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Direct Inhibition of T-Cell Responses
by the Cryptococcus Capsular Polysaccharide

Glucuronoxylomannan
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The major virulence factor of the pathogenic fungi Cryptococcus neoformans and C. gattii is the capsule.
Glucuronoxylomannan (GXM), the major component of the capsule, is a high-molecular-weight polysaccharide that
is shed during cryptococcosis and can persist in patients after successful antifungal therapy. Due to the importance of T
cells in the anticryptococcal response, we studied the effect of GXM on the ability of dendritic cells (DCs) to initiate a T-
cell response. GXM inhibited the activation of cryptococcal mannoprotein-specific hybridoma T cells and the
proliferation of OVA-specific OT-Il T cells when murine bone marrow-derived DCs were used as antigen-presenting
cells. Inhibition of OT-II T-cell proliferation was observed when either OVA protein or OVA3,3 330 peptide was used as
antigen, indicating GXM did not merely prevent antigen uptake or processing. We found that DCs internalize GXM
progressively over time; however, the suppressive effect did not require DCs, as GXM directly inhibited T-cell
proliferation induced by anti-CD3 antibody, concanavalin A, or phorbol-12-myristate-13-acetate/ionomycin. Analysis of
T-cell viability revealed that the reduced proliferation in the presence of GXM was not the result of increased cell
death. GXM isolated from each of the four major cryptococcal serotypes inhibited the proliferation of human
peripheral blood mononuclear cells stimulated with tetanus toxoid. Thus, we have defined a new mechanism by which
GXM can impart virulence: direct inhibition of T-cell proliferation. In patients with cryptococcosis, this could impair
optimal cell-mediated immune responses, thereby contributing to the persistence of cryptococcal infections.
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Introduction

Cryptococcosis is an invasive fungal infection that is caused
by species of Cryptococcus, most commonly Cryptococcus neofor-
mans or C. gattii. Following inhalation of the organism, the
immune response is initiated in the lungs by alveolar
macrophages and dendritic cells (DCs) [1,2]. Clinical and
experimental data have established that T cells are required
for resistance to C. neoformans. Disease occurs mainly in those
with impaired cell-mediated immunity (CMI), including
persons with AIDS, although infections can occur in
immunocompetent persons as well [3].

The cryptococcal capsule is composed primarily of the
polysaccharide glucuronoxylomannan (GXM), and also con-
tains galactoxylomannan (GalXM). It is the structure of GXM
that imparts serotype specificity to the organism. C. neoformans
is composed of two varieties: C. neoformans var. grubii (serotype
A isolates) and var. neoformans (serotype D isolates), while C.
gattii includes serotypes B and C. GXM is a large poly-
saccharide; a study of GXM from four cryptococcal strains
concluded that the molecular size ranged from 1,700 to 7,000
kDa [4]. A second polysaccharide, galactoxylomannan
(GalXM), is also present but at approximately 10% of the
mass of GXM [5].

Capsule is thought to contribute to the virulence of the
yeast both by inhibiting phagocytosis and by being shed. In
patients with cryptococcosis, GXM circulates in the blood and
cerebrospinal fluid (CSF) at high concentrations [6] and can
often be detected in body fluids for months to years after
successful antifungal therapy ([7] and unpublished data).
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GXM has a number of immunomodulatory properties,
including downregulating proinflammatory cytokine secre-
tion from human monocytes and inhibiting leukocyte
migration [8].

GXM in the brain of patients with cryptococcal meningitis
is associated with macrophages/microglial cells, and it is
possible that these cells serve as a reservoir for the
polysaccharide once the organism is cleared [9,10]. Support-
ing a role for macrophages in uptake of GXM in vivo, studies
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Synopsis

Infections due to the pathogenic yeast Cryptococcus are a significant
cause of morbidity and mortality in persons with impaired T-cell
functions, particularly those with AIDS. The major virulence factor of
Cryptococcus is its capsule, which is composed primarily of the
polysaccharide glucuronoxylomannan (GXM). The capsule not only
surrounds the organism but also is shed during cryptococcosis. GXM
is taken up by macrophages in vitro and in vivo; however, little is
known about the interaction between GXM and dendritic cells,
which are the most potent cells capable of activating T cells.
Because of the importance of T cells in the anticryptococcal
response, the authors investigated the effect of GXM on the ability
of dendritic cells to initiate a T-cell response. They found the
polysaccharide was internalized by dendritic cells and inhibited
antigen-specific T-cell responses. Furthermore, GXM had a direct,
inhibitory effect on T-cell proliferation, independent of the effect on
dendritic cells. These findings may help explain the persistence of
cryptococcal infections and suggest that GXM could be therapeutic
in situations where suppression of T-cell responses is desired.

in mice have found injected GXM localized primarily to
marginal zone macrophages in the spleen and Kupffer cells in
the liver [11,12]. In vitro, human monocytes and neutrophils
and murine peritoneal macrophages internalize GXM, with
GXM accumulating in the human monocyte-derived macro-
phages (MDMs) for up to 1 wk in culture [13,14]. The
functional consequences of GXM internalization on phag-
ocyte function include decreased human neutrophil anti-
cryptococcal activity [13] and modulation of MHC class II and
costimulatory molecule expression on MDMs [15].

DCs are powerful antigen-presenting cells (APCs) that
recognize a wide variety of microbes and microbial products
via their pattern-recognition receptors and subsequently
initiate and direct T-cell responses [16]. Because of the
importance of DCs in orchestrating immune responses,
numerous pathogens have evolved ways of interfering with
their functions [17]. Few studies have examined the effects of
GXM on DCs. While acapsular C. neoformans cells induced the
activation and maturation of human monocyte-derived DCs
(HDGs), encapsulated organisms did not. In addition, soluble
GXM did not affect the expression of MHC class I, MHC class
11, CD40, or CD86 on HDCs [18].

Given the importance of the CMI response in the defense
against Cryptococcus, we hypothesized that the organism’s
major virulence factor, GXM, would interfere with the ability
of DCs to activate T cells. We found that DCs internalize
GXM and the presence of GXM impairs antigen-specific T-
cell responses. Surprisingly, the dominant mechanism re-
sponsible for this effect was a direct, inhibitory effect of GXM
on T-cell proliferation.

Results

The ability of DCs to internalize GXM was measured by
flow cytometry using an anti-GXM antibody. We found GXM
is taken up by both murine bone marrow-derived DC
(BMDGCs) and HDCs (Figure 1). GXM internalization in-
creased over time, up to at least 2 d in culture. At all time
points, the vast majority of the GXM was intracellular, as
opposed to surface-bound (unpublished data).

Having demonstrated that GXM is internalized by DCs, we
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Figure 1. GXM Internalization by DCs

BMDCs or HDCs were incubated with GXM for the indicated lengths of
time. Cells were harvested, washed, fixed, permeabilized, stained with an
anti-GXM antibody, followed by a Cy2-conjugated secondary antibody,
and analyzed by flow cytometry. The experiment was done twice with
similar results.

doi:10.1371/journal.ppat.0020120.g001

next studied the effects of GXM on the ability of DCs to
activate antigen-specific T cells. In the first set of experi-
ments, BMDCs were incubated with varying concentrations of
GXM in the presence of cryptococcal mannoprotein (MP) and
MP-specific hybridoma T cells. Activation of the T cells was
determined by assaying interleukin (IL)-2 production. GXM
inhibited the activation of T cells in a dose-dependent
manner, with GXM at the highest concentration tested
inhibiting activation by approximately 45% (Figure 2).

We next utilized the OT-II system to examine whether
GXM also inhibited the response of primary antigen-specific
T cells. BMDCs were pretreated with varying concentrations
of GXM before the addition of antigen, either whole OVA
(contained in endotoxin-free egg white) or OVAsss_339
peptide. Naive OVA-specific CD4" T cells, purified from
OT-II transgenic mice, were added and proliferation was
measured. GXM at 30, 100, and 300 pg/ml significantly
inhibited T-cell proliferation induced by BMDC plus egg
white, with GXM at 300 pg/ml inhibiting proliferation by
almost 50% (Figure 3). Similar results were obtained when
OVA contaminated with endotoxin was used as antigen
(unpublished data). To determine if GXM was affecting
antigen uptake and/or processing, we activated OT-II T cells
with BMDC plus OVAsss_339 peptide. This peptide directly
binds to MHC class II, thus bypassing the need for antigen
uptake and processing [19]. GXM inhibited proliferation
induced by the peptide to a similar extent as observed with
egg white, indicating the mechanism of inhibition is not
interference with antigen uptake or processing (Figure 3). In
support of this, inhibition of proliferation was similar
whether GXM was added 2 h before or 2 h after egg white
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Figure 2. GXM Inhibits the Activation of Cryptococcal MP-Specific T Cells

BMDCs were pretreated with varying concentrations of GXM (30, 100, or
300 pg/ml) before the sequential addition of cryptococcal MP and MP-
specific hybridoma T cells. Following 24-h incubation, IL-2 levels in the
supernatants, a measure of T-cell activation, were measured by bioassay.
The data are expressed as percent of IL-2 produced compared with MP
alone (set at 100%) and are the average *= SEM of three to five
independent experiments done in triplicate. Mean IL-2 in the MP-alone
group was 68 U/ml. *p < 0.001.

doi:10.1371/journal.ppat.0020120.g002

(unpublished data). Reduced T-cell proliferation could also
be the result of impaired DC maturation, but we found GXM
did not inhibit lipopolysaccharide- or tumor necrosis factor
a—induced upregulation of MHC class I or CD86 on BMDC
(unpublished data), suggesting GXM does not interfere with
DC maturation.

After determining that GXM inhibited the proliferation of
antigen-specific T cells activated by BMDC, we sought to
examine if the effect was specific to BMDCs or would be
observed if macrophages were used as the APCs. We first
established that bone marrow-derived macrophages (BMM¢)
internalize GXM, with uptake increasing over time (unpub-
lished data), similar to uptake by MDMs [13] and BMDCs
(Figure 1). Purified CD4" OT-II T cells were activated by
BMM¢ plus egg white, in the presence or absence of varying
concentrations of GXM. While GXM at the lower concen-
trations tested (30 and 100 pg/ml) had no significant effect on
T-cell proliferation, GXM at 300 pg/ml inhibited proliferation
by 57 £ 9% (p < 0.01, n=2). Thus, GXM-mediated inhibition
of T-cell proliferation is observed whether DCs or macro-
phages present the antigen.

GXM was present for the duration of the coculture in the
T-cell proliferation experiments described above. Accord-
ingly, although some GXM was undoubtedly taken up by the
APCs, there was likely GXM present extracellularly in contact
with the T cells. Therefore, we questioned whether intra-
cellular GXM would be sufficient to impair the ability of
BMDC s to activate T cells. To investigate this, BMDCs were
incubated with GXM and then washed to remove any GXM
not bound or internalized before the addition of antigen and
T cells. Pulsing of BMDGCs with 100 ug/ml GXM before the
addition of egg white had no effect on subsequent T-cell
proliferation, and pulsing with 300 pg/ml had a minimal,
inhibitory effect on proliferation (unpublished data). Thus,
GXM-pulsing of BMDCs slightly reduced T-cell proliferation
but not to the extent observed when GXM was added directly
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Figure 3. GXM Inhibits the Proliferation of OVA-Specific T Cells

BMDCs were pretreated with GXM (30, 100, or 300 pg/ml) before the
addition of egg white or OVA3,3_339 peptide. Purified CD4" T cells from
OT-Il mice were then added and proliferation was measured by
[*H]thymidine incorporation. The data are expressed as the percent
proliferation compared with antigen alone (-) (set at 100%) *SEM of
three independent experiments done in triplicate. Mean CPM for egg
white and OVA3,3_339 peptide were 116,830 and 220,560, respectively. *p
< 0.01; **p < 0.001.

doi:10.1371/journal.ppat.0020120.g003

to the cocultures, suggesting GXM was having a direct effect
on T cells. To investigate direct effects of GXM on cp4t T
cells, we first demonstrated that GXM bound to CD4" T cells
(unpublished data) and then used three stimuli that activate T
cells independent of APC: concanavalin A (Con A), plate-
bound anti-CD3g antibody, and phorbol-12-myristate-13ace-
tate (PMA)/ionomycin. GXM at 100 pg/ml added to anti-
CD3g-activated T cells modestly increased proliferation;
however, higher concentrations of GXM (300 and 1,000 pg/
ml) significantly inhibited proliferation (Figure 4). GXM at
100 pg/ml had no effect on Con A-mediated T-cell
proliferation, yet 300 pg/ml GXM inhibited proliferation by
60% (Figure 4). We also found GXM inhibited the prolifer-
ation of PMA/ionomycin-activated T cells in a dose-depend-
ent fashion (Figure 4). These data demonstrate that GXM has
a direct, inhibitory effect on T-cell proliferation. Moreover,
inhibition is observed regardless of whether T cells are
activated in a physiologic or pharmacologic manner.

To further investigate the reduced proliferative response,
we sought to determine if GXM inhibits the upregulation of
T-cell activation markers. Surface expression of CD69, which
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Figure 4. Effect of GXM on T-Cell Proliferation Induced by Anti-CD3, Con
A, or PMA/lonomycin

Purified CD4" murine T cells were activated with plate-bound anti-CD3¢
antibody, Con A, or PMA/ionomycin, in the presence or absence of GXM
(100, 300, or 1,000 pg/ml). The data are expressed as the percent
proliferation compared with the stimuli alone (-) (set at 100%) *SEM of
two to five independent experiments done in triplicate. The mean CPM
for anti-CD3, Con A, and PMA/ionomycin were 224,440, 41,820, and
118,875, respectively. *p < 0.01.

doi:10.1371/journal.ppat.0020120.9004

is an early activation antigen [20], was evaluated. GXM did not
affect the upregulation of CD69 on T cells activated with anti-
CD3e or BMDCs plus egg white (unpublished data). Similarly,
GXM did not inhibit the upregulation of CD25 (unpublished
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data), which is the a-chain of the high-affinity IL-2 receptor
and another activation marker of T cells [21].

The decreased T-cell proliferation observed in the pres-
ence of GXM could be due to induction of necrosis or
apoptosis. Therefore, we assessed the effect of GXM on T-cell
viability by Annexin V/propidium iodide (PI) staining. GXM
at 300 pg/ml induced a small decrease in the percentage of
live cells and a corresponding increase in the percentage of
late apoptotic or dead cells when T cells were activated by
anti-CD3¢ or BMDCs plus egg white (Figure 5). The addition
of 1,000 pg/ml GXM to anti-CD3e-activated T cells also
resulted in a minimal, statistically insignificant increase in the
percentage of late apoptotic or dead cells (unpublished data).
However, this effect of GXM on T-cell viability is minimal and
does not appear to be sufficient to account for the impaired
proliferative responses. The effect of GXM on viability was
also examined by adding the polysaccharide to cell lines and
measuring proliferation. GXM at 300 pg/ml had no significant
effect on the incorporation of [3H]thymidine by a number of
T cell lines and a B cell line, demonstrating that GXM is not
directly cytotoxic (Figure S1). Taken together, these data
indicate GXM-mediated inhibition of T-cell proliferation is
not primarily due to cell death.

We next sought to determine the effect of GXM on
cytokine production by primary T cells. IL-2, IL-10, and
interferon (IFN)-y, but not IL-4, were detected in super-
natants of BMDCslegg white/OT-II T-cell cocultures and T
cells directly activated with anti-CD3e (Figure 6 and
unpublished data). The presence of GXM resulted in reduced
IL-2 levels when T cells were activated with anti-CD3¢ or
BMDGs plus egg white (Figure 6). However, GXM had no
significant effect on IL-10 or IFN-y levels (unpublished data).
Because IL-2 is a T-cell growth factor and is produced by
activated T cells, the effect of GXM on IL-2 production was
investigated further. Reduced levels of IL-2 in the presence of
GXM could be due to a direct inhibition of IL-2 production
or a result of fewer T cells due to an impaired proliferative
response. To address the former possibility, we added
exogenous IL-2 to T cells activated with anti-CD3e. IL-2 at
concentrations up to 100 U/ml did not restore the prolifer-
ative response of cells activated in the presence of 1,000 pg/ml
GXM (68 £ 5% inhibition with GXM alone and 62 = 13%
with GXM plus 100 U/ml IL-2; mean * SEM of two
independent experiments performed in triplicate). We also
examined the effect of GXM on the amount of IL-2 produced
by phytohemagglutinin (PHA)-activated Jurkat T cells and
found GXM had no significant effect on IL-2 production
(PHA plus 300 pg/ml GXM = 110 = 24% of IL-2 induced by
PHA alone; mean * SEM of three independent experiments
done in triplicate). Together, these data reveal the inhibitory
effect of GXM on T-cell proliferation cannot solely be
attributed to impaired IL-2 production.

To ascertain whether the effect of GXM on murine T-cell
proliferation would be replicated using human cells, in the
final set of experiments, we investigated whether the
polysaccharide affected the proliferation of peripheral blood
mononuclear cells (PBMCs) in response to the recall antigen,
tetanus toxoid. In addition, as all of the above studies were
performed using GXM from serotype A C. neoformans strain
Cnb, in these experiments we also tested the effects of GXM
isolated from other cryptococcal serotypes. Accordingly,
PBMCs were activated with tetanus toxoid in the presence
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Purified CD4" T cells from OT-Il mice were activated with anti-CD3¢ antibody or BMDC plus egg white. Cells were left untreated () or treated with GXM
(300 pg/ml) or staurosporine (STS). At 48 h, T cells were stained with Annexin V/FITC and Pl and analyzed by flow cytometry. Annexin—Pl— cells are
defined as live, Annexin{-Pl— as early apoptotic, and Annexin+PH- as late apoptotic or dead. Data are expressed as mean = SEM of one experiment

(representative of three) done in duplicate (except STS).
doi:10.1371/journal.ppat.0020120.g005

or absence of GXM isolated from serotype A C. neoformans
strain H99, serotype B C. gattii strain R265, serotype C C. gattii
strain Cn18, and serotype D C. neoformans strain B3501, as well
as the strain Cn6 GXM. GXM from all serotypes significantly
inhibited PBMC proliferation, although the GXM prepara-
tions varied in their potencies (Figure 7). GXM isolated from
the serotype A strains inhibited proliferation to the greatest
extent; serotype D GXM was the least potent, and GXM from
the serotype B and C strains were intermediate in their ability
to suppress proliferation.

Discussion

The data presented herein establish a new mechanism by
which the capsular polysaccharide GXM imparts virulence
upon C. neoformans and C. gattii: direct inhibition of T-cell
proliferation. While GXM is taken up by DCs, inhibition of T-
cell responses occurs in an APC-independent manner. Thus,
GXM-mediated inhibition is seen regardless of whether T
cells are activated by APC plus antigen or directly by
mitogens. Moreover, GXM inhibits both murine and human
T-cell responses.

GXM inhibited T-cell proliferation induced by BMDCs
presenting the immunodominant cryptococcal MP antigens.
Assuming these effects occur in vivo during cryptococcosis,
the anticryptococcal CMI response may be dampened once a
cryptococcal infection gets firmly established and GXM titers
rise. As GXM also impairs humoral immune responses and
phagocytic defenses [22], this could lead to a situation where
the host is left without effective innate or acquired
immunologic defenses. Indeed, prior to the introduction of
effective antifungal drugs, cryptococcal meningoencephalitis
was nearly always fatal.

@ PLoS Pathogens | www.plospathogens.org

In addition to its effect on antigen-specific T-cell
responses, GXM had a direct effect on primary, naive T cells,
as demonstrated by its capacity to inhibit the proliferation of
T cells activated with anti-CD3¢ or Con A. GXM also has been
reported to inhibit the proliferation of Con A-activated rat
spleen mononuclear cells [23]. In those studies, the impaired
proliferation may have been due to increased cell death, as
GXM was found to induce apoptosis in these cells [24]. In
contrast, the impaired proliferative responses we measured
could not be attributed to GXM-mediated cytotoxicity, as the
polysaccharide did not significantly affect T-cell viability.

GXM also inhibited the proliferation of T cells activated
with the chemical mitogens PMA and ionomycin, indicating
GXM interferes with T-cell signaling downstream of T-cell
receptor activation. GXM did not inhibit the early activation
of T cells, as measured by CD25 and CD69 expression.
Similarly, Salmonella inhibits T-cell proliferation without
inhibiting the upregulation of T-cell activation markers,
including CD25 and CD69 [25]. Additionally, HIV has been
shown to inhibit CD4" T-cell cycle progression without
affecting the expression of early activation markers [26].

The presence of GXM resulted in less IL-2 detected in
cultures of T cells activated with BMDC and egg white or anti-
CD3e. Likewise, GXM impaired the response of MP-specific T
cells as measured by IL-2 production. However, exogenous
IL-2 could not restore the proliferative response of T cells
activated in the presence of a high concentration of GXM,
and GXM did not inhibit IL-2 release by PHA-activated Jurkat
cells. Although it is possible GXM exerts different effects on
cell lines and primary T cells, these data indicate GXM
impairs T-cell proliferation independently of inhibiting IL-2
production or IL-2 receptor expression. Taken together, our
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Figure 6. Effect of GXM on IL-2 Production

Purified CD4" T cells from OT-ll mice were activated with anti-CD3¢
antibody or BMDCs plus egg white in the presence or absence of GXM
(100 or 300 pg/ml) for 48 h. IL-2 levels were determined by ELISA or
bioassay. Data are expressed as the percent of IL-2 compared with
stimuli alone () £SEM of two to four independent experiments done in
triplicate. The mean IL-2 (pg/ml by ELISA) for egg white and anti-CD3
were 210 and 320, respectively. The mean IL-2 (U/ml by bioassay) for egg
white was 0.65. *p < 0.001.

doi:10.1371/journal.ppat.0020120.g006

results suggest that GXM exerts its effect at a later stage of T-
cell activation. In fact, GXM may have a direct, inhibitory
effect on cell cycle progression in primary T cells, similar to
the action of Helicobacter pylori vacuolating cytotoxin, VacA,
which inhibits IL-2-driven T-cell proliferation [27].

Studies from other laboratories have found that GXM
induces the production of the immunosuppressive cytokine,
IL-10, from human monocytes [28], and identified a role for
IL-10 in GXM-mediated immunosuppression in vitro [23] and
in vivo [29,30]. However, we do not observe an induction of
IL-10 by human monocytes or BMDCs incubated with GXM
(unpublished data). Furthermore, GXM did not enhance IL-
10 production from T cells activated with BMDCs plus egg
white or anti-CD3e. Thus, we conclude that GXM-mediated
inhibition of T-cell proliferation in our studies likely is IL-10
independent.

In addition to the direct effect of GXM on T cells, we found
DCs internalized the polysaccharide continuously over time,
yet GXM-pulsed BMDCs were only minimally impaired in
their ability to activate T cells. This is not surprising, as GXM
treatment does not appear to inhibit BMDC maturation
(unpublished data). Similarly, it was recently demonstrated
that pneumococcal capsular polysaccharides are internalized
by DCs yet do not inhibit LPS-induced maturation [31].
Interference with antigen uptake or processing is also an
unlikely mechanism for the inhibitory effect of GXM, as GXM
effectively inhibited proliferation when T cells were activated
with BMDCs plus OVAsss_s39 peptide.

Importantly, the inhibitory effect of GXM on murine T
cells was also observed using human cells. We show that GXM
inhibited proliferation of PBMCs activated with tetanus
toxoid in a dose-dependent manner. A recent study demon-
strated the other capsular component of Cryptococcus, GalXM,
inhibits human T-cell proliferation by inducing T-cell
apoptosis [32]. Consistent with our results, the researchers
found a low concentration of GXM did not affect T-cell

@ PLoS Pathogens | www.plospathogens.org

Cryptococcal GXM Inhibits T Cells

160
d()
140 - OGXM 100
E GXM 300
120 4 B GXM 1000
<
LS 100 I — 1 —
=}
o
£ 80 . s
©° *
1
[SREP *
2 .
40 wx
20
0
strain Cn6é H99 R265 Cn18 B3501
serotype A A B C D

Figure 7. GXM from Four Cryptococcal Serotypes Inhibits Proliferation of
Human PBMCs

PBMCs were activated with tetanus toxoid (TT) in the presence or
absence of GXM (100, 300, or 1,000 pg/ml) isolated from serotype A
strain Cn6, serotype A strain H99, serotype B strain R265, serotype C
strain Cn18, or serotype D strain B3501. Proliferation was measured by
[*HIthymidine incorporation 6 d later. Data are expressed as the percent
proliferation compared with TT alone () (set at 100%) and are expressed
as the mean = SEM of four donors (or two donors for strain Cné GXM)
assayed in triplicate. The mean CPM for TT in the absence of GXM was
63,550. *p < 0.005; **p < 0.0001.
doi:10.1371/journal.ppat.0020120.g007

proliferation induced by PHA or anti-CD3. They did not
examine the effects of higher concentrations of GXM,
however.

Interestingly, our studies revealed that GXM isolated from
all four cryptococcal serotypes inhibited proliferation of
tetanus toxoid-activated PBMCs, although not to the same
extent. GXM from the serotype D strain B3501 was less
inhibitory than GXM from the other strains. Whether this is
due to a size or structure difference is unknown. Differences
in GXM structure affect virulence, inhibition of neutrophil
migration, and tissue accumulation of GXM [33-35]. GXM
from B3501 is larger than GXM from H99 [4]; however, the
molecular sizes of GXM from strains Cn6, R265, and Cn18 are
unknown. Our results suggest differences in virulence
between cryptococcal strains may be due in part to the
varying capacities of GXM to inhibit T-cell proliferation.

The concentrations of GXM we used that consistently
inhibited T-cell proliferation (300 and 1,000 pg/ml) are high
yet still biologically relevant. One study found 68% of AIDS
patients with cryptococcosis had serum GXM titers of at least
1:1,024 (approximately 10 pg/ml), and 21% had titers of
1:10,000 or higher (approximately 100 pg/ml) [6]. In exper-
imental cryptococcosis, serum GXM levels in the mg/ml range
have been observed [36]. However, GXM concentrations in
infected tissues, particularly at foci of infection, are un-
doubtedly much higher. Our findings suggest that such high
concentrations of GXM could interfere with the generation
of T-cell responses. In this regard, while the osmolarity of
these high concentrations of GXM has not been determined,
hyperosmotic stress has been reported to have direct effects
on T-cell signaling pathways [37].

In conclusion, our data reveal a novel inhibitory property
of GXM. Inhibition of T-cell proliferation could have severe
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consequences during cryptococcosis due to the importance
of T cells in the anticryptococcal response. Furthermore, the
ability of GXM to persist in patients after successful
antifungal therapy underscores how T-cell responses during
subsequent infections or neoplasia may be affected as well.
Finally, GXM, or products derived from GXM, could prove to
be of therapeutic value in situations where suppression of T-
cell responses is desired, such as transplantation or auto-
immunity.

Materials and Methods

Materials. All chemical reagents were purchased from Sigma-
Aldrich (St. Louis, Missouri, United States) unless otherwise specified.
All tissue culture media were purchased from Invitrogen Life
Technologies (Carlsbad, California, United States) unless otherwise
noted.

Isolation and purification of GXM. GXM from serotype A C.
neoformans strain Cn6 (62066; American Type Culture Collection
[ATCC], Manassas, Virginia, United States), serotype A C. neoformans
strain H99 (208821; ATCC), serotype B C. gattii strain R265 (a gift
from Dr. J. Heitman, Duke University Medical Center, Durham, North
Carolina, United States), serotype C C. gattii strain Cnl8 (24066;
ATCQ), and serotype D C. neoformans strain B3501 (34873; ATCC) was
prepared as described [38]. In brief, cryptococcal culture super-
natants were precipitated with ethanol and cetyltrimethylammonium
bromide. GXM was dialyzed against 1 M NaCl, followed by dH,O for 1
wk. The amount of polysaccharide was quantified by the phenol-
sulfuric acid method [39]. The strain Cn6 GXM used in Figures 1
through 6 and Figure S1 was in 1X PBS, whereas the GXM
preparations used in Figure 7 were lyophilized and resuspended in
RPMI 1640. All GXM preparations had undetectable levels (less than
0.03 endotoxin U/ml) of endotoxin as measured by Limulus
Amebocyte Lysate assay (Associates of Cape Cod, East Falmouth,
Massachusetts, United States).

Mice. C57BL/6 and OT-II mice were purchased from The Jackson
Laboratory (Bar Harbor, Maine, United States). OT-II TCR-trans-
genlc mice have CD4" T cells specific for OVA amino acids 323-339
in the context of MHC class II (I-A") [40]. The mouse experiments
were approved by the Boston University Institutional Animal Care
and Use Committee.

Isolation and culture of Human DCs. Human DCs were obtained as
described [41]. Briefly, peripheral blood was obtained by venipunc-
ture from healthy volunteers using a protocol approved by the
Boston University Medical Center Institutional Review Board. Blood
was anticoagulated with heparin (American Pharmaceutical Partners,
Los Angeles, California, United States) and diluted 1:1 with Hanks’
balanced salt solution (Cambrex BioScience Walkersville, Walkers-
ville, Maryland, United States). PBMCs were separated by density
gradient centrifugation using Lymphoprep (AXIS-SHIELD; PoC AS,
Oslo, Norway), and 1 to 3 X 10” PBMCs were added to the wells of a
six-well plate. After a 2-h incubation at 37 °C, the wells were washed
to remove nonadherent cells. Human DCs were obtained by culturing
the adherent cells for 7 d in HDC media (RPMI 1640, 5% heat-
inactivated [HI] FBS [Tissue Culture Biologicals, Los Alamitos,
California, United States], 100 U/ml penicillin, 100 pg/ml streptomy-
cin, 2 mM L-glutamine, 55 uM 2-mercaptoethanol, and 10 mM HEPES
[Sigmal]) supplemented with 50 ng/ml rhIL-4 (BD PharMingen, San
Diego, California, United States) and 150 ng/ml rhGM-CSF (Immunex
Corporation, Thousand Oaks, California, United States).

Generation of BMDCs. BMDCs were isolated and cultured
according to the protocol of Lutz et al. [42]. Briefly, bone marrow
was harvested from the femurs and tibiae of 6- to 14-wk-old C57BL/6
mice and plated at 10%/ml in 100 X 15 mm Petri dishes (BD Falcon;
Becton Dickinson, Franklin Lakes, New Jersey, United States). BMDC
media contained RPMI 1640, 10% HI FBS (Tissue Culture Bio-
logicals), 100 U/ml penicillin, 100 pg/ml streptomycin, 2 mM L-
glutamine, 55 pM 2-mercaptoethanol, and supernatant from GM-
CSF-secreting J558L cells [43] at a final concentration of 10%. The
cells were fed with fresh supplemented media on days 3, 6, and 8, and
the nonadherent BMDCs were harvested and used on day 9 or 10.

Generation of BMM¢. Bone marrow was harvested as described
above, and cells were seeded at 5 X 10” cells/ml in a tissue culture
flask. Cells were cultured in RPMI 1640, 100 U/ml penicillin, 100 pg/ml
streptomycin, 2 mM r-glutamine, and 10% HI FBS (Tissue Culture
Biologicals). Media was supplemented with 30% L cell (CCL-1;
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ATCC)-conditioned medium as a source of M-CSF. On day 2,
nonadherent cells were harvested and seeded at 10°/ml in Petri dishes
(BD Falcon) in media containing 30% L cell-conditioned medium.
The media was changed on day 6, and macrophages were harvested
on day 8 using Versene.

Flow cytometric analy51s of GXM blndlng/mternahzatlon BMDCs,
HDCs, BMM®, or murine CD4" T cells (2 X 10° ) were incubated in
their respective media with GXM (40 pg/ml) for varying lengths of
time at 37 °C. Cells were harvested, washed two times, fixed with 1%
paraformaldehyde, permeabilized with 0.1% saponin, and stained
with the anti-GXM monoclonal antibody, 3C2 (a gift from Dr. T.
Kozel, University of Nevada School of Medicine, Reno, Nevada,
United States), followed by a donkey anti-mouse Cy2-congugated
secondary antibody (Jackson ImmunoResearch, West Grove, Penn-
sylvania, United States). This procedure allowed for detection of total
GXM, both surface bound and intracellular. To detect only surface
bound GXM, cells were not fixed or permeabilized before staining.

PBMC purification. Peripheral blood was obtained by venipunc-
ture from healthy volunteers and anticoagulated with heparin.
PBMCs were purified by centrifugation on a Histopaque-1077 (Sigma)
density gradient, washed, and resuspended in media (RPMI 1640, 100
Ulml penicillin, 100 pg/ml streptomycin, 2 mM L-glutamine, and 10%
HI FBS).

Activation of cryptococcal MP-specific T cells. BMDCs (10%) were
plated in 96-well flat-bottom plates. Some wells received a 2-h GXM
pretreatment before the addition of cryptococcal MP (10 pg/ml). MP
was isolated from culture supernatants of C. neoformans acapsular
strain Cap67 (52817; ATCC) as described [44]. The cryptococcal MP-
specific T-cell hybridoma, P1D6, has been described previously [45].
This hybridoma secretes IL-2 when activated with crypt()u)ccal MP in
a MHC class II-restricted manner. P1D6 T cells (2 X 10°%) were added
to the BMDC 1 h after MP. Supernatants were collected 24 h later,
freeze-thawed, and incubated with the IL-2-dependent cell line
CTLL-2 [46]. AlamarBlue (10 pl; BioSource, Camarillo, California,
United States) was added 24 h later for 8 h. Absorbance was
determined using a plate reader, and the results were compared with
an IL-2 standard curve.

Purification of murine CD4™ T cells. Inguinal, brachial, axial,
cervical, and mesenteric lymph nodes and spleens were harvested
from 6- to 14-week-old C57BL/6 or OT-II mice. Lymph nodes and
spleens were disrupted using sterile frosted glass slides, and RBCs
were lysed using RBC ly515 buffer (eBioscience, San Diego, California,
United States). CD4" T cells were enriched using magnetic bead
positive selection (CD4" [L3T4] beads; Miltenyi Biotec, Auburn,
California, United States) according to the manufacturer’s instruc-
tions.

Proliferation of OVA-specific T cells. Mitomycin C (50 pg/ml)-
treated BMDCs were plated in 96-well U-bottom plates, and GXM (30,
100, or 300 pg/ml) was added 2 h before egg white (100 pg/ml) or
OVAges 339 peptide (0.1 pg/ml; Invitrogen). The endotoxin-free egg
white (which contains approximately 54% ovalbumin [47]) was a gift
of Dr. T. Singleton, Boston University School of Medicine (B()st()n
Massachusetts, United States). Naive purified CD4" OT-II T cells (10%
were added to the wells 2 h later. The wells were pulsed with 1 uCi
[ H]thymidine (PerkinElmer, Wellesley, Massachusetts, United States)
on day 3, and the cells were harvested and freeze-thawed 20 h later.
Proliferation was measured on a beta scintillation counter.

Proliferation of Con A-, anti-CD3-, or PMA/ionomycin-activated
murine T cells. For anti-CD3 activation, 96-well flat-bottom plates
were coated with anti-mouse CD3¢ antibody (clone 145-2C11; BD
Biosciences PharMingen) diluted in PBS for 2 h at 37 °C. Wells were
washed with PBS, and 10 CD4" purlﬁed T cells were added to each
well. Some wells then received varying concentrations of GXM. In
some experiments, IL-2 (Cetus, Emeryville, California, United States)
was added to some wells. For Con A or PMA/ionomycin activation,
10° CD4* purified T cells were added to 96-well U-bottom plates and
stimulated with Con A (0.5 pug/ml) or PMA (3 ng/ml) and ionomycin
(0.15 pM; Calbiochem, La Jolla, California, United States). GXM was
then added to some wells. Proliferation was measured by [*H]thymi-
dine incorporation as described above.

Proliferation of PBMCs. Freshly isolated PBMCs (10°) were added
to the wells of a 96-well U-bottom plate. Some wells received varying
concentrations of GXM isolated from serotype A strain Cn6, serotype
A strain H99, serotype B strain R265, serotype C strain Cnl8, or
serotype D strain B3501. Tetanus toxoid (TT; Calbiochem) was added
for a final concentration of 1 ug/ml. The wells were pulsed with
[ H]thymidine on day 6 and harvested 20 h later, and proliferation
was determined as described above.

Detection of cytokines. T cells were activated with BMDCs plus egg
white or anti-CD3¢ as described above. Cell-free supernatants were
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harvested and frozen at 48 h. Levels of IL-2, IL-4, IL.-10, and IFN-y
were determined by ELISA (eBioscience) according to the manufac-
turer’s instructions; however, in one experiment, IL-2 levels were
measured by bioassay using the CTLL-2 cell line as described above.
IL-2 produced by PHA (5 pg/ml)-activated Jurkat cells (TIB-152;
ATCC) was measured using the CTLL-2 assay.

Analysis of T-cell viability. OT-II CD4" purified T cells were
activated by plate-bound anti-CD3¢ antibody or BMDCs plus egg
white. Cells were left untreated or treated with GXM (300 pg/ml) for
48 h. At 24 h, staurosporine (0.5 pM) was added to some wells
containing anti-CD3g-activated T cells as a positive control for
apoptosis induction. At 48 h, T cells were harvested and stained with
Annexin V/FITC and PI (BD PharMingen), and analyzed by flow
cytometry. Annexin—PI— cells are defined as live, AnnexintPI- as
early apoptotic, and Annexin+PH- as late apoptotic or dead.

Cell line proliferation. Murine P1D6 T cells, CTLL-2 T cells, J558L
B cells, and human Jurkat T cells were plated at 3 X 10* per well in a
96-well flat-bottom plate. GXM (300 pg/ml) was added to some wells.
Wells were pulsed immediately with ["H]thymidine, and proliferation
was measured 24 h later on a scintillation counter.

Statistical analysis. The mean and SEM values were compared
using the Student’s ¢ test. Values of p < 0.05 were considered
significant. Bonferroni’s correction was applied when making multi-
ple comparisons.

References

1. Perfect JR, Casadevall A (2002) Cryptococcosis. Infect Dis Clin North Am
16: 837-874, v-vi.

Wozniak KL, Vyas JM, Levitz SM (2006) In vivo role of dendritic cells in a
murine model of pulmonary cryptococcosis. Infect Immun 74: 3817-3824.
Sorrell TC (2001) Cryptococcus neoformans variety gattii. Med Mycol 39: 155-
168.

McFadden DC, De Jesus M, Casadevall A (2006) The physical properties of
the capsular polysaccharides from Cryptococcus neoformans suggest features
for capsule construction. J Biol Chem 281: 1868-1875.

Cherniak R, Sundstrom JB (1994) Polysaccharide antigens of the capsule of
Cryptococcus neoformans. Infect Immun 62: 1507-1512.

Chuck SL, Sande MA (1989) Infections with Cryptococcus neoformans in the
acquired immunodeficiency syndrome. N Engl ] Med 321: 794-799.

Lu H, Zhou Y, Yin Y, Pan X, Weng X (2005) Cryptococcal antigen test
revisited: Significance for cryptococcal meningitis therapy monitoring in a
tertiary Chinese hospital. J Clin Microbiol 43: 2989-2990.

Ellerbroek PM, Walenkamp AM, Hoepelman Al, Coenjaerts FE (2004)
Effects of the capsular polysaccharides of Cryptococcus neoformans on
phagocyte migration and inflammatory mediators. Curr Med Chem 11:
253-266.

Lee SC, Casadevall A, Dickson DW (1996) Immunohistochemical local-
ization of capsular polysaccharide antigen in the central nervous system
cells in cryptococcal meningoencephalitis. Am J Pathol 148: 1267-1274.
Lee SC, Dickson DW, Casadevall A (1996) Pathology of cryptococcal
meningoencephalitis: Analysis of 27 patients with pathogenetic implica-
tions. Hum Pathol 27: 839-847.

Goldman DL, Lee SC, Casadevall A (1995) Tissue localization of Cryptococcus
neoformans glucuronoxylomannan in the presence and absence of specific
antibody. Infect Immun 63: 3448-3453.

Grinsell M, Weinhold LC, Cutler JE, Han Y, Kozel TR (2001) In vivo
clearance of glucuronoxylomannan, the major capsular polysaccharide of
Cryptococcus neoformans: A critical role for tissue macrophages. J Infect Dis
184: 479-487.

. Monari C, Retini C, Casadevall A, Netski D, Bistoni F, et al. (2003)
Differences in outcome of the interaction between Cryptococcus neoformans
glucuronoxylomannan and human monocytes and neutrophils. Eur J
Immunol 33: 1041-1051.

Chang ZL, Netski D, Thorkildson P, Kozel TR (2006) Binding and
internalization of glucuronoxylomannan, the major capsular polysacchar-
ide of Cryptococcus neoformans, by murine peritoneal macrophages. Infect
Immun 74: 144-151.

. Monari C, Bistoni F, Casadevall A, Pericolini E, Pietrella D, et al. (2005)
Glucuronoxylomannan, a microbial compound, regulates expression of
costimulatory molecules and production of cytokines in macrophages. J
Infect Dis 191: 127-137.

Kapsenberg ML (2003) Dendritic-cell control of pathogen-driven T-cell
polarization. Nat Rev Immunol 3: 984-993.

Palucka K, Banchereau J (2002) How dendritic cells and microbes interact
to elicit or subvert protective immune responses. Curr Opin Immunol 14:
420-431.

Vecchiarelli A, Pietrella D, Lupo P, Bistoni F, McFadden DC, et al. (2003)
The polysaccharide capsule of Cryptococcus neoformans interferes with human
dendritic cell maturation and activation. ] Leukoc Biol 74: 370-378.
Shimonkevitz R, Colon S, Kappler JW, Marrack P, Grey HM (1984) Antigen

10.
11.

12.

14.

16.

17.
18.
19.

@ PLoS Pathogens | www.plospathogens.org

1067

Cryptococcal GXM Inhibits T Cells

Supporting Information

Figure S1. Effect of GXM on [3H]Thymidine Incorporation by Cell
Lines

Murine P1D6 T cells, CTLL-2 T cells, J558L plasmacytoma B cells, and
human Jurkat T cells were incubated in the presence or absence of
GXM (300 pg/ml) for 24 h, and proliferation was measured by
[5H]thymidine incorporation. Data are expressed as the mean = SEM
of one of two independent experiments with similar results done in
triplicate.

Found at doi:10.1371/journal.ppat.0020120.sg001 (36 KB PPT).
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