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THE BIGGER PICTURE With the recent progress of high-throughput experimental techniques, physical in-
teractions and functional associations of genes and proteins are accumulating into multiple molecular net-
works. Effective integration of these networks and extraction of biological insight remains a long-standing
challenge. The two-step GNN (graph neural network) approach (Graphene) introduced here offers a self-su-
pervised solution and validates its utility in a range of disease gene sets.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Leveraging molecular networks to discover disease-relevant modules is a long-standing challenge. With the
accumulation of interactomes, there is a pressing need for powerful computational approaches to handle the
inevitable noise and context-specific nature of biological networks. Here, we introduceGraphene, a two-step
self-supervised representation learning framework tailored to concisely integrate multiple molecular net-
works and adapted to gene functional analysis via downstream re-training. In practice, we first leverage
GNN (graph neural network) pre-training techniques to obtain initial node embeddings followed by re-training
Graphene using a graph attention architecture, achieving superior performance over competing methods for
pathway gene recovery, disease gene reprioritization, and comorbidity prediction. Graphene successfully re-
capitulates tissue-specific gene expression across disease spectrum and demonstrates shared heritability of
common mental disorders. Graphene can be updated with new interactomes or other omics features. Gra-
phene holds promise to decipher gene function under network context and refine GWAS (genome-wide as-
sociation study) hits and offers mechanistic insights via decoding diseases from genome to networks to phe-
notypes.
INTRODUCTION

Diseases or traits involve molecules interacting within cellular

networks and pathways under certain biological contexts. Un-

derstanding functional interdependencies of genes and proteins

can provide a system-level view of how genetic alterations dys-

regulate relevant pathways or biological processes, and further

lead to disease phenotypes.1 A classical insight behind network

biology is that genes or proteins presenting similar topological

neighborhood patterns are more likely to be correlated, which
This is an open access article under the CC BY-N
enables knowledge refinement for known molecules and prop-

erty inference for unknown ones through ‘‘guilt by association’’

principle. There has been a recent community benchmark effort

to evaluate disease module discovery methods on various

network configurations.2 A network-based method has been uti-

lized to reprioritize statistical signals from disease-focused

genome-wide association studies (GWAS). For example, the

NetWAS3 framework leverages tissue-specific networks in com-

bination with marginally significant GWAS hits as input for de-

ploying a machine learning model to rank candidate genes.
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The NAGA4 framework harnessed a compositive molecular

network to implement a propagation approach to boost GWAS

results for eight diseases. iRIGs5 reprioritized schizophrenia

(SCZ) GWAS genes by using a Bayesian framework to integrate

multi-omics data and a protein-protein interaction (PPI) network.

Buphamalai et al.6 constructed a multiplex network organized

into hierarchical layers spanning different omics levels and re-

vealed that rare diseases also exhibit network signatures similar

to complex diseases through propagation-based algorithms.7 A

comprehensive review8 of network-based disease gene prioriti-

zation categorizes existing computational efforts into threemajor

classes, including network diffusion methods, traditional ma-

chine learning methods with handcrafted features, and graph

representation learning methods. Notably, Set2Gaussian9 em-

beds gene sets as a multivariate Gaussian distribution in low-

dimensional space based on genes’ proximity in the PPI

network, manifesting stronger expressive power over traditional

network diffusion methods.

The utilities of these network methods strongly rely on the

quality and coverage of available molecular networks. Recent

advances in high-throughput experimental platforms and

computational techniques have enabled characterizing hetero-

geneous genome-scale networks, including physical interac-

tions (for example, PPI,10 signaling, and regulatory networks)

and functional associations (for example, gene co-expression,

genetic dependencies, co-evolution, and phylogenetic pat-

terns). Huang et al.11 systematically evaluated 21 human interac-

tion networks covering various types of interactions, concluding

that ConsensusPathDB,12 GIANT13 (now available as Human-

base), and STRING10 perform best to recover disease gene

sets and the larger network as a whole outweighs the drawbacks

of potential false positives, and recurrent but nuanced signals

can be amplified. Picart et al.14 also emphasized the merit of

introducing a larger network. The ever-growing repositories of

interactomes require developing methods to combine these net-

works while simultaneously tackling inherent noise and incom-

pleteness among them. Huang et al. pioneered a parsimonious

composite network (PCNet)11 with high efficiency. Mashup15 le-

verages random walks with restart (RWR)16 for each network,

then optimizes a consistent dimension reduction function to

derive compact network integration as low-dimensional vectors

for each gene or protein to be plugged into downstream func-

tional tasks. Several other methods have been proposed to inte-

gratemultiple networks. Gao et al.17 usedmulti-view representa-

tion learning to cluster network data. Ma et al.18 adopted matrix

decomposition to integrate heterogeneous networks. Lin et al.19

combined node2vec20 andmatrix factorization to analyze cancer

attributed networks. DeepMNE-CNN21 developed a semi-super-

vised autoencoder method to integrate RWR-derived embed-

dings from multiple networks and predict gene function using

convolutional network.

Graph neural network (GNN) has recently emerged to incorpo-

rate graph structures into a deep learning framework.22 To repre-

sent genes as nodes and their interactions as edges, GNN natu-

rally captures the interdependent relationships of comprised

molecules within networks, and node embeddings are learned

by iteratively updating the information aggregated from its adja-

cent neighbors. According to the different ways with which GNN

propagates information, the architectures of GNN include graph
2 Patterns 4, 100651, January 13, 2023
convolutional networks (GCNs),23 GraphSAGE,24 GAT,25 GIN,26

etc. In recent years, GNN had demonstrated effectiveness in bio-

logically related tasks, such as drug-target interactions27 and

disease identification.28 For example, EMOGI29 leverages

GCNs to integrate topologic features from PPI networks with

multi-omics pan-cancer data to propose novel cancer genes.

Furthermore, multimodal GNNs incorporating more than one

type of node enables multi-relational link prediction. Decagon30

constructed a heterogeneous gene-drug network to predict pol-

ypharmacy side effects via decoding links between drug pairs.

Self-supervised learning (SSL) has recently provided a prom-

ising paradigm toward human-level intelligence and achieved

great success in the domains of natural language processing

and computer vision, such as BERT,31 SimCLR,32 and MAE.33

SSL firstly pre-trains a model on a well-designed pretext task,

then fine-tunes it on a specific downstream task of interest.

Biology networks contain tremendous intrinsic information, and

applying SSL to network biology shows promise to directly learn

from interacted biological molecules. Due to the non-Euclidean

data structure, graph SSL has several particular characteristics

for which pre-training can be implemented at the level of individ-

ual nodes and entire graphs to derive useful local and global rep-

resentations simultaneously.34 A recent review article35 divided

the pre-training task into four categories, including generative,

contrastive, and auxiliary property-based, as well as their hybrid-

izations. Avoiding negative generalizability during knowledge

transfer from pre-training task to downstream objectives is the

key consideration for self-supervised graph representation

learning.36

Inspired by the recent progress of self-supervised GNN,34 we

propose Graphene, a two-step graph representation learning

method for gene function analysis. We first integrate multiple

molecular networks and then pre-train a GCN to derive initialized

embeddings for each gene or protein. Then we re-train the

network via GAT model architecture and achieve state-of-the-

art performance to recover pathway and disease genes. The

integration is simply done through taking the unions of edges

derived from different networks after aligning the nodes’ identi-

ties (see methods). The generalizability of gene embeddings

learned from GWAS hits is directly tested by another two inde-

pendently curated disease gene sets (DisGeNET37 and UK Bio-

bank38) without further model training. Tissue-specific patterns

are recapitulated for a broad range of diseases. Reprioritized

genes show biologically relevant functional enrichment in related

pathways. We also show that attention weights between gene

nodes learned from the GAT network offer natural hints on regu-

latory relationships. Shared gene modules are identified among

several common psychiatric disorders, offering functional evi-

dence and recapitulating previous mechanistic insights. In brief,

we demonstrate that pre-training GNN on molecular networks in

a self-supervised manner provides strategic adaptability to a se-

ries of downstream tasks, including pathway gene recovery, dis-

ease gene prioritization, module identification, and comorbidity

validation. Prioritizing disease-related markers can also benefit

from explicitly adding disease nodes. For example, Zhang

et al.39 integrated a microRNA network and disease phenotype

network to prioritize disease relevant microRNA. In the comor-

bidity prediction task, we also demonstrate how to incorporate

disease nodes to build a heterogeneous GNN, followed by
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adding a decoder function and re-training the network, which

achieves superior accuracy.

RESULTS

Overview of Graphene
As shown in Figure 1A, we use four molecular networks to pre-

train Graphene, including 142 tissue-specific gene networks

from Humanbase, a PPI network from STRING (9606 v11), a

recently released systematic proteome-wide reference, namely

the Human Reference Interactome (HuRI),40 and a well-inte-

grated composite network, PCNet. These networks are com-

bined by unifying their edges and nodes (see methods and all

network datasets in Table S1) and result in a giant network

comprising 19,324 gene nodes and 16,142,804 interconnected

edges. We adopt node recovery and context-prediction as two

pretext tasks for Graphene pre-training34 (methods). In partic-

ular, we randomly mask 15% of nodes and predict the identifica-

tions of masked nodes from transformation of neighborhood

representations, defined as a multi-class classification problem

through cross-entropy loss. For context prediction, the k-hop

neighborhood contains all nodes that are k-hops away from

the center node. Nodes shared between the neighborhood and

the context graph are referred to as context anchor nodes,

providing the connectivity information between the neighbor-

hood and context graphs. Then negative sampling41 is used to

jointly learn both neighborhood and context graph-derived em-

beddings, casting it as a binary classification problem whether

particular context graph and neighborhood belong to the same

center node or not. These two auxiliary tasks enable the integra-

tion of four molecular networks in a self-supervised manner. We

consider GCN andGAT as two pre-training GNN architectures to

aggregate neighborhood features. In our experiments of model

pre-training, we find that GCN produces more flexible embed-

dings than GAT, which is beneficial to the downstream re-

training process. Embedding size is set as 100. The number of

layers for GCN is set as 5. We use one Tesla V100 GPU and

draw lessons from the previous report34 to pre-train Graphene

for 100 epochs in around 150 h. The downstream tasks of dis-

ease gene reprioritization and gene set member identification

can be completed in about 300 s (1,000 epochs) on a Quadro

RTX 6000 GPU (Table S2), which is much more efficient than

other competing methods.

At the downstream re-training stage, we borrow all pre-trained

node embedding as model initialization and adopt two to three

GAT layers to drive node embeddings for downstream tasks

due to GAT’s faster convergence speed (see Table S2) during

re-training. These node representations are then fed into one

multiple-perceptron classification layer to predict node labels.

We use Reactome42 and NCI43 as validation datasets for mem-

bership recovery task of pathway gene sets (Figure 1B). Only

half of the nodes’ pathway labels are kept for training, and the re-

maining members are recovered for each pathway. We use the

GWAS Catalog44 dataset, composed of 202 common diseases,

as a training set for the task of disease-gene reprioritization (Fig-

ure 1C). It is noted that the re-training process of the disease

gene prioritization task is different from the pathway member re-

covery setting in aspects of train-validation ratio and mask split

(methods). Then DisGeNET and UK Biobank (171 aligned dis-
ease nomenclatures with GWAS for DisGeNET and 81 diseases

for UK Biobank) are used as hold-out test set without further

model training for independent cross-dataset evaluation. The

re-ranked genes byGraphene can then be used for disease-rele-

vant function module identification and tissue specificity anal-

ysis.We also construct a heterogeneous graph via explicitly add-

ing disease nodes to explore the comorbidity relationship

between disease pairs, where a decoder function is introduced

to predict the edge labels between two disease nodes (Fig-

ure 1D). Detailed model architectures for each stage can be

found in Figure S1, and illustrations of Graphene implementation

can be found in the methods.

Graphene improves member identification for the
pathway gene set
Publicly available pathway gene sets related to certain biological

processes contain abundant noise due to the inherent nature of

high-throughput experiments. We first sought to assess whether

re-training Graphene could accurately denoise and recover

pathway gene sets. Initialized with pre-trained embeddings, we

use a two-layer GAT architecture followed by one classification

layer to learn domain-specific representations for Reactome

and NCI pathway gene sets. We adopt the same train-test ratio

for Set2Gaussian where only half of thosemembership labels are

used in the re-training stage. Evaluated on an NCI dataset using

the same metric (mean area under the precision recall curve

[mean AUPRC]), Graphene outperforms Set2Gaussian and the

simple mean pooling method across all three levels of pathway

sets (mean AUPRC = 0.29, 0.31, and 0.29 for small (3–10), me-

dium (11–30), and large (31–1,000), respectively) (Figure 2A).

For the purpose of comparison, we also use random initial input

embeddings to train Graphene with the samemodel architecture

and obtain inferior performance. Detailed comparison results

can be found in Table S3. For the Reactome dataset, Graphene

achieves mean an AUPRC of 0.58 and 0.69 for medium (11–30)

and large (31–1,000) sets (Figure 2B), outperforming

Set2Gaussian. Graphene’s GNN architecture effectively propa-

gates information across the graph and facilitates knowledge

transfer using a two-step training strategy. This task is run with

five repetitions (Figure S5).

Graphene achieves superior performance for disease
gene reprioritization with tissue specificity
As potential disease genes converge on interacting molecules in

functional networks, we next apply Graphene to GWAS hits to

examine how integration of multiple networks and pre-training

can benefit decoding gene-disease relationships. We collect as-

sociation signals for 202 diseases downloaded from the GWAS

Catalog and leverage 60% of labels to re-train Graphene on

the disease gene recovery task, which is compatible with canon-

ical GWAS workflow. NAGA,4 which uses RWR as its propaga-

tion scheme, together with GenePanda45 and N2V,20 are chosen

as benchmark methods. NAGA reported stronger performance

over other network-based methods, including NetWAS3 and

GWAB.46 To keep consistent with NAGA, we use the

DisGeNET dataset as independent evaluation. In other words,

we train, validate on GWAS Catalog disease gene sets, and

test on the DisGeNET dataset. DisGeNET is a comprehensive

source from expert curations, GWAS catalogs, animal models,
Patterns 4, 100651, January 13, 2023 3



Figure 1. Overview of Graphene workflow

(A) Graphene pre-training includes two pretext tasks, i.e., masked node recovery and context prediction. Four molecular networks are used for self-supervised

learning, including HumanBase, STRING (9606 v11), HuRI, and PCNet; nodes stand for genes or proteins, edges stand for the presence of connections between

genes in a specific network.

(B) Graphene re-training for gene set member recovery as downstream task. NCI and Reactome are used for pathway gene set recovery.

(C) Graphene re-training for disease gene reprioritization. GWAS signals are used for re-training and DisGeNET dataset is used as independent test set.

(D) Functional analysis include module identification, tissue specificity analysis, and comorbidity prediction. Disease nodes are introduced into Graphene to

construct bipartite network. Edges between disease pairs stand for relative risks.
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and scientific literature, and developed to support mechanistic

studies on human diseases. Like the settings in NAGA, we use

the area under the receiver operating characteristic curve
4 Patterns 4, 100651, January 13, 2023
(AUROC) as an evaluation metric. Graphene achieves a

mean AUROC of 0.76, outperforms NAGA (mean AUROC =

0.71), GenePanda (mean AUROC = 0.59), and N2V (mean



Figure 2. Graphene achieves superior performance in pathway gene set recovery and disease gene reprioritization

(A and B) Application of Graphene downstream re-training for pathway gene set member recovery (NCI [A], Reactome [B]) in comparison with Set2Gaussian,

Graphene with random input node embeddings, and mean pooling. Boxplot shows the comparison of area under precision recall curve (AUPRC). Error bars

represent the 95% confidence interval.

(C) Comparison of AUROC results on 171 diseases fromDisGeNET dataset among ninemethods (Graphene, Graphene withMashup embedding input, Graphene

with random input node embedding, Graphene with STRING network input, GWAS p value, NAGA, Set2Gaussian, and GenePanda, N2V).

(D) Comparison of AUROC results on 81 diseases fromUKBiobank dataset among ninemethods (Graphene, GraphenewithMashup embedding input, Graphene

with random input node embedding, Graphene with STRING network input, GWAS p value, NAGA, Set2Gaussian, and GenePanda, N2V). In the boxplot, the

center line and box limits denote the median and upper/lower quartiles, respectively. 1.53 interquartile ranges are displayed as whiskers.
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AUROC = 0.67) (Figure 2C). Graphene initialized with Mashup

embeddings ranked second for the DisGeNET task.

Set2Gaussinan (mean AUROC = 0.2) is specifically developed

on pathway-level gene sets and its low-dimensional embedding

cannot effectively transfer to the disease domain. AUROC re-

sults of Graphene for all DisGeNET diseases can be found in Fig-

ure S2. In addition, we use UK Biobank summary statistics to

check whether the result of GWAS-trained Graphene will gener-

alize to other independent gene-disease association databases.

The results show that all four different settings of Graphene

exhibit better performance (mean AUROC = 0.68, 0.67, 0.65,

and 0.67) than the other four methods, i.e., GWAS (p = 0.55),

GenePanda (p = 0.54), NAGA (p = 0.62), and Set2Gaussian

(p = 0.34). N2V also achieves a relatively high mean AUROC

(p = 0.66), which is comparable with Graphene (Figure 2D). We

also show that original GWAS p values cannot compete with a

network-based denoising method to recover UK Biobank asso-

ciations. Notably, NAGA, N2V, and GenePanda can only eval-

uate one disease at a time, whereas Graphene can test on all dis-

eases in a batch-wise manner. The validation on 202 GWAS

diseases is repeated 5 times during downstream re-training, as

shown in Figure S5. We also train Graphene on a single network,
i.e., STRING (which is the largest of the four individual networks

that Graphene has integrated), to illustrate how integrating mul-

tiple networks rather than using single input can benefit disease

gene prioritization task.14 DisGeNET and UK Biobank results are

shown in Figures 2C and 2D, respectively (Graphene with

STRING network input).

We then investigate whether top prioritized genes for a given

disease (TPGs) identified by Graphene can reveal tissue speci-

ficity in network wiring for relevant diseases. We use expression

data from the Genotype-Tissue Expression (GTEx) project47 and

adopt Jensen-Shannon (JS) divergence48 to measure the tissue

specificity of each gene in each tissue. By implementing one-

sided Wilcoxon rank-sum test and Bonferroni correction, we

test the significance levels of tissue specificity for 300 TPGs

against last-ranked 1,000 genes after Graphene reprioritization

on GWAS hits. Taking five common diseases as examples (Fig-

ure 3A), we show that 300 TPGs of BIP and SCZ have signifi-

cantly enriched expression level in brain tissues (padjusted =

2.2 3 10�18 for BIP, 3.4 3 10�27 for SCZ in cortex; padjusted =

5.4 3 10�10 for BIP, 1.9 3 10�19 for SCZ in the spinal cord)

compared with other tissue types. The 300 TPGs of rheumatoid

arthritis are observed to exhibit an enriched expression pattern in
Patterns 4, 100651, January 13, 2023 5



Figure 3. Tissue specificity of top prioritized genes identified by Graphene

(A) Tissue specificity of genes reprioritized by Graphene from GWAS hits. Tissue enrichment scores of five diseases on six different tissue types are plotted for

illustration. Details of computing tissue enrichment score are described in methods.

(B) Tissue specificity of genes reprioritized by Graphene on 202 GWAS diseases across 53 tissues in GTEx. Deep blue represents top predicted risk genes highly

expressed in corresponding tissues.Wilcoxon rank-sum test is adopted using 300 TPGs and 1,000 last-ranked background genes predicted byGraphene. TPGs,

top prioritized genes.
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blood (padjusted = 4.6 3 10�21) and lymphocytes (padjusted =

1.7 3 10�20) over other unrelated tissue types, such as the cer-

ebellum (padjusted = 0.15) and skin (padjusted = 0.1). Also, 300 TPGs

show expression enrichment in heart tissue (padjusted =

3.1 3 10�14) for coronary artery disease and in skin tissue

(padjusted = 3.9 3 10�13) for psoriasis.

The overall heatmap shows clear tissue enrichment differ-

ences among various diseases (Figure 3B). Particularly, TPGs

of mental diseases are enriched in brain-related tissues. For

comparison, original disease-gene mappings from the GWAS

Catalog are used as baseline, which present no clear clustering

pattern (Figure S3). Although the Humanbase network is incor-

porated during the Graphene pre-training stage, the tissue infor-

mation is not explicitly included in the training process. Re-

training on GWAS hits can guide the network in recovering tissue

specificity. In brief, Graphene effectively denoises the GWAS

signals validated by the above observations regarding disease-

relevant tissue specificity. In this case, Graphene provides a

convenient way to reprioritize GWAS risk genes through injecting

molecular network topology derived from graph representation

learning.
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Graphene effectively characterizes functional
enrichment pattern of prioritized disease-
associated genes
Dysregulated genes underlying diseases are frequently involved

in context-specific biological processes. We further evaluate

how TPGs uncover functional modules via gene set enrichment

analysis (GSEA). Schizophrenia (SCZ) and autism spectrum dis-

order (ASD) are both complex mental disorders, representing

paradigmatic challenge to illuminate disease biology. iRIGs

jointly models multi-omics data for each gene together with their

network-based interactions to prioritize GWAS risk loci and

assess several gene sets, which have been widely and repeat-

edly implicated in SCZ. We choose six functional gene sets to

evaluate the quality of Graphene TPGs against 104 high-confi-

dence risk genes (HRGs) by iRIGs and NAGA results. Functional

gene set includes fragile Xmental retardation protein (FMRP) tar-

gets49 (n = 767), postsynaptic density (PSD) proteins50 (n =

1,359), GABAA receptor complex,51 and another 3 KEGG path-

ways,52 i.e., calcium signaling pathway53 (n = 240), glutamater-

gic synapse54 (n = 114), and GABAergic synapse (n = 89) (see

methods). When using 300 TPGs, Graphene recovers far more



(legend on next page)
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significantly enriched signals than an equal number of genes

ranked by NAGA and iRIGs HRGs in all 6 gene sets (Figure 4B)

(padjusted = 2.4 3 10�16 for FMRP, padjusted = 4.9 3 10�8 for

PSD; padjusted = 9.1 3 10�12 for GABAA; padjusted = 8.4 3 10�8

for calcium signaling, padjusted = 3.3 3 10�14 for glutamatergic

synapse, and padjusted = 1.5 3 10�6 for GABAergic synapse).

Enrichment results using 104Graphene TPGs outperforms equal

numbers of genes prioritized by NAGA in all gene sets and sur-

passes iRIGs HRGs except for the FMRP gene set (Figure 4A).

In addition, we analyzed the ASD scenario in 3 ASD-relevant

gene sets (Figure 4D). Using the top-ranked 300 genes, Gra-

phene achieves more significant enrichment than NAGA in the

target gene set of RBFOX1 RNA binding protein55 (n = 384,

padjusted = 2.4 3 10�11) and the gene set from the AutDB data-

base56 (n = 1,166, padjusted = 4.93 10�29), while exhibiting slightly

weaker signals in evolutionarily constrained genes (ECGs)57 (n =

940, padjusted = 7.1 3 10�7). However, when we test 100 TPGs,

Graphene still shows enrichment signals in AutDB (n = 1,166,

padjusted = 1.2 3 10�11) and RBFOX1 (n = 384, padjusted =

6.6 3 10�3), while the top 100 genes identified by NAGA fail to

reach significance level (Figure 4C). To further validate whether

Graphene-derived gene sets can identify enriched biological in-

sights as in other curated knowledgebase or populational

studies, we evaluate TPGs of two types of inflammatory bowel

disease (IBD) (ulcerative colitis and Crohn disease) identified

by Graphene on six previously reported pathways related to im-

mune system signal transduction and T cell activation42,58

(methods). We demonstrate that 100 TPGs of Graphene signals

are significantly enriched (p < 0.01) in Th17 cell differentiation

pathway and interleukin-2 family signaling pathway, and 300

TPGs of Graphene further recapitulate enriched signals in NF-

kB signaling and TCR signaling pathways (Figures 4E–4H).

It is essential to translate GWAS hits to uncover underlying

biological mechanisms. EMOGI adapts a layer-wise relevance

propagation (LRP) rule59 to the GCN network to calculate

importance scores of PPI partners. Graphene uses the GAT

network for downstream functional analysis, so we utilize atten-

tion weights to extract important gene-gene interactions under

certain disease contexts. For illustration purpose, we check

part of 300 SCZ TPGs identified by Graphene that are enriched

in glutamatergic synapse and calcium signaling pathways. Two

main Gene Ontology (GO) terms, synaptic signaling and gene

expression regulation, emerge as key modules. Visualized by

the width of the edges scaling with the attention weights for

the Graphene model (Figure 4I), we take the following examples

to illustrate several important interactions, highlighted in red.

RYR2 encodes ryanodine receptor protein of the calcium chan-

nel and calcium release is triggered by its activation of the

L-type calcium channel CACNA1C.60,61 Among all RYR pro-
Figure 4. Graphene identifies functional enrichment pattern of mental

(A and B) Enrichment of 104 TPGs and 300 TPGs identified by Graphene in six sch

of genes ranked by iRIGs and NAGA.

(C and D) Enrichment of 100 TPGs and 300 TPGs identified byGraphene in three a

equal numbers of genes ranked by NAGA.

(E–H) Enrichment of 100 TPGs and 300 TPGs identified by Graphene on six IBD

numbers of genes ranked by NAGA.

(I–L) Attention weights extracted from 300 Graphene TPGs of four different diseas

(J) coronary artery disease, (K) hippocampal atrophy, (L) alopecia.
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teins widely expressed in the cerebellum and hippocampus

(RYR1, RYR2, and RYR3), RYR2 is the most abundant.61,62

HOMER3 encodes a PSD scaffolding protein that binds and

crosslinks to cytoplasmic regions of GRM5, and RYR263 assists

surface receptors to couple with intracellular calcium release.

SCZ GWAS hits on ERBB4 and GRM5 loci were discovered

by Greenwood et al.64 In addition, NRG1 encodes a membrane

glycoprotein that mediates cell-cell signaling, and its receptor

ERBB465 is found to be expressed in GABAergic neurons.66,67

All prioritized genes connected by attention weights can be

found in Figure S4. We show large attention weights represent-

ing strong interconnections naturally provide insights about un-

derlying regulatory or interplay mechanisms of complex mental

diseases and equip the Graphene model with certain interpret-

ability. To better illustrate the potential utilities of attention

weights, we add examples for another three diseases, shown

in Figures 4J–4L. Identified TPGs of coronary artery disease

are enriched in ‘‘cholesterol metabolism’’ and ‘‘PI3K-Akt

signaling pathway’’ (Figure 4J). Sortilin (SORT1) might bind

components of the platelet-derived growth factor,68 whose

function can be enhanced by PCSK9.69 SORT1 is a high-affinity

sorting receptor for PCSK9.70 PathCards71 and GWAS72 also

show correlations among ANGPTL8, CETP, and LIPG. For hip-

pocampal atrophy’s TPGs, two major pathways identified by

attention weights are ‘‘lycosaminoglycan biosynthesis-heparan

sulfate/heparin’’ and ‘‘axon guidance’’ (Figure 4K). Heparan sul-

fate is reported to be related to hippocampal atrophy73 and its

synthesis and modification involve NDST1-4, the HS3ST family,

and HS2ST1. NDST enzymes may affect the potential func-

tional relation between NDSTs and HS2ST1.74,75 In addition,

HS3ST and NDST have very similar sulfotransferase domain.76

Studies show that semaphorin-3a (Sema3a)-induced axonal

growth cone collapse depends on HS3ST, indicating that activ-

ities of the semaphorin family rely on HS modifications.77–79

TPGs of alopecia mainly cluster into two pathways termed

the ‘‘Wnt signaling pathway’’ and the ‘‘Hippo signaling

pathway’’ (Figure 4L). A previous study indicated that Wnt/

b-catenin and Hippo signaling pathways played important roles

in hair follicle regeneration80 and development of alopecia.81

TLE4 is involved in the negative regulation of the canonical

Wnt signaling pathway. It can suppress Smad7 and activate

the expression of bone morphogenetic protein (BMP) signaling,

and enhance and sustain the upregulation of the endogenous

ID1 gene induced by BMP7.82 Through interacting with

TCF7L2, the co-repressor TLEs repress transactivation.83 The

TCF/LEF family interacts with Smad families to coordinate the

transcription of target genes,84 while it may repress BMP/

SMAD signaling with elevated expression of BMP signaling tar-

gets, such as Id1, Id2, and Id3.85
disorders and discovers relevant molecular interactions

izophrenia (SCZ)-related functional gene sets in comparison with equal number

utism spectrum disorder (ASD) relevant functional gene sets in comparisonwith

(ulcerative colitis, Crohn disease) relevant gene sets in comparison with equal

es exhibit important molecular interactions within functional pathways. (I) SCZ,



Figure 5. Graphene identifies strongly shared heritability of mental illnesses and boosts performance for comorbidity prediction

(A) Comparison plot of genetic correlations among eight mental diseases identified by original GWAS hits, DisGeNET gene sets, ct-LDSC correlation score,

NAGA, and Graphene. The gradational color between disease pairs represents normalized Jaccard Index except ct-LDSC. Eight mental diseases include

unipolar depression (MDD), post-traumatic stress disorder (PTSD), attention deficit hyperactivity disorder (ADHD), bipolar disorder (BIP), schizophrenia (SCZ),

autism spectrum disorder (ASD), Tourette syndrome (TS), and anorexia nervosa (ANO).

(B) Functional enrichment score of overlapping Graphene TPGs for four disease pairs (BIP andMDD, MDD and ADHD, SCZ andMDD, and PTSD and ASD). Eight

KEGG pathways associated with mental disorders were used for evaluation.

(C) Precision-recall (PR) curve of Bipartite Graphene for comorbidity prediction in comparison with original disease separation score (sAB).

(D) PR curve of Decagon for comorbidity prediction in comparison with disease separation score (sAB). Ten-fold cross validation is implemented for (C) and (D).
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Graphene discovers both shared heritability and distinct
genetic underpinnings of multiple psychiatric disorders
Mental disorders usually share similar symptoms with epide-

miological comorbidity, posing difficulties for diagnosis and

treatments.86 Illuminating genetic underpinnings can provide

evidence about intercorrelated psychopathology and raise

the need to refine current clinical psychiatric diagnostics.

We investigate whether Graphene TPGs of eight common

mental diseases can reveal their genetic intercorrelations.

Following CC-GWAS87 definition, we measure the pairing cor-

relation of every two diseases via computing the normalized

Jaccard Index of their prioritized gene set (100–500 min-max

normalization for each disease). We also leverage similar

methods to compare the correlation results obtained from

original GWAS hits, DisGeNET, and NAGA. The values of
normalized genetic correlation (defined as the rg value)

computed by cross-trait LD score regression (ct-LDSC)88

are directly retrieved from the CC-GWAS paper.87 We

compare different correlation patterns derived from all these

strategies (Figure 5A). Overall, ct-LDSC and Graphene exhibit

stronger intercorrelations among these mental disorders

compared with original GWAS hits, NAGA, and DisGeNET.

Considering two closely related depressive disorders as an

example, i.e., unipolar depression (MDD) and BIP, their

GWAS hits correlation (0.32) is much lower than ct-LDSC

(0.5), DisGeNET (0.76), and Graphene (0.94), again demon-

strating the importance to refine GWAS signals. We extract

the overlapping Graphene TPGs for BIP and MDD (overlap-

ping genes include KCND2, RIMS1, KCNA4, and RGS8) and

implement GSEA on eight mental illness-relevant KEGG
Patterns 4, 100651, January 13, 2023 9
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pathways (Figure 5B-i). We observe that these genes have

functional enrichment in neuroactive ligand-receptor

interaction (padjusted = 1.8 3 10�11), glutamatergic synapse

(padjusted = 1.2 3 10�10), and GABAergic synapse (padjusted =

1.4 3 10�5). Moreover, both Graphene (0.54) and ct-LDSC

(0.49) report higher correlation between ASD and MDD

against GWAS (0.15), NAGA (0.26), and DisGeNET (0.06). A

similar trend is also observed between anorexia nervosa

(ANO) and SCZ, where GWAS (0.05), DisGeNET (0.2), and

NAGA (0.05) show relatively lower correlation than ct-LDSC

(0.37) and Graphene (0.31). SCZ and MDD are identified as

strongly correlated disease pairs among all approaches, their

overlapping Graphene TPGs (including CTNNA3, HLA-G,

CSRNP3, GRIN2B, and RELN) manifest functional enrichment

in seven KEGG pathways (Figure 5B-iii), including neuroactive

ligand-receptor interaction (padjusted = 3.5 3 10�11), glutama-

tergic synapse (padjusted = 9.4 3 10�13), GABAergic synapse

(padjusted = 2.1 3 10�4), calcium signaling (padjusted =

3.6 3 10�2), axon guidance (padjusted = 2.2 3 10�3), cell adhe-

sion molecules (padjusted = 2.8 3 10�6), and long-term depres-

sion (padjusted = 1.3 3 10�2). For MDD and ADHD, their over-

lapping Graphene TPGs (including NALCN, NRXN3, NRG3,

and LRP1B) are enriched in axon guidance (padjusted =

7.4 3 10�5) and cell adhesion molecules (padjusted =

1.4 3 10�3) (Figure 5B-ii). Another interesting discovery from

Graphene is the relatively stronger correlation between post-

traumatic stress disorder (PTSD) and ASD, and their overlap-

ping Graphene TPGs (including CBLN4, BRINP1, and GLCE)

are enriched in glycosaminoglycan biosynthesis (padjusted =

2.0 3 10�20) and cell adhesion molecules (padjusted =

1.6 3 10�4) (Figure 5B-iv). Brinp1 has been reported to be

associated with both ASD89 and PTSD.90 Several cognitive

and behavioral mechanisms might be shared between PTSD

and ASD, such as increased rumination, cognitive rigidity,

avoidance, anger, and aggression. Understanding the shared

genetics can help explore the common mechanisms underly-

ing paired mental disorders. Correlation values of each dis-

ease pair extracted by the above five methods are listed in

Tables S4–S8. Considering ct-LDSC derived scores as gold

standard, we also calculate the Spearman correlation coeffi-

cients of all paired similarities extracted by Graphene,

NAGA, GWAS, and DisGeNet with ct-LDSC (PTSD is not

included in ct-LDSC), and the result (Table S9) shows that

Graphene and NAGA denoise the underlying signals and

achieve more similarly shared genetics with ct-LDSC than

GWAS and DisGeNet.

As opposed to the shared genetic correlation, we also

investigate whether the genetic differences between two

diseases can reveal their distinct parthenogenesis mecha-

nisms. CC-GWAS87 leverages allele frequency differences

to identify differential genetic components between cases

of two disorders. We also check the non-overlapping

TPGs between two diseases identified by Graphene. For

ANO versus Tourette syndrome (TS) and SCZ against TS,

POU3F291,92 encodes neural transcription factors involved

in neuronal differentiation. For SCZ against MDD, KCNV193

encodes a member of the potassium voltage-gated channel

subfamily V as an essential function in the brain. For SCZ

against TS, NFIB94 is a transcriptional activator, essential
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for neuron axon genesis and other CNS. All overlapping

and non-overlapping genes between the aforementioned

mental disease pairs can be found in Tables S10 and S11,

respectively.

Leveraging heterogeneous graph to re-train Graphene
enables comorbidity prediction of disease pairs
All the above disease-gene association analyses are based

on homogeneous GNNs, where only the gene node presents,

and diseases are used as node attributes or labels. Con-

structing a multimodal graph where two or more types of no-

des exist, more diverse inter-node relationships can be

modeled. Decagon builds a bipartite graph to represent pro-

tein-drug interactions and model polypharmacy side effects

as edges between paired drug nodes. Inspired by Decagon,

we further introduce disease node into Graphene to model

comorbidity relationship as links between disease nodes.

Disease-associated genes or proteins interacting with each

other tend to cluster into neighborhood structure as disease

modules. If two diseases partially share overlapping modules,

the local perturbation of functional pathways of one disease

can lead to similar disruption in another, displaying as shared

clinical and pathobiological features. Menche et al.95 inte-

grated disease-gene annotations from Online Mendelian In-

heritance in Man (OMIM)96 and GWAS data from the

Phenotype-Genotype Integrator database (PheGenI),97 ob-

taining 299 diseases and 3,173 associated genes, and used

30 million individuals aged 65 and older to determine relative

risk (RR) for each disease pair as comorbidity metric. They

also developed a network-based separation measurement

of a disease pair defined as sAB by comparing the shortest

distances between proteins within each disease based on

their constructed interactome, which is a network of 13,460

protein nodes and 141,296 links. They found that sAB can

be used as a metric to discriminate the degree of RR be-

tween disease pair (RR R 10 for sAB < 0 versus random

expectation of RR z 1 for sAB > 0, see methods). Akram

et al.98 developed a weighted geometric embedding algo-

rithm on this dataset and predicted comorbidity with perfor-

mance of AUROC = 0.76 at threshold RR = 1 in a supervised

manner. To test the decoder utility of bipartite Graphene to

predict RR, we reconstruct Graphene through adding the

same 299 disease nodes, re-training on the same gene-dis-

ease associations data, and training Graphene on paired dis-

ease RR values as edge labels in 10-fold cross validation

setting. Similar training procedures are implemented for

Decagon architecture. As shown in Figure 5C, Bipartite Gra-

phene achieves a mean AUPRC of 0.72 and a mean AUROC

of 0.79 (training for 20 epochs), significantly surpassing

Decagon (mean AUPRC = 0.57, mean AUROC = 0.67 for

30 epochs of training, Figure 5D). Graphene’s GAT decoder

and pre-training setting show stronger performance to pre-

dict disease separation than Decagon’s end-to-end super-

vised training with GCN decoder.

DISCUSSION

We present Graphene, an integrative GNN framework to

decode gene function under network-defined context.
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Graphene integrates multiple interactome networks from het-

erogeneous sources via a graph SSL approach. Then the

informative gene embeddings are used as model initialization

to infer functional properties of genes or proteins. We suc-

cessfully demonstrate the wide applicability of Graphene in

pathway gene recovery, disease-gene reprioritization, module

identification, and comorbidity prediction. Several benchmark

experiments have been performed to validate substantial im-

provements of Graphene over previous methods in each

application.

The parameters sharing the scheme of pre-training GCN allow

Graphene to encode both node attributes and its diverse neigh-

borhood or context, leading to stronger expressive power over

traditional network diffusion-based methods. During the re-

training stage, GAT architecture guides Graphene to search

task-specific connectivity patterns across the network and rep-

rioritize all genes with fast convergence speed. We have shown

that the emerging pre-training and re-training paradigm in deep

learning community can be applied to complex biological net-

works and effectively transfer knowledge to downstream func-

tional analysis. In this paper, we only implement node-level

pre-training, and we plan to incorporate a graph-level pre-

training task as a supplement to further capture global-level

representations.

We also showcase that Graphene can re-rank GWAS hits

and validate superior disease gene recovery performance

on an independent hold-out DisGeNET dataset. Population-

wide GWAS have identified a large number of disease-asso-

ciated loci with genome-wide significance, although only

contributing small amount of the heritability. There is an

ongoing debate whether GWAS hits can reveal disease etiol-

ogy and imply therapeutic targets; in particular, most signals

do not match with core genes. The ‘‘Omnigenic’’ model1 has

been raised to explain those genomic regions that fell below

statistical significance for association increase disease sus-

ceptibility through cumulative weak effects in relevant tis-

sues. These weak effects are broadly distributed across

network modules and function together in certain biological

processes, pathways, and more complex networks. Indeed,

disease genes are not scattered randomly but organized

into disease-specific modules. Therefore, molecular networks

can serve as functional map to refine GWAS hits, re-rank risk

genes and guide the discovery of additional candidate genes.

Developing a powerful network-based method based on

large-scale, cross-tissue interactome datasets is essential

to understand pathophysiological processes. Although we

only use generic networks as integration inputs where tissue

or context labels are not explicitly incorporated into Gra-

phene during both pre-training and downstream re-training

process, we recapitulate tissue specificity of reprioritized

GWAS signals based on the GTEx dataset. In the future,

we expect explicitly incorporating multi-view labels during

network integration of GNN pre-training can equip the model

with tissue awareness and further boost learning effective-

ness. As an ever greater number of biological interactome

are mapped, the Graphene framework presented here is

easily expandable by adding newly discovered networks

into the GNN model and is thereby adaptable to various

functional analysis.
We showcase TPGs identified by Graphene revealing stron-

ger functional enrichment in SCZ- and ASD-relevant pathways

over previous methods. We also demonstrate certain model

interpretability by extracting significant gene-gene attention

weights from the GAT network to pinpoint important gene-

wise interaction partners. Moreover, Graphene provides ge-

netic underpinnings of shared heritability among eight com-

mon mental disorders by investigating their overlapping

TPGs. The non-overlapping TPGs also offer some hints

regarding distinct pathogenesis mechanisms between disease

pairs. By adding disease nodes into Graphene to build a het-

erogeneous bipartite network, Graphene achieves excellent

performance for comorbidity prediction via link prediction.

Due to the fact that 299 diseases used for evaluation are far

fewer than the number of genes, learning effective disease-

disease edge embedding is non-trivial. Our GAT decoder

outperforms Decagon’s GCN decoder, again demonstrating

the importance of GNN architecture choices at different

stages.

In the absence of a gold standard disease gene set, Gra-

phene serves as a ready-to-use tool to refine any novel

GWAS findings and retrieve candidate genes for detailed

follow-up investigation. Since GWAS are based on popula-

tion-level genotype-phenotype information, which is different

from those networks used as input to Graphene, we foresee

our tool can offer orthogonal evidence to discover biologically

relevant modules and elucidate underlying disease mecha-

nisms. Based on the robustness for gene prioritization, Gra-

phene can also be extended to develop target gene panels

for diagnosis of inherited disease or risk evaluation panel for

complex traits. In addition, for a cohort where individual-level

omics data are available, Graphene can concatenate variant

information and other multi-omics features together with

pre-trained gene embeddings, as in EMOGI,29 and enable pa-

tient-level disease classification during the downstream re-

training stage, thus providing a potential analysis tool for ap-

plications in precision medicine. Considering recent progress

in applying graph SSL for information retrieval and recommen-

dation system, we plan to further explore causal inference-

based learned GNN to interpret large biological networks in

the future.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Meng Yang, yangmeng1@mgi-tech.com.

Materials availability

This study did not generate new unique reagents.

Data and code availability

All datasets in this study were published previously, and their availabilities are

described in Table S1. Graphene is written in Python using the Pytorch library.

The source code has been deposited at Zenodo under the https://doi.org/10.

5281/zenodo.7233857.

Methods

In this work, we first design two auxiliary tasks to pre-train GNN to integrate

four molecular networks and re-train the network for downstream investiga-

tions, including pathway gene set recovery, disease gene reprioritization,

and other functional studies. In the following sections, we describe each of

the proposed components in details.
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Pre-training the GNN

Sources of pre-training molecular networks. We combine four different sour-

ces of networks freely accessible to build a single network for pre-training. We

assign the presence of edge connection between two nodes as long as there

exists interaction in any single network. HumanBase, as a tissue-specific gene

network, is built on a collection of datasets covering thousands of experiments

from 14,000 distinct publications. Incorporating HumanBase might help inject

tissue specificity into our combined network and we download 142 gold

standard tissue networks from Humanbase (https://hb.flatironinstitute.org/

download). The tissue label is not explicitly included. We download

STRING9606 v11 (https://string-db.org), which contains experimentally

derived protein-protein interactions through literature curation, scientific text

mining, calculation from genomic features, and other model organisms. We

also collected 52,548 connections from the Human Reference Interactome

(HuRI) (http://www.interactome-atlas.org/download), which is a systematic

proteome-wide reference that links genomic variation to phenotypic out-

comes. In addition, PCnet itself is a composite network that can boost perfor-

mance and serves as supplementary to the other three networks, and

2,610,605 connections were downloaded from the Network Data Exchange

(NDEx) database (http://www.ndexbio.org). We convert each network to a

set of tuples, and each tuple consists of two nodes, interconnected by an

edge between them. The node ID of each node is Entrez ID. We then take

the union of four sets to generate a unified network of 19,324 gene nodes

and 16,142,804 edges. The edges are equally weighted.

Model structure for pre-training. A schematic diagram ofmodel architectures

can be found in Figure S1 and we illustrate in formula form below. Our graph

was denoted by G = {V, E} with N nodes vi˛V, edges (vi, vj)˛E, a binary adja-

cency matrix A˛AN3N. We randomly initialized node feature vector matrix Xvi

for vi˛V as the input to GNN:

Xvi = EmbeddingðV; embedsizeÞ; (Equation 1)

where Xvi˛R13De, whereDe represents the embedding size. Node representa-

tions were updated at each layer by:

Hðl +1Þ = s

�
~D � 1

2
~A ~D � 1

2
HðlÞWðlÞ

�
; (Equation 2)

where Ã = A + IN is the adjacency matrix of the graphG, IN is the identity matrix,

D is a trainable weight matrix. The equation adopts ReLU activation (s($))with a

certain number of hidden units. We devised two pre-training auxiliary tasks,

context prediction and masked node recovery, as follows.

Context prediction. We performed this task by negatively sampling neigh-

borhood and context representations. The above node update scheme pro-

vided us with neighborhood representation hkvi of center node vi. Furthermore,

we defined context representation cGvi by calculating the mean sum of repre-

sentations of anchor nodes vj˛Aanchor that are k hops adjacent to the cen-

ter node:

cG
vi

= MEAN

0
@ X

vj ˛Aanchor

hk
vj

1
A: (Equation 3)

With these two representations, the learning objective of Context Prediction

was a binary classification of whether a particular neighborhood hkvi of vi and

a particular context cGvj of vj belong to the same node:

y
0
= s
�
hðkÞT
vi

cG
vj

�
=

�
0 ðisjÞ
1 ði = jÞ ; (Equation 4)

where s($) is a sigmoid function. During training, we chose either a positive pair

of hkvi and cGvj (i = j) or a random negative pair (is j) with positive/negative sam-

pling ratio 1:1, and we used binary cross entropy loss:

Lc = � y logðy0Þ � ð1 � yÞ logð1 � y0Þ: (Equation 5)

Node prediction. We cast the masked node recovery as a classification task.

Wemasked the node and let the pre-train model predict those nodes. First, we

masked a node in the graph by replacing its node embedding with a mask

embedding. Second, we applied a pre-training graph model to obtain a corre-
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sponding node hidden state h
ðkÞ
vi , which is consistent with Equation 2. Finally,

we applied FC (fully connected layer) on h
ðkÞ
vi to predict the node:

pnode
vi

= softmax
�
Wnode , hðkÞ

vi
+ bnode

�
: (Equation 6)

pnode
vi

˛ RN is a vector that represents the probability of each node.Wnode is

weight matrix and bnode donates the bias matrix. We use cross entropy loss to

optimize the entire pre-train model:

LNodeMask� vi = � log
�
pnode
vi

½i�
�
: (Equation 7)

As the ground truth label is a one-hot vector, the cross entropy loss can be

simplified to the above format. pnode
vi

½i� indicates the i-th item in vector pvi.

Re-training for pathway gene set recovery

Sources of pathway gene sets. Two widely used public gene sets were

considered in this task, i.e., the National Cancer Institute Pathway Interaction

Database (NCI) and The Reactome Knowledgebase (Reactome). We down-

loaded all 211 NCI pathways from NDEx (http://www.ndexbio.org) composed

of human molecular signaling, regulatory events, and key cellular processes.

Reactome is a free and open source database of biological pathways in inter-

mediary metabolism, signaling, innate and adapted immunity, transcriptional

regulation, apoptosis, and various diseases. We downloaded the Reactome

Pathways Gene Set file, which contained 2,408 sets (https://reactome.org/

download-data). We removed those pathways containing fewer than 3 genes

and finally obtained a Reactome label file of 2,035 pathways.

Sources of disease gene sets. Disease-gene associations for re-training are

downloaded from GWAS Catalog v1.0.2 (https://www.ebi.ac.uk/gwas/docs/

file-downloads), which is a publicly available resource of GWAS. We obtained

3,954 diseases grouped by mapped traits with gene p < 5310�5. To unify the

nomenclature with downstream DisGeNET datasets, we chose diseases/traits

that have identical names in DisGeNET (https://www.disgenet.org/downloads)

and deleted those traits/diseases with associated genes less than 30 and we

finally obtained 202 traits/GWAS disease. Most of these 202 chosen diseases

were among the most common disorders cataloged in both GWAS and

DisGeNET, and 171 of them have curated gene lists in DisGeNET (for detailed

IDs, see Figure S2). A total of 171 DisGeNET gene sets was used as a hold-out

test set for disease gene reprioritization.

Model structure for gene set member recovery. For each database above,

suppose we had M gene sets and each set corresponded to N human genes.

We arranged these datasets into a target matrix S = {sij}M3N, where sij is a bi-

nary value indicating whether the gene vjwas the member of i-th gene set. Our

aim was to predict the presence possibility of gene vj in a given gene set mi.

The proposed downstream re-training of the GNN model consists of three

modules: the embedding layer, the GAT layers, and the classification layer.

Input gene embeddings were extracted from the above pre-trained network.

The pre-trained node embeddings can be represented asH= {h1, h2,., hN},

where hi ˛RK and K represent embedding size. The embedding layer accepts

graph node embeddings as initializations. Each node embedding is repre-

sented as a K-dimensional vector and the weights are initialized by our pre-

trained node embeddings, i.e., the i-th node embedding is hi. Then we map

these node embeddings into F-dimensional vectors through a fully connected

layer:

Hemb = f
�
Wemb ,H + bemb

�
=
	
hemb
1 ; hemb

2 ; / ;hemb
N



: (Equation 8)

Here, hemb
i ˛RF is the output embedding, Wemb˛RF3K is weight matrix,

bemb˛RF is the bias vector, and Hemb˛RN3F represents the output of embed-

ding layer.

Then, theGAT layers take the output from the embedding layerHemb as input

and aggregate the node information through a graph structure. We use the

following formula to obtain the edge weight aij between nodes vi and vj:

aij =
exp

�
LeakyReLU

�
au
h
WGAThemb

i k WGAThemb
j

i��
P

l˛Oi
exp

�
LeakyReLU

�
au
�
WGAThemb

i k WGAThemb
l

���: (Equation 9)

WGAT˛RF03F is a weight matrix applied to every node transforming

the dimensionality from F to F0, a ˛R2F0
is a learnable vector. We applied

LeakyReLU as the activation function. Oi is the set of the neighboring nodes

https://hb.flatironinstitute.org/download
https://hb.flatironinstitute.org/download
https://string-db.org
http://www.interactome-atlas.org/download)
http://www.ndexbio.org
http://www.ndexbio.org
https://reactome.org/download-data
https://reactome.org/download-data
https://www.ebi.ac.uk/gwas/docs/file-downloads
https://www.ebi.ac.uk/gwas/docs/file-downloads
https://www.disgenet.org/downloads
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close to vi in graph G. With weight aij, we can obtain the final output feature of

every node produced by the GAT layer:

hGAT
i =

YT
t = 1

s

 X
j˛Oi

at
ijWth

emb
j

!
: (Equation 10)

We employed themulti-head attentionmechanism, where T is the number of

heads and
Q

represents concatenation.Wt, t = 1, $ $ $, T is a weight matrix and

s is a nonlinearity activation function. hGAT
i ˛RT F 0

is the produced vector for

node vi. The output of the GAT layer is HGAT = {hGAT
1 , hGAT

2 , ., hGAT
N }.

Then the classification layer takes HGAT as input and derives final classifica-

tion. This layer applies average pooling to HGAT over all heads and then uses

the sigmoid function for classification:

hout
i = sigmoid

 
1

T

XT
t = 1

X
j˛Oi

at
ijW

out
t hGAT

j

!
; (Equation 11)

where Wout
t ˛RM 3T F 0

, t = 1, $ $ $, T, and M is the number of gene sets. houti

˛RM is the output probability vector of node vi. The output of the classification

layer can be represented as a matrix Hout = [hout1 , hout2 , ., houtN ] ˛R N3M. Each

elementHout
ij in thismatrixmeans the probability of the gene vi is themember of

gene set j. Then we can use the binary cross entropy loss to optimize the full

network:

LGenSet =
XN
i = 1

XM
j = 1

� sij log Hout
ij � ð1 � sijÞ log

�
1 � Hout

ij

�
: (Equation 12)

During the re-training stage, we randomly masked the labels of half of all no-

des and used the other half as a training set to enforce the model to predict the

probabilities of all genes.

We used the same model architecture as described above for gene set

member recovery. The embedding layer also takes pre-trained node embed-

dings H as input, and the GAT layer employs Ggg as the graph. The output

of the classification layer represents the importance probability of the gene

vj to disease di. We used the binary cross entropy as loss function to train

the model, given the ground-truth label matrix D = {dij}
Q3N.

Disease comorbidity prediction

Source of disease-disease comorbidity and disease-gene associations. For

this task we adopted RR (from 0 to <9,000) of disease-disease comorbidity

for each pair of diseases that were determined using the disease history re-

cords of 30 million individuals aged 65 years or older (U.S. Medicare). There

were 6,269 disease pairs with comorbidity value RR R 1 as positive pair

and the rest were negative. For convenience of comparison, we used the dis-

ease-gene associations through integrating OMIM (www.ncbi.nlm.nih.gov/

omim) and GWAS (www.ncbi.nlm.nih.gov/gap/PheGenI), using a p value cut-

off of 5 3 10�8.

Bipartite model structure for disease comorbidity prediction. We constructed

Bipartite Graphene by replacing GCN layer of Decagon model’s decoder with

a GAT layer. In addition to gene-gene graph G and disease-gene association

matrix D, a disease-disease relationship matrix C was required. Disease-dis-

ease relationships were calculated by the Jaccard Index between those 299

diseases chosen above. Then, we learned hidden states of each node from

their neighborhood consisting of heterogeneous node types. Finally, we

made predictions between two nodes via an edge decoding function. Then co-

morbidity can be considered as links between two disease nodes. We trained

a model to learn the relationships between disease pairs and then predicted

those test links in 10-fold cross validation. Formally, the Bipartite Graphene

model takes the following form:

hBGAT
i;x =

X
l

X
j˛Ol

i

ui;jW
x
l zj;x +Wx

bi;s
zi;x; zi;x +1 = Bðhi;xÞ: (Equation 13)

zi,x˛ Rux represents the hidden state of node vi in the x-th GAT layer. hBGAT
i;x is

the feature vector that aggregates information from vi’s neighborhoods, l is the

type of node links, andOl
i is the neighborhood set of node viwith regard to type

l.Wx
l andWx

bi;s
, are the weight matrices at layer x, and bi is the type of the node.

ui,j is a normalization constant, which can be formulated as ui;j =

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jQi j,

��Qj

��q
. 4 indicates the activation function ReLU.
Since we have different types of nodes and links, the computation of the

graph propagation can vary according to different types of the neighborhood.

We used GAT architecture to aggregate and propagate node representation

zi,x into the node representation zi,x+1 for the next layer. The final representation

of node vi is zi,x, where x is the number of GAT layers. For the edge decoding

model, the probability of a link between disease j and disease i can be

described as:

Pðdi ;djÞ = s
�
zudi;XWczdj;X

�
: (Equation 14)

zdi,X is disease node representation for di, zdj,X is disease node representation

for dj. Wc is the weight matrix to capture the relationships between disease

pairs. s is the sigmoid function, so P (di, dj) will be a real value within range

(0, 1) indicating the co-occurrence coefficient between di and dj.

During the training stage, we select edges where cijR0.9 are positive sam-

ples, and recorded the index (i, j) into the positive set Sp. For negative samples,

we still employ negative sampling given a positive edge cij, we randomly

sampled one negative edge cir, where cir < 0.9, and recorded the sampled

negative index (i, r) into the negative set Sn. The training objective is thus:

LComorbid =
X

ði; jÞ˛SpWSn

� cij log Pðdi ;djÞ � ð1 � cijÞ log ð1 � Pðdi ;djÞÞ:

(Equation 15)

Experimental setting and hyperparameters choice. The dimensionality of

pre-trained node embeddings K is set to 100. For the gene set member recov-

ery task, the dimensionality of the embedding layer output is set to 256. The

number of heads T is 8, the number of GAT layers is 2. The output representa-

tion dimensionality of each head in the first GAT layer is 128. We set the

learning rate to 1e�3. During the pathway gene set recovery experiments,

we followed the setting of Set2Gaussian to retrieve 50% of the gene set mem-

bers as test data and used the remaining 50% as the training data. For the dis-

ease gene reprioritization task, we randomly masked 40% of the associations

for disease-gene matrix D as test set and used the other 60% of data for

training. We set the attention dropout to 0.3, and the learning rate to 5e�3.

The hidden size of the GAT layer is 128 per head. We train the model for

7,100 epochs. For comorbidity prediction, we randomly hid 10% of edges of

the comorbid disease matrix C as test set and used the remaining 90% as

the training set (10-fold cross validation). We trained the bipartite Graphene

model for 20 epochs (30 epochs for Decagon), with batch size of 512 and

learning rate of 1e�3. The threshold of the input relative risk is 1.0.

GSEA. GSEApy (https://github.com/zqfang/GSEApy) API was used for

enrichment analysis, where the p value was computed using the hypergeomet-

ric test and the padjusted value using the Benjamini-Hochberg method for

correction. The padjusted value was reported. The following gene sets were

included for SCZ: FMRP targets, PSD genes, GABAA receptor, calcium

signaling, and glutamatergic synapse of KEGG. ASD related gene sets include

database AutDB, ECGs, and targets of RBFOX1. In downstream analysis of

disease gene prioritization, the following KEGG pathways were used for corre-

lation analysis for eight mental disorders: Neuroactive ligand-receptor interac-

tion, long-term depression, glutamatergic synapse, cell adhesion molecules,

GABAergic synapse, calcium signaling pathway, glycosaminoglycan biosyn-

thesis, and axon guidance. For two IBDs, i.e., ulcerative colitis and Crohn dis-

ease, we chose three pathways involved in immune system and signal trans-

duction (mitogen-activated protein kinase) signaling, NF-kB signaling, Th17

cell differentiation) from KEGG (https://www.genome.jp/kegg/pathway.html)

and we chose another three pathways of T cell activation (TCR signaling,

CD28 co-stimulation, interleukin-2 family signaling) from Reactome.

Tissue specificity analysis. For the tissue-specificity analysis, we down-

loaded gene-level TPM (transcripts per kilobasemillion) data containing 53 tis-

sues from GTEx portal (https://www.gtexportal.org/home/datasets) and

adopted the JS divergence to measure the tissue specificity of each gene in

each tissue. JS divergence is an entropymeasurement that quantifies the sim-

ilarity between a gene’s expression pattern e and an extreme pattern where a

gene is expressed in only one tissue et, and their JS divergence to be

JS
�
e; et

�
= H

�
e+et

2

�
� HðeÞ+HðetÞ

2
; (Equation 16)
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where the entropy of a discrete probability distribution is denoted as H:

e = ðe1; e2 / enÞ; 0% ei % 1 and
Xn
i = 1

ei = 1

et =
�
et
1; e

t
2 / et

n

�
and et

i =

�
0; ðistÞ
1; ði = tÞ (Equation 17)

HðpÞ = �
Xn
i = 1

ei logðeiÞ:

The distance between two tissue expression patterns, e and et is defined as:

JSdistðe;et Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JSðe; etÞ

p
: (Equation 18)

Then the tissue-specific expression pattern of gene e with respect to tissue t

can be defined as

JSspðejtÞ = 1 � JSdist

�
e; et

�
: (Equation 19)

Finally,Wilcoxon rank-sum test was adopted to calculate the overall expres-

sion pattern of genes relating to one disease.

Gene classification according to GO annotation. In the task of SCZ disease

module identification (Figure S4), we devised a way of classifying module

genes according to GO annotation. Like other mental diseases, the following

functions played important roles: gene expression regulation: GO:0010468,

GO:0032774, GO:0051252; synaptic signaling: GO:0099536, GO:0007154,

GO:0023052, GO:0005737, GO:0007267; ion transport: GO:0006811,

GO:0006810; cytoskeleton organization: GO:0070507, GO:0032886,

GO:0000226, GO:0007010, GO:0006996; nervous system development:

GO:0048854, GO:0009887, GO:0007399, GO:0050877, and so on. Each func-

tion class contains a certain amount of GO annotations. We classified a gene

by searching theGO annotation hierarchy tree and see if the gene itself has any

annotation belonging to a certain function or if any close ancestor of it does.

TPGs chosen for Jaccard Index calculation among eight mental disorders.

The number of TPGs used for Jaccard Index calculation of eight mental disor-

ders was chosen according to their GWAS association genes in training, and

then normalized to a range from 100 to 500 (min-max normalization).
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