IL-8, MIP-1a, and MIP-1b were less variable
in healthy controls compared with the other groups and were tightly clustered around
the lower end of the measured range (Figure 3). IL-10 showed a very high %CV, owing
largely to one person in the GD-treated group. We report summary statistics and %CV with
and without data from that participant (Table 2, Table 3). Moreover, on visual inspection,
inflammation markers IL-1Ra, IL-8, and MIP-1b showed distinct differences between
healthy controls and patients with GD1, irrespective of treatment status (Figure 3A,C,F).
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Figure 3. Bland–Altman plots for inflammation related biomarkers comparing agreement between
three repeat biomarker measurements for each individual. Upper and lower limits of agreement
(dashed red lines) correspond to two standard deviations (SD) from the mean difference (solid black
line). IL-10_modified: Data for one participant from the GD-treated group was omitted because of
apparent outlying measurements.
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Table 3. Summary statistics for each biomarker separated by different groups.

Biomarker
Healthy Control GD-Naïve GD-Treated

N = 18 N = 5 N = 13

Total_GSH (µg/mL)

Mean (SD) 620 (144) 516 (89) 483 (114)

Median (IQR) 614 (189) 509 (122) 439 (163)

Unknown 6 0 2

Ratio_GSHGSSG

Mean (SD) 29 (17) 6 (1) 15 (13)

Median (IQR) 27 (28) 6 (2) 10 (15)

Unknown 5 0 2

CAT_Activity (nmol/min/mL/mg)

Mean (SD) 563 (371) 321 (56) 245 (94)

Median (IQR) 388 (534) 326 (71) 244 (126)

Unknown 4 0 2

SOD_Activity (U/mL/mg)

Mean (SD) 6.01 (3.99) 4.71 (1.40) 6.18 (2.64)

Median (IQR) 4.95 (2.69) 4.43 (1.36) 5.68 (4.11)

Unknown 4 0 2

GPx_Activity (nmol/min/mL/mg)

Mean (SD) 18.0 (5.8) 14.1 (4.5) 15.2 (4.7)

Median (IQR) 19.2 (7.8) 14.4 (5.7) 15.0 (5.4)

Unknown 4 0 2

Protein_Carbonyl (nmol/mg)

Mean (SD) 1.55 (2.23) 0.43 (0.45) 0.55 (0.35)

Median (IQR) 0.64 (0.80) 0.27 (0.33) 0.54 (0.39)

Unknown 4 0 1

MDA (nM/mg)

Mean (SD) 41 (19) 90 (23) 68 (29)

Median (IQR) 38 (23) 88 (17) 65 (45)

Unknown 4 1 1

IL1RA (pg/mL)

Mean (SD) 255 (106) 1043 (396) 694 (458)

Median (IQR) 256 (155) 1000 (513) 619 (540)

Unknown 5 0 1

IL-6 (pg/mL)

Mean (SD) 1.82 (1.27) 2.14 (0.84) 2.30 (1.30)

Median (IQR) 2.29 (2.25) 2.08 (0.95) 2.26 (1.53)

Unknown 5 0 1

IL-8 (pg/mL)

Mean (SD) 2.52 (0.96) 6.94 (2.53) 4.65 (3.82)

Median (IQR) 2.56 (0.90) 7.05 (2.35) 3.13 (2.52)

Unknown 5 0 1
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Table 3. Cont.

Biomarker
Healthy Control GD-Naïve GD-Treated

N = 18 N = 5 N = 13

MCP1 (pg/mL)

Mean (SD) 81 (41) 90 (33) 98 (53)

Median (IQR) 68 (43) 89 (32) 78 (62)

Minimum–Maximum 32–219 31–139 45–304

Unknown 5 0 1

MIP-1a (pg/mL)

Mean (SD) 16 (13) 17 (35) 26 (45)

Median (IQR) 15 (22) 0 (0) 1 (36)

Minimum–Maximum 0–43 0–102 0–194

Unknown 5 0 1

MIP-1b (pg/mL)

Mean (SD) 8 (7) 87 (53) 25 (21)

Median (IQR) 7 (11) 71 (51) 22 (22)

Unknown 5 0 1

TNFa (pg/mL)

Mean (SD) 0.73 (0.83) 1.86 (0.98) 1.40 (0.94)

Median (IQR) 0.27 (1.27) 1.84 (1.33) 1.58 (1.35)

Unknown 5 0 1

IL-10 (U/mL)

Mean (SD) 0.34 (0.44) 0.39 (0.54) 4.42 (21.41) *

Median (IQR) 0.08 (0.91) 0.08 (1.00) 1.02 (1.17) *

Unknown 5 0 1
* When data for one participant from the GD-treated group was omitted, because of apparent outlying measure-
ments, the mean (SD) and median (IQR) were 0.72 (0.62) and 0.94 (1.14), respectively.

3. Discussion

To our knowledge, this is the first report summarizing the biological variation in oxida-
tive stress and inflammation biomarkers in patients with GD1. We had previously reported
significant differences in key oxidative stress biomarkers in participants with GD depend-
ing on their treatment status [17]. In GD-treated participants, the parameters of oxidative
stress generally fell between the controls and the untreated, indicating partial resolution of
oxidative stress following standard-of-care GD treatments. We concluded that underlying
oxidative stress may contribute to GD1 pathophysiology and that the therapies targeting
oxidative stress may prove useful as adjuvant treatments for GD [17]. Now we take that
investigation one step closer to a prospective intervention-based clinical trial, and report
our findings related to variability in the repeated measurements of oxidative stress and
inflammation markers to help guide candidate biomarker selection. Generally, biomarkers
with lower variability (e.g., total GSH, GPx activity) would be preferred over those with
higher variance to support a more efficient evaluation of differences between groups.

It has been proven that there is a relationship between the inflammation markers
released and clinical manifestations in GD [25–27]. Multiple studies have confirmed that cy-
tokine levels in GD1 patients are significantly higher than in control individuals [8,23,28–31].
In addition, MIP-1a, and MIP-1b are significantly elevated in the plasma of GD patients
and are thought to mediate abnormally high bone reabsorption through osteoclasts activ-
ity [8,32]. Non-enzymatic and enzymatic antioxidant molecules, along with other oxidative
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stress markers such as plasma lipid peroxidation and protein oxidation, have been stud-
ied in patients with GD-1 [10,33–35]. These aberrant biomolecule findings have received
increasing attention as evident in some of the ongoing clinical trials [36–39]. Although
multiple reports suggest elevated inflammation and oxidative stress, coupled with impeded
antioxidant protection in patients with GD1, the available information is not sufficient
to guide future clinical trials as it does not inform researchers regarding the plausible
biomarker measurement ranges and the variability around those measurements. Often, the
variability observed in healthy populations or in non-rare diseases is extrapolated to make
up for the lack of information; however, any deviations in those could substantially affect
the statistical power. Variability can dramatically affect statistical power during hypothesis
testing. It is thus essential to have a good understanding of the variability present in the
biomarkers of interest measured in the population of interest and how it may impact our
ability to draw conclusions. Even though we cannot limit or remove the variability, we
can plan an appropriate target population size and outcome biomarkers to ensure that
the study has adequate power. Our study is of value as it provides an estimate of the
variability (standard deviation) in the three groups studied that can aid power and sample
size estimates for future studies.

We used a qualitative visual representation of the bias and agreement between the
repeated biomarker measurements using a Bland–Altman analysis [40–42], which is a
widely used method for its simplicity and highly informative graphical display. It is often
used for assessing the level of agreement between two analytical methods. Although its
application is in two measurements, we applied that to study agreement between three
repeat measurements on the same participant, where the analytical methods employed
were the same. We observed that the pair differences increased systematically with the
mean for many of the biomarker measurements. In the figures, we also show the horizontal
lines corresponding to 1.96 × SD. For most biomarkers, these bands are wide and capture
much of the data; however, it is important to note that it does not necessarily have any
clinical relevance.

Cytokines and antioxidant levels are heterogeneous, even in healthy people. Some
of the factors that contribute to inter-individual variability are genetics, age, sex, lifestyle,
hygiene factors, microbiome etc. [43–45]. These markers are non-specific and display intra-
individual differences with exercise [46–48] and diurnal rhythm [45,49–52]. Despite that,
most of the previous reports that explored immunological profiles and oxidative imbalance
in the GD1 patient population, were based on a single time point. The results could be
biased because of the less than adequate sampling scheme utilized in those studies. To
be able to evaluate the effect of experimental antioxidant treatment, we needed to ensure
“true” baseline values. We needed minimize the number of repeated measurements due
to cost, time, and other resources. In our case, the question of interest was to estimate the
repeatability of measurements. Since data collected in more than two waves for baseline
opens the possibility of using the mean or median of those measures for any future group-
wise comparisons [53], our study design incorporated three baseline sample collections.

There are a few limitations associated with our analysis. Firstly, only a few assays were
performed in triplicate, and therefore, we were not able to obtain the corresponding analyt-
ical variation. However, we believe that its contribution to the overall variability observed
would be minimal as the analytical variation of the assays performed using commercially
available kits was determined previously by the manufacturers. In addition, the chromatog-
raphy assays performed in-house were validated per the FDA’s analytical guidance [54]
to ensure accuracy and precision. There were several missing samples (Table 3); however,
given the small influence of missing samples on Bland–Altman visualizations, we retained
data from all the measurements for all participants that were available. There is a range
of high-throughput assays available commercially that are founded on fluorescent signal-
enhancement principles (e.g., enzyme immunoassay, chemiluminescence, flow-cytometry)
and ‘omics’ [55]. Studies in large population-based cohorts report significant variability
across these methods [55]. The effect of sample handling processes (e.g., storage, freeze-
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thaw cycles, anticoagulants used) and sample preparation processes (e.g., matrix effect,
dilution) might also impact the measurements [49]. Our estimates of repeatability and
variability measurements correspond to the methods that we employed. Lastly, we report
variability findings from a smaller patient cohort, compared with other studies focused on
healthy volunteers [56] or those suffering from common diseases [57,58].

4. Materials and Methods

This study was conducted at two research sites and the study protocols were approved
by the Human Research Protection Programs at the University of Minnesota (UMN) and
New York University (NYU). The study was listed on ClinicalTrials.gov [NCT02437396 and
NCT02583672]. All participants were adults and written informed consent was recorded
for all prior to their enrollment in the study.

4.1. Study Participants

Eighteen US-based adult participants with genetically and/or metabolically confirmed
diagnoses of GD1 were recruited from the UMN, NYU, and nationally with the assistance
of the National Gaucher Foundation and study investigators. Appropriate age- and gender-
matched healthy controls (N = 18) were recruited through the UMN Study Finder. The
healthy controls were current non-smokers, without any known concurrent medical con-
ditions to ensure the integrity of the data collected. All the participants of this study
were enrolled between 2015 and 2018. The participants with GD1 who were on treatment
(N = 13) were required to be on a specific ERT or SRT regimen for at least 2 years and
needed to be dose stable for at least 6 months prior to their enrollment in the study. There
were five treatment-naïve GD participants enrolled in this study. Other comedications were
recorded and people who used antioxidants three weeks prior to the study were excluded.

4.2. Blood Sample Collection

Blood samples were collected from all participants at three time points, each one
month apart, over a three-month period. The samples were processed to separate plasma
and red blood cells (RBCs) following a standard lab protocol. The plasma and the RBCs
were then aliquoted and frozen at −80 ◦C until further analysis. The blood samples were
analyzed for the following oxidative stress related biomarkers:

(1) Intracellular glutathione (GSH) status measured as total GSH and the redox ratio of
reduced/oxidized glutathione (GSH/GSSG) in RBCs;

(2) The activity of intracellular antioxidant enzymes-catalase (CAT), superoxide dismu-
tase (SOD), and Glutathione peroxidase (GPx) in RBCs;

(3) Plasma lipid peroxidation profile as determined by malondialdehyde (MDA) levels;
(4) Oxidative modification of proteins determined as protein carbonylation (Protein

carbonyl) levels in plasma.

Blood samples were tested for the following inflammation-related biomarkers:

(1) Pro-inflammation cytokines: interleukin-1 receptor antagonist (IL-1RA), interleukins
(IL-6, IL-8, IL-10), tumor necrosis factor-alpha (TNFa), monocyte chemoattractant
protein-1 (MCP-1) measured in plasma;

(2) Inflammation markers related to skeletal manifestations: macrophage inflammatory
protein (MIP)-1alpha (MIP-1a) and MIP-1beta (MIP-1b), measured in plasma.

4.3. Measurement of Oxidative Stress

Catalase, SOD, GPx, MDA (measured as Thiobarbituric Acid Reactive Substances,
TBARS), and protein carbonylation assays were measured using commercially available
kits (Cayman Chemical, Ann Arbor, MI, USA) following the manufacturer’s instructions
with minor modifications as previously described [17]. Total GSH and GSH redox status
were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS)
methods as detailed previously [17].

ClinicalTrials.gov
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4.4. Measurement of Inflammation

The Luminex Performance Human Cytokine Panel A (R&D Systems, MN) was used
to quantify a panel of plasma cytokines and chemokines such as IL1RA, IL-6, IL-8, MCP-1,
MIP-1a, and MIP-1b, TNFa, and IL-10.

4.5. Statistical Analysis

Descriptive statistics were tabulated overall and by group (healthy control, GD-naïve,
GD-treated), including the mean and standard deviation, interquartile range, and %CV
for all biomarkers. Modified Bland–Altman plots were plotted by taking the mean of
three measurements per participant and the difference between each measurement and the
calculated mean (intra-participant difference) [40,41]. Horizontal lines were also plotted
corresponding to the overall mean ± 1.96 × (SD) where SD represents the standard devia-
tion of all intra-participant differences. All analyses and plotting were performed using R
version 4.0.5 [59].

5. Conclusions

We report the variability around seven oxidative stress and eight inflammation mark-
ers in participants with GD1 and healthy controls. This information can be utilized for
selecting outcome measures, calculations of sample size, and power analysis for future
clinical studies.
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