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Summary

Over the last decade, significant technological breakthroughs have revolu-

tionized human genomic research in the form of genome-wide association

studies (GWASs). GWASs have identified thousands of statistically signifi-

cant genetic variants associated with hundreds of human conditions

including many with immunological aetiologies (e.g. multiple sclerosis,

ankylosing spondylitis and rheumatoid arthritis). Unfortunately, most

GWASs fail to identify clinically significant associations. Identifying biologi-

cally significant variants by GWAS also presents a challenge. The GWAS is a

phenotype-to-genotype approach. As a complementary/alternative approach

to the GWAS, investigators have begun to exploit extensive electronic

medical record systems to conduct a genotype-to-phenotype approach when

studying human disease – specifically, the phenome-wide association study

(PheWAS). Although the PheWAS approach is in its infancy, this method

has already demonstrated its capacity to rediscover important genetic

associations related to immunological diseases/conditions. Furthermore,

PheWAS has the advantage of identifying genetic variants with pleiotropic

properties. This is particularly relevant for HLA variants. For example, Phe-

WAS results have demonstrated that the HLA-DRB1 variant associated with

multiple sclerosis may also be associated with erythematous conditions

including rosacea. Likewise, PheWAS has demonstrated that the HLA-B

genotype is not only associated with spondylopathies, uveitis, and variability

in platelet count, but may also play an important role in other conditions,

such as mastoiditis. This review will discuss and compare general PheWAS

methodologies, describe both the challenges and advantages of the PheWAS,

and provide insight into the potential directions in which PheWAS may

lead.

Keywords: electronic medical record; genome-wide association study;

phenome-wide association study.

Introduction

Over the last decade, great technological breakthroughs in

genomics have been achieved. Driven in part by the

Human Genome1,2 and the HapMap Project,3,4 it is now

possible to genotype over one million single nucleotide

polymorphisms (SNPs) across the human genome in a

single assay. These technologies have made it possible to

genotype thousands of cases and controls for any disease

and laid the foundation for the genome-wide association

study (GWAS) (Fig. 1a). With these tools readily avail-

able, over 1000 GWASs have been published linking

nearly 4000 statistically significant loci to over 500 human

traits and diseases.5 Crucially, the GWAS has been very

Abbreviations: eMERGE, electronic MEdical Records and GEnomics; EMR, electronic medical record; GWAS, genome-wide asso-
ciation study; ICD, International Classification of Disease; ICU, intensive care unit; MS, multiple sclerosis; NGS, next-generation
sequencing; PAGE, Population Architecture using Genomics and Epidemiology; PheWAS, phenome-wide association study; RA,
rheumatoid arthritis; SNP, single nucleotide polymorphism; WBC, white blood cell; WHO, World Health Organization
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effective in revealing that many immune-related diseases

are genetically complex, including multiple sclerosis

(MS), ankylosing spondylitis, psoriasis, rheumatoid

arthritis (RA), and Crohn’s disease.5 One of the strengths

of GWAS is its unbiased whole genome nature, giving

GWAS the ability to identify novel genes and pathways

linked to common and complex conditions. Surprisingly,

many phenotypes of previously unappreciated aetiologies

have been linked to immunological genes/pathways by

GWASs.

The GWAS is limited by a variety of factors. Due to

the burden of multiple comparisons testing, reaching the

threshold of statistical significance by GWAS can be a

challenge. To be considered ‘GWAS significant’, only

those associations with a P < 5�0E-8 are considered statis-

tically significant.6,7 Even if GWAS-significant SNPs are

identified, GWASs often fail to identify clinically relevant

predictive associations and have difficulty explaining a

significant portion of the predicted phenotypic heritabil-

ity. Moreover, GWAS SNPs are predominantly ‘tags’ for

common variants across the genome. Causative/functional

polymorphisms, known or unknown, may be in partial

linkage disequilibrium with the genotyped tag SNPs,

resulting in observed weak effects. Lastly, the vast major-

ity of GWAS-significant SNPs are intergenic. Identifying

and characterizing functional polymorphisms in intergen-

ic regions is a particular challenge. Addressing these chal-

lenges using alternative/complementary strategies is of

great importance. Without such strategies, our grasp of

‘genomic medicine’ will remain elusive.

One alternative/complementary approach to GWAS is

the phenome-wide association study (PheWAS); this is the

same as a GWAS, but from a reverse perspective. Whereas

a GWAS uses a phenotype-to-genotype approach, begin-

ning with a specific phenotype that is associated with

genetic variants across the genome, PheWAS reverses this

paradigm by using a genotype-to-phenotype strategy. Phe-

WAS can start with a genotype to test for associations

over a wide spectrum of human phenotypes – the phe-

nome (Fig. 1b). In 2010, the first PheWAS was published

as proof-of-principle for the technique. This study demon-

strated that a PheWAS strategy, compared with a GWAS

strategy, could be applied to identify significant gene–
disease associations. For example, it verified that rs3135388

and rs6457620, two SNPs in the HLA region, were associ-

ated with MS and RA, respectively.8 Since the first Phe-

WAS, five additional PheWASs have focused on genetic

targets.9–13 Importantly, four additional PheWASs have

investigated non-genetic targets [e.g. white blood cell

(WBC) count],14–17 while another PheWAS assessed both

genetic and non-genetic targets.18 A commonality for

most PheWASs is the use of an electronic medical record

(EMR) to define the phenome.

An EMR provides an efficient data source for pheno-

type extraction, as it generally contains longitudinal
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Figure 1. Representative results from (a) a genome-wide association

study (GWAS) and (b) a phenome-wide association study (Phe-

WAS). (a) Illustration of the phenotype-to-genotype strategy used by

GWAS along with a representative GWAS depicted in the Manhattan

plot graphing –log10(P-values) across the genome. (b) Illustration of

the genotype-to-phenotype strategy used by PheWAS including a

representative PheWAS for single nucleotide polymorphism (SNP)

rs1061170, a SNP known to be associated with age-related macular

degeneration (AMD).5 The AMD ICD9 codes are highlighted on the

PheWAS Manhattan plot.
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health histories including prescription records, family his-

tories, laboratory and imaging test results, physician notes,

procedure codes, and importantly, the International

Classification of Disease (ICD) codes. ICD codes are a

standardized, internationally recognized, coding system

used to define disease status. The ICD codes were initially

developed by Dr Jaxques Bertilon in 1893 to classify

deaths caused by general diseases affecting specific ana-

tomical sites. They are now managed by the World

Health Organization (WHO), although different coun-

tries, including the USA, have their own ICD adaptations.

In 1975, WHO adopted ICD version 9 (ICD9).19

In the USA, the implementation of ICD9 coding coin-

cided with the ‘Digital Revolution’ and has been imple-

mented in EMR systems for billing purposes.20

Importantly, there are nearly 17 000 possible codes avail-

able in the ICD9 coding system,21 offering a wide spec-

trum of phenotypic information at various levels of

phenotypic resolution. For example, ICD9 code 714.33

defines monarticular juvenile RA, while 714.32 is pauciar-

ticular juvenile RA. The highly specific 714.32, 714.33,

and other related ICD9 codes can be consolidated into

the 714.3 code, which represents the larger category defin-

ing juvenile chronic polyarthritis. Similarly, 714.3 and

other 714.* codes can be combined into the 714 code

defining RA and other inflammatory polyarthropathies.

ICD9 code 714 is just one of many ICD9 codes that fall

between ICD9 001 (cholera) and ICD9 999 (complica-

tions of medical care not elsewhere classified) (Fig. 2).

Not surprisingly, ICD9 codes, with their wide spectrum

of phenotypic information, have been employed to define

the phenome in most PheWASs. This review will discuss

such studies and compare general methodologies, describe

the limitations and advantages of the PheWAS design,

and provide insight into the potential direction PheWAS

may lead.

PheWAS methodologies

The first PheWAS was published in 2010 in Bioinformatics

as proof-of-principle.8 This study associated five genetic

targets across a curated phenome built on the backbone

of ICD9 codes and refined with clinical expertise. In gen-

eral, high level ICD9 codes, including four and five digit

ICD9 codes (e.g. 714.3 and 714.33, respectively), were

condensed into a common three-digit code (e.g. 714).

Under some scenarios, related three-digit codes were also

condensed. Under other scenarios, where phenotypes

shared very similar four-digit and five-digit ICD9 coding,

but were deemed to be distinct diseases (e.g. type I and

type II diabetes mellitus), higher order coding was main-

tained. ICD9 codes with unlikely genetic aetiologies were

removed (e.g. contamination with foreign objects). At the

simplest level, patients coded for a specific ICD9 code

become ‘cases’ for that respective code. Those patients

not coded for a specific ICD9 code become ‘controls’.

The advantage of using a curated phenome is that the

complexity of ICD9 coding is reduced. As such, the

power to detect an association may be increased by the

increased number of cases and fewer possible phenotypes.

By removing selected ICD9 codes that appear to have a

strong environmental component, the multiple testing

burden is reduced further. Conversely, this method is not

without bias. Assumptions are made when combining

ICD9 codes. Biases are further introduced when ICD9

codes thought to be unrelated to genetics are not analy-

sed. Regardless, a curated phenome can be applied in

PheWAS to validate expected GWAS results and to iden-

tify potential novel associations. For example, SNP

rs6457620, an HLA SNP known to be associated with

RA,22 was associated with the ICD9 code for RA (ICD9

714). Interestingly, this SNP was also associated with

pituitary gland and trigeminal nerve disorders. In

addition to rs6457620, another HLA SNP was geno-

typed – specifically, rs3135388. Rs3135388 tags for HLA-

DRB1*1501 and is known to be strongly associated with

MS.5 When HLA-DRB1*1501 (rs3135388) was genotyped,

the ICD9 code that defines MS (ICD9 340) was highly

associated with the SNP genotype. Novel associations

were also reported, including an association between the

HLA-DRB1*1501 genotype and erythematous conditions

(ICD9 695).8 This example demonstrates how a PheWAS

can complement previously reported GWASs and provide

novel insights into diseases with unappreciated genetic

aetiologies.

Another study that used a similar curated phenome

was conducted within the electronic MEdical Records and

GEnomics (eMERGE) Network.23 Unique to this study,

GWAS was used to inform PheWAS within the same

cohort. GWAS results demonstrated that a common SNP

near FOXE1 (rs965513) was significantly associated with

risk for hypothyroidism. FOXE1, a gene also known as
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Figure 2. International Classification of Disease version 9 (ICD9)

spectrum used to define the phenome in phenome-wide association

studies (PheWASs). Underlined are ICD9 codes represented at vary-

ing levels of phenotypic resolution including rheumatoid arthritis

(RA) and other inflammatory polyarthropathies (ICD9 714), juvenile

chronic polyarthritis (ICD9 714.3), and monarticular juvenile RA

(ICD9 714.3).
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thyroid transcription factor 2, has been implicated in a

variety of thyroid diseases, including a rare form of syn-

dromic congenital hypothyroidism.24 Following GWAS

analysis, rs965513 was assessed by PheWAS in the same

cohort that was used to derive the hypothyroidism cases

and controls for the GWAS. As expected, ICD9 codes that

define hypothyroidism were significantly associated with

the rs965513 genotype by PheWAS, but other thyroid-

related conditions were also associated including non-

toxic nodular/multinodular goitre and nutritional defi-

ciency anaemia.9

Recently, this GWAS-informed PheWAS approach has

also been applied to the study of platelet phenotypes.

Using a similar eMERGE population as described above,

this study identified 81 GWAS-significant SNPs including

56 SNPs associated with platelet count, 29 SNPs associ-

ated with platelet volume, and four SNPs associated with

both. Many of these SNPs validate previously published

GWAS results.5 Each of the 81 SNPs was then individually

associated with the phenome. For example, rs3819299, an

intronic variant in the HLA-B gene, was associated with

platelet count as expected.5,25 PheWAS results for this SNP

showed that the HLA-B genotype is also a risk factor for

inflammatory/ankylosing spondylopathies and uveitis. The

role of the HLA-B genotype in spondylopathies and uveitis

has been previously described.26,27 Importantly, a novel

association was reported between the HLA-B genotype and

mastoiditis.13 Like the FOXE1 example described previ-

ously,9 this study demonstrates that when GWAS is used to

inform PheWAS in the same population, an expanded

understanding of the biological, and potentially clinical,

significance for a SNP can be achieved. This GWAS-

informed PheWAS approach has also been applied to the

study of arrhythmia risk.12

As an alternative approach to a curated phenome, oth-

ers have applied a holistic method by testing all ICD9

codes at multiple levels of phenotypic resolution. For

example, patients coded for monoarticular juvenile RA

(ICD9 714.33) define a unique case group whereas those

coded for pauciarticular juvenile RA (ICD9 714.32) define

another unique case group. To address the possibility that

genetic aetiologies are shared between similar codes, all

714.3* codes can be combined into a case group defined

by 714.3 and then further combined with like codes to

form a separate 714 case group (Fig. 2). Depending on

sample size and frequency restraints, this methodology

can generate nearly 17 000 phenotypes.21 The advantage

of this method is that it does not make assumptions

regarding the genetic or environmental contributions to

any one disease. This is analogous to a GWAS where in-

tergenic and coding variants are treated equally. The dis-

advantages of using a more holistic phenome include the

potential for a reduction in power to detect an associa-

tion because there are many more phenotypes with small

case sizes – many without any genetic indices. Regardless,

investigators have applied this simplified method to

define the phenome, or variations thereof, with success

during PheWAS. For example, a Marshfield Clinic patient

cohort was genotyped for HLA-DRB1*1501 as a follow up

to the first PheWAS described previously.8 As expected,

the HLA-DRB1*1501 genotype was associated with the

ICD9 code for MS (ICD9 340). Importantly, HLA-

DRB1*1501 was also associated with the ICD9 code for

erythematous conditions (ICD9 695). This is the first

example where a novel PheWAS finding was indepen-

dently validated. By applying a holistic approach to define

the phenome, and taking advantage of the higher order

phenotypes, it was revealed that the ICD9 code for rosa-

cea (ICD9 695.3) may be driving the association results

of the broader ICD9 code defining erythematous condi-

tions. In addition, this study characterized a novel associ-

ation between the HLA-DRB1*1501 genotype and the

ICD9 code that defines alcohol-induced cirrhosis of the

liver (ICD9 571.2),10 a phenotype that may have been

disregarded in the original PheWAS due to the potential

for a strong environmental component. In support of this

novel PheWAS finding, previous GWASs have demon-

strated that HLA-DRB1*1501 is associated with drug-

induced liver damage.28,29

Another example where an unbiased phenome has been

applied in PheWAS was reported by Warner et al.15 This

study is unique in that it is the first PheWAS to use a

non-genetic target, specifically WBC count. The goal of

this study was to identify context-dependent associations

between WBC count and ICD9 codes from patients in an

intensive care unit (ICU). Expected associations were

observed between elevated WBC count and ICD9 codes

that define leukaemia, including chronic lymphoid (ICD9

204.10), acute myeloid (ICD9 205.00), and chronic mye-

loid (ICD9 205.10) leukaemia. The WBC count was also

associated with diagnosis of Clostridium difficile infection,

and these patients were at an increased risk for adverse

effects because of observed delays in effective treatment

and increased length of hospital stay.15 This PheWAS

result may help to alter the current standard of care and

to reduce potential adverse effects for ICU patients with

elevated WBC count and at a high risk for C. difficile

infections.

ICD9 coding is useful when describing a spectrum of

phenotypes, and as a result of its standardized structure

and usage, PheWAS results can be combined or com-

pared across institutions. Alternatively, other data types

can be applied when defining the phenome. For example,

the Population Architecture using Genomics and Epide-

miology (PAGE) Network describes how diverse pheno-

types collected from a wide variety of sources, including

surveys and medical records, can be applied in PheWAS

across multiple institutions. First described in 2011,30 and

further defined in early 2013,11 the PAGE Network

focused on 83 previously reported GWAS SNPs that had
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been genotyped in at least two of the five PAGE Network

groups. Each study group conducted its own PheWAS on

its own defined phenotypes. The number of phenotypes

varied greatly between study groups. For example, 3363

phenotypes were described in the Women’s Health Initia-

tive, while 63 were described in the Multiethnic Cohort

Study. All phenotypes with P < 0�01 were manually

grouped into 105 broadly defined standardized pheno-

typic classes (e.g. vitamin E levels) and compared across

study groups to identify overlapping significant associa-

tions. This method demonstrated that 48% of expected

genotype–phenotype associations could be directly

validated by PheWAS, and another 23% represented

associations closely related to previously reported geno-

type–phenotype associations. Importantly, 30% of the

PAGE PheWAS results represented novel associations. For

example, this PheWAS characterized a novel association

between the IL6R (rs2228145) genotype with numbers of

neutrophils and lymphocytes;11 rs2228145 has been previ-

ously shown to be associated with C-reactive protein

levels.31

Regardless of the methodology used to define the phe-

nome, the PheWAS design has challenges. Some limita-

tions are shared with GWAS while others are unique.

Conversely, the PheWAS has unique advantages that

make this approach a powerful complementary method

for understanding the complexities of human disease.

Limitations of PheWAS

Like GWAS, the PheWAS is a hypothesis-generating

approach that is challenged by multiple comparison test-

ing. For example, if 17 000 phenotypes, the limit of ICD9

coding,21 are tested for association with one SNP, an

association with a P < 2�9E-6 would be considered statis-

tically significant if a Bonferroni correction and an exper-

imental wide a of 0�05 is applied. This also assumes that

only one SNP is analysed by PheWAS. Conversely, a Bon-

ferroni correction may not be an appropriate multiple

comparison adjustment because of the lack of indepen-

dence across many phenotypes, especially in phenomes

that use multiple levels of phenotypic resolution when

defining individual case groups (e.g. ICD9 codes 714,

714.3, 714.33). The inter-relationship between ICD9 codes

is depicted in the Manhattan plot of Fig. 1(b). Data come

from an unpublished PheWAS for rs1061170 using an

unbiased, holistic phenome, as described previously.10

Rs1061170 is a non-synonymous SNP in the CFH gene

and is known to be associated with age-related macular

degeneration.5 The most statistically significant ICD9

codes for this PheWAS include 362.52 (P = 4�1E-10),
362�51 (P = 3�3E-8), and 362�50 (P = 4�0E-7) represent-

ing exudative, non-exudative and unspecified senile mac-

ular degeneration, respectively. Since ICD9 362.5 is a

composite of all 362.5* codes, it is intuitive that this code

is also significantly associated with the SNP genotype

(P = 2�1E-5).
Even though similar codes may co-segregate, divergent

ICD9 codes may also be correlated for clinical and bio-

logical reasons. For example, it is conceivable that a

patient with an ICD9 code for hypercholesterolaemia

(ICD9 272.0) may also have codes that define atheroscle-

rosis (ICD9 440), acute myocardial infarction (ICD9

410), and/or other related comorbidities. The challenge of

multiple comparison testing may be further complicated

by the ever-increasing granularity of phenotypes, such as

the anticipated use of ICD10 coding in the USA.21

Whereas the ICD9 system allows for nearly 17 000 possi-

ble codes, the ICD10 system allows for more than

155 000 different codes.20 Multiple comparison methods

that consider inter-relationships between phenotypes (e.g.

permutation testing) may be more appropriate when

measuring statistical significance by PheWAS.

The phenome is only as good as the phenotypes within.

An advantage of using ICD9 codes to define the phenome

is that it allows an investigator to comprehensively assem-

ble a wide spectrum of phenotypes in an efficient and

cost-effective manner. Unfortunately, not every phenotype/

ICD9 code is equal. Each ICD9 code is highly variable in

frequency and in its positive and negative predictive

values.32 It is impractical to manually assess the validity of

all phenotypes coded for all patients. It is also unrealistic to

develop sophisticated logic rules to describe every pheno-

type. To address this challenge, simplistic rules to define

cases and controls can be applied, including the use of the

‘rule-of-two’. The rule-of-two states that a patient must be

coded two or more times for any ICD9 code to be consid-

ered a case. It is intuitive that the rule-of-two increases the

positive predictive value, but may result in a reduction in

case numbers.32 As phenomes become ever more granu-

lated, average case numbers will undoubtedly be reduced

even further. This will dramatically affect the power to

detect an association. More advanced high throughput

methods, using data beyond ICD codes, may be helpful in

the future when defining the phenome.

Once a phenome is constructed, association testing is

often simplified to basic statistical approaches uniformly

applied across the phenome. Small numbers of cases for

many phenotypes restrict analyses to contingency table

tests of independence (e.g. Fisher’s exact test) precluding

the use of covariates. But even if case groups are large

enough for regression analysis, standard variables such as

age and sex may be inappropriate to implement within a

regression model. Age and sex may be covariates for some

conditions and confounders for others. Caution should

be applied when interpreting initial PheWAS results. Fol-

low-up phenotype-specific analyses, which may or may

not include covariates, may be warranted after an initial

PheWAS screen. Like GWAS, it is important to validate

any PheWAS association.
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Validation approaches for PheWAS findings are similar

in concept to GWAS. In a GWAS, either specific candi-

date SNPs can be validated in an independent sample set,

or an independent GWAS can be conducted. In PheWAS,

a specific phenotype can be validated in an independent

study (e.g. case–control study), or an independent Phe-

WAS can be applied. A specific case–control study design

becomes hypothesis testing and reduces the multiple

comparison testing burden. Conversely, with imperfect

case definitions and small case group sizes in an initial

PheWAS screen, an independent validation PheWAS may

help to identify true associations that may not have been

top candidates in the initial PheWAS.

Like GWAS, and perhaps even more so for PheWAS,

differences across populations may affect the ability to val-

idate findings. At the SNP level, it would not be unex-

pected to see very different GWAS results from a

population with European ancestry compared with a pop-

ulation with African ancestry as a result of significant dif-

ferences in the linkage disequilibrium structure and allele

frequencies between the two populations. In a genetically

driven PheWAS, there is often one SNP associated across

the phenome. If the SNP genotyped is not the functional

variant, and/or observed in multiple populations, replicat-

ing PheWAS results may be difficult. Differences across

populations may also go beyond genetics. There may be

significant differences in clinical care, and the use of ICD9

codes, that is observed in different ethnicities, between dif-

ferent physicians, and across different healthcare provid-

ers. These differences may change over time with changes

in standard medical practice. Even with the challenges of

PheWAS, the utility of PheWAS has been demonstrated

and its application may have significant advantages.

Advantages of PheWAS

So far, the PheWASs focusing on genetic targets have

concentrated on SNPs that were already identified by

GWAS.8–13,18 Even with the complex challenges described

above, PheWAS has demonstrated its capacity to identify

expected associations when going in the opposite direc-

tion compared with GWAS. The selection of a phenotype

for GWAS is important for the success of any GWAS

study. The selection of a marker, genetic or otherwise, for

PheWAS is also very important. By focusing on variants

that have known function and/or clinical significance,

PheWAS has the advantage of simplifying the process by

starting with the biology. If there is significant back-

ground information regarding a genetic variant’s function

and/or clinical significance, that information can be

applied directly when interpreting novel PheWAS results.

This is important because PheWAS has the distinct

advantage of characterizing pleiotropic genetic variants.

As of July 2013, 1038 GWASs had identified 4870 sig-

nificant associations (4018 unique SNPs) across the

human genome (P < 5�0E-8) for 547 human traits and

diseases. Nearly 13% of these GWAS-significant SNPs

(519 SNPs) are associated with two or more phenotypes,

although some phenotypes are similar (e.g. triglyceride

levels and risk for hypertriglyceridaemia).5 Rs1260326 on

chromosome 2 is an example where multiple phenotypes,

some related and some not, are associated with SNP

genotype at the GWAS level. A non-synonymous SNP in

GCKR, rs1260326 was significantly associated with 12

phenotypes in 17 GWASs, including triglyceride pheno-

types, metabolic networks, urate levels, C-reactive protein

levels, total cholesterol, amino acid levels, serum albumin

levels, non-albumin protein levels, chronic kidney disease,

liver enzyme levels, 2-hr glucose challenge and platelet

count.5 This demonstrates that GWASs have the capacity

to identify pleiotropic variants, but requires that multiple

GWASs be performed.

PheWAS has the potential to measure a genetic variant’s

pleotropic property in a significantly more comprehensive

and efficient manner than GWAS. This point is empha-

sized by the two PheWASs described previously where

HLA-DRB1*1501 was not only associated with MS, but

also with erythematous conditions,8 including rosacea.10

Furthermore, other HLA variants, such as those described

previously in the HLA-B gene, can be associated with

platelet count, spondylitis, uveitis, and mastoiditis.13 These

examples further emphasize the capacity of PheWAS to

study clinically significant diseases that may not otherwise

be studied at the genetic level. Understanding the shared

genetic aetiologies of multiple diseases by PheWAS, such

as MS and rosacea, is a significant advantage and may pro-

vide significant insight into the pathophysiology of numer-

ous conditions – insights that may lead to new treatment

strategies while minimizing research costs. For example,

medications effective for the treatment of rosacea may be

effective for the treatment of MS. Minocycline is an antibi-

otic with anti-inflammatory properties that is commonly

used to treat rosacea. Interestingly, small clinical trials have

been conducted to assess the use of minocycline to treat

MS and have produced generally positive outcomes.33–36 It

is the culmination of these advantages and challenges that

will dictate how future PheWASs are conducted.

Future of PheWAS

PheWAS has the potential to induce new bioinformatic

methodologies, result in new disease research opportuni-

ties, expand the use of bio-repositories and genetic data,

and will hopefully result in clinically significant break-

throughs. In the short term, the number and type of

genetic variants assessed by PheWAS will undoubtedly

grow. Approximately 200 SNPs have been analysed by

PheWAS with all being rooted to previously reported

GWAS results.9–13,18 The largest number of SNPs assessed

in a single PheWAS (83 SNPs) comes from the PAGE
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Network,11 which falls short of the 4018 unique SNPs

that have been associated with 547 human phenotypes to

date.5 Although it has been difficult to identify clinically

significant associations by GWAS, continued focus on

GWAS SNPs using higher-resolution phenotypes within a

phenome may help to refine initial phenotype–SNP asso-

ciations identified by GWAS. As such, PheWAS may be a

complementary strategy to GWAS when searching for

predictive genetic biomarkers in a clinical setting.

GWAS SNPs are logical starting points for PheWAS

because of the availability of association data, but GWAS

SNPs are predominantly tag SNPs, reside primarily in in-

tergenic regions, and often have no known function. An

alternative PheWAS approach could be to focus on func-

tional variants (e.g. loss of function variants). The use of

GWAS SNPs in PheWAS exploits known association/phe-

notypic data while functional variants would exploit

known biological insights. For example, loss of function

variants are more likely to be associated with a disease

with a stronger effect size compared with other classes of

variation.37 In general, Mendelian diseases are primarily

caused by loss of function mutations,38 and loss of func-

tion variants of unknown clinical significance have similar

evolutionary selective pressures as known disease-causing

mutations.39 Focusing on these functional variants in

PheWAS would be analogous to a mouse knockout

experiment in a human population without the need to

artificially manipulate the human genome. This approach

may provide novel gene–disease associations while expe-

diting the process of understanding the biology when

genetic function is presumed.

Another PheWAS experimental design may include a

pathway-based approach. As mentioned previously, nearly

13% of all statistically significant GWAS catalogue SNPs

are associated with two or more phenotypes.5 Many of the

pleotropic variants identified to date map to a region on

chromosome 6 containing HLA genes, suggesting that

immunological pathways may play a very important role

in many disease aetiologies. Of the 547 phenotypes

curated in the GWAS catalogue, 5% have at least one

GWAS significant marker that maps to a 5 Mb region

containing HLA genes. This is significant because this

region makes up less than 1% of the human genome. Very

divergent phenotypes map to this region including drug-

induced liver injury, MS, Stevens–Johnson syndrome,

chronic obstructive pulmonary disease, and narcolepsy.5 As

demonstrated by the two HLA-DRB1 PheWAS examples

mentioned previously,8,10 this region, and variants within,

would be a logical target to identify novel association with

pleiotropic effects that may have immunological origins.

The number of potential PheWAS targets is only lim-

ited by the number of known genetic variants. An alter-

native to a focused candidate SNP or candidate pathway

approach would be a PheWAS for every SNP across the

genome. This strategy would be unbiased to both the

phenotypes and genotypes, but would also have a tremen-

dous multiple comparison burden. The threshold for sta-

tistical significance would be orders of magnitude below a

GWAS significant P-value (P < 5�0E-8). Conversely, a

PheWAS-by-GWAS approach could be very powerful

when developing disease–disease, disease–gene, and gene–
gene interaction networks. Similar studies have been con-

ducted using combined GWAS data,40 but are limited in

their ability to address direct disease–disease interactions

when many independent populations are used. Network

analysis from a single PheWAS-by-GWAS in a large

cohort may address this challenge and further describe

complex interactions across the phenome and genome.

While a great deal of genetic data can be captured by

focused and/or array-based SNP genotyping platforms,

the future of human genetics will rely heavily on next-

generation sequencing (NGS). Using NGS data for Phe-

WAS-by-GWAS analysis, a whole order of complexity will

be introduced. This may include the incorporation of in-

dels, complex rearrangements, and copy number variants

in the context of PheWAS. Furthermore, NGS will result

in the identification of many rare variants, many of which

may or may not have obvious functions within their

respective genes. Incorporating rare variants in the con-

text of PheWAS (e.g. gene-specific burden testing) should

be possible. This reality is quickly coming to fruition as

NGS is incorporated into standard medical practices.41,42

Although genetic variables served as the focus of the

initial PheWASs, the future of PheWAS is not limited to

genetics. PheWAS may assess associations between non-

genetic targets and phenotypes across the phenome. Liao

et al.18 associated autoantibody levels to the phenome in

patients with or without a diagnosis of RA. This was done

with four different autoantibodies, including anti-citrulli-

nated protein, anti-nuclear, anti-tissue transglutaminase,

and anti-thyroid peroxidase antibodies. Anti-thyroid per-

oxidase antibody levels were associated with hypothyroid-

ism, as expected. Moreover, novel statistically significant

associations were observed when anti-nuclear antibody lev-

els were associated with the phenomes of RA and non-RA

patients. Anti-nuclear antibodies are known to be associ-

ated with genetic risk factors linked to systemic lupus

erythematosus.43 In RA patients, high-titre antinuclear

antibodies were associated with Sj€ogren’s/sicca syndrome.

In non-RA patients, this antibody was associated with

chronic non-alcoholic liver diseases.18 Whereas Liao et al.

assessed autoantibodies in a PheWAS, Warner et al16 con-

ducted a PheWAS by comparing the frequency of diagnos-

tic codes between multiple myeloma patients in the ICU

and a larger ICU patient cohort. This study characterized

treatment-related and disease-related complications of

multiple myeloma over time. These and other exam-

ples14,15,17 demonstrate how PheWAS can be applied to

identify potentially novel/clinically significant associations

using non-genetic PheWAS candidates. PheWASs that use
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non-genetic targets are not constrained by DNA availabil-

ity. Using pre-existing de-identified clinical data may allow

investigators to circumvent the difficulties in patient

recruitment and avoid the significant resources needed for

genotyping. Furthermore, lack of dependence on genetics

may allow for exploitation of significantly larger patient

cohorts. This may address some of the challenges described

above, most notably, small sample size for many pheno-

types within a phenome.

Regardless of approach, PheWAS will always be limited

by how well the phenome can be defined. Efforts to reli-

ably define phenotypes using EMR data have been limited

to specific phenotypes.23 Although these disease-specific

methods can reliably discriminate between cases and con-

trols, they do not provide a high throughput mechanism

to define the thousands of phenotypes within a phenome.

Automated medical informatic tools capable of reliably

defining the phenotypes within a phenome will be

required. This may include machine learning methods

that are able to incorporate various types of data beyond

simple ICD9 coding, including laboratory values, proce-

dure codes, physician notes, and/or prescription records.

As the number of phenotypes increases and the pheno-

typic resolution becomes ever more accurate and specific,

sample sizes for cases will shrink without expanded

cohorts. This will require multi-institutional collaborative

networks working together to develop, implement and

apply PheWAS. As the use of an EMR becomes standard

practice, bio-repositories continue to grow, and genomic

medicine becomes readily applied in a clinical setting

(e.g. NGS), PheWAS has the potential to unlock novel

discoveries that would not be possible otherwise.
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