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Abstract: The conventional mathematical methods are based on characteristic length, while urban
form has no characteristic length in many aspects. Urban area is a scale-dependence measure,
which indicates the scale-free distribution of urban patterns. Thus, the urban description based on
characteristic lengths should be replaced by urban characterization based on scaling. Fractal geometry
is one powerful tool for the scaling analysis of cities. Fractal parameters can be defined by entropy
and correlation functions. However, the question of how to understand city fractals is still pending.
By means of logic deduction and ideas from fractal theory, this paper is devoted to discussing fractals
and fractal dimensions of urban landscape. The main points of this work are as follows. Firstly, urban
form can be treated as pre-fractals rather than real fractals, and fractal properties of cities are only
valid within certain scaling ranges. Secondly, the topological dimension of city fractals based on the
urban area is 0; thus, the minimum fractal dimension value of fractal cities is equal to or greater than
0. Thirdly, the fractal dimension of urban form is used to substitute the urban area, and it is better to
define city fractals in a two-dimensional embedding space; thus, the maximum fractal dimension
value of urban form is 2. A conclusion can be reached that urban form can be explored as fractals
within certain ranges of scales and fractal geometry can be applied to the spatial analysis of the
scale-free aspects of urban morphology.

Keywords: fractal; fractal dimension; pre-fractal; multifractals; scaling range; entropy; spatial correlation;
fractal cities

1. Introduction

Scientific research starts from description of a phenomenon and then focuses on understanding
its work principle. The simple description is based on measurements, while the complex description
relies heavily on mathematical methods [1]. In order to describe a city, we try to express it using data.
Mathematical description depends on measurement description, as measurement can be treated as
the basic link between mathematics and empirical studies [2]. In order to show the results from a
measurement, we should find the characteristic scale of an entity. A characteristic scale is a special
one-dimensional measure and can be termed characteristic length, which can integrate a great number
of values into a simple number. Unfortunately, in many cases, it is impossible to find a characteristic
length to describe a complex system such as a city and a system of cities. If so, we should substitute
scaling concept for the characteristic scale concept. Fractal geometry can be regarded as one of the best
mathematical tools for scaling analysis at present.

What is a fractal? This is not a problem for many scientists who are familiar with fractals. A fractal
is regarded as a shape that is made of parts similar to the whole in some way [3]. Quantitatively,
a fractal is defined as a set for which the Hausdorff–Besicovitch dimension is strictly greater than
the topological dimension [4]. These definitions are suitable for the classical fractals, which belong
to a group called thin fractals. The general concept of fractals is well known, but the question of
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how to understand fractals is still a problem for specific subjects such as urban geography. A fractal
has no characteristic scale and cannot be described with traditional measures such as length, area,
volume, and density. The basic parameter used for fractal description is fractal dimension. Since the
length of coastline cannot be effectively measured, Mandelbrot put forward the concept of fractal
dimension [5]. Fractal dimension can be defined on the basis of entropy and correlation function [3,4,6].
It is actually the invariant quantity in scaling transform and thus a parameter indicating symmetry.
Where there is an immeasurable quantity, there is symmetry [7]. The discovery of fractals is essentially
a discovery of scaling symmetry, namely the invariance under contraction or dilation transformation [8].
The immeasurability of the length of coastline enlightened Mandelbrot to think about the problem of
contraction–dilation symmetry [5].

Cities and networks of cities are complex systems bearing the property of scaling symmetry.
In urban studies, it is impossible to determine the length of the urban boundary and the area within
the urban boundary objectively [9,10]. In this case, it is impossible to quantify the population size of
a city. The precondition of determining urban population size is to determine the urban boundary
line effectively. Population is one of the central variables in the study of spatial dynamics of city
development [11], and it represents the first dynamics of urban evolution [12]. If we cannot measure
urban population size, how can we describe a city and measure levels of urbanization? If we cannot
describe a city and quantify urbanization levels, how can we understand the mechanisms of urban
evolution? Fortunately, today, we can employ the fractal dimension of urban form to replace urban
area and urban population size. However, a new problem has emerged: how can we define a city
fractal and determine its fractal dimension? Although fractal cities have been studied for more than
30 years, some basic problems still puzzle many theoretical geographers. This paper is devoted to
answering these questions in terms of the author’s experience of long-term studies on fractal cities.

2. Fractal Cities and City Fractals

2.1. Are Cities Fractals

Is the coast of Britain a real fractal line? In fact, we cannot find any real fractals (based on fractal
geometry) in the real world. This is similar to the fact that we cannot find circles and triangles (based
on Euclidean geometry) in the real world. All of the fractal images that we encounter in books and
articles represent pre-fractals rather than real fractals in the mathematical sense. A real fractal has
infinite levels, which can only be revealed in the mathematical world, but a pre-fractal is a limited
hierarchy indicating a fractal-like geometric form, which can be found in any textbooks on fractals.
We can use the ideas from fractal geometry to research pre-fractals, including regular pre-fractals and
random pre-fractals. The coast of Britain can be regarded as a random pre-fractal curve instead of a
real fractal line. However, we can study the coast of Britain using the ideas from fractals and fractal
dimension. Similarly, cities are not true fractals but proved to be random pre-fractals because urban
form has no characteristic scales. A great number of empirical studies show that, based on certain
scaling ranges, urban form satisfies three necessary and sufficient conditions for fractals (Table 1).
Urban form follows power laws, which indicates that cities can be treated as pre-fractals. The basic
property of a random pre-fractal object is that its scaling range is limited, and its fractal dimension
value is based on the scaling range [13].

2.2. Fractal Geometry: An Approach to Scale-Free Analysis

Fractal geometry is a powerful tool for scaling analysis of scale-free phenomena such as urban
form. Scaling suggests that there is no characteristic scale in an entity. Cities, in many aspects,
have no characteristic scale and cannot be effectively modeled by conventional mathematical methods.
In contrast, urban phenomena can be well characterized by fractal parameters. Natural and social
phenomena can be roughly divided into two categories: one is the phenomena with characteristic
scales, and the other is the phenomena without characteristic scales. The former can be termed scaleful
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phenomena, and the later can be termed scale-free phenomena (Table 2). For the scaleful phenomena,
we can find definite length, area, volume, density, eigenvalue, mean value, standard deviation, and so
on. If the spatial distribution of this kind of phenomena is converted into a probability distribution,
it has clear and stable probability structure and thus can be described with Gaussian function,
exponential function, logarithmic function, lognormal function, Weibull function, etc. The conventional
higher mathematics can be used as an effective tool for modeling and analyzing such phenomena.
On the contrary, for the scale-free phenomena, we cannot find effective length, area, volume, density,
eigenvalue, mean value, standard deviation, and so forth. If the spatial distribution of this sort
of phenomenon is transformed into a probability distribution, it can be characterized with power
functions, Cobb–Douglas function (production function), or some types of function including hidden
scaling. The probability structure of the scale-free distributions is not certain. Traditional advanced
mathematics cannot effectively characterize such phenomena. In recent years, a number of theoretical
tools for scale-free analysis have emerged, including fractal geometry, wavelet analysis, allometric
theory, and complex network theory. Among various “new” tools, fractal geometry represents an
excellent method for scale-free modeling and scaling analysis.

Table 1. Three preconditions for understanding, developing, and generalizing fractal concepts.

Conditions Formula Note

Scaling law T f (x) = f (λx) = λb f (x)
The relation between scale and the corresponding
measures follow power laws.

Fractal dimension dT < D < dE

The fractal dimension D is greater than the topological
dimension dT and less than the Euclidean dimension of
the embedding space dE.

Entropy conservation
N(r)∑
i=1

Pi
qr(1−q)Dq

i = 1
The Renyi entropy values of different fractal units
(fractal subsets) are equal to one another.

Note: T—scaling transform; x—scale variable; f (x)—a function of x; λ—scale factor; b—scaling exponent; D—fractal
dimension; dT—topological dimension; dE—Euclidean dimension of embedding space; q—order of moment; Pi,
ri—growth probability of the ith fractal set and its linear scale; Dq—generalized correlation dimension; N(r)—number
of fractal units with linear size r; i—ordinal number: i = 1,2, . . . , N(r).

A city is a complex system with multifaceted characteristics. In some respects, a city has
characteristic scales, e.g., urban population density distribution, which follows negative exponential
law and can be described with Clark’s model [14]. The spatial distribution function can be derived
from the principle of entropy maximization [15]. In another respect, a city has no characteristic
scale, e.g., urban traffic network density distribution, which follows inverse power law and can be
characterized with Smeed’s model [16]. The corresponding spatial distribution can be characterized
by spatial correlation and allometric scaling [17]. Where land use is concerned, urban form follows
the power law distribution and can be treated as random pre-fractal patterns [9,10]. In this sense, we
cannot find effective characteristic scales for urban morphology. Consequently, the traditional methods
of quantitative analysis and mathematical modeling are often invalid for research on urban form and
growth. As a substitute, fractal geometry is one of feasible mathematical tools for the spatial analysis
of cities.
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Table 2. Two types of natural and social phenomena: scaleful and scale-free phenomena.

Type Probability Distribution Characteristics Example Mathematical Tools Description

Scaleful phenomena
(with characteristic scales)

Normal, exponential,
logarithmic, lognormal,
Weibull, etc.

We can find definite length,
area, volume, density,
eigenvalue, mean value,
standard deviation, and so on.

Urban population density
distribution, which follows
exponential law

Traditional higher mathematics
includes calculus, linear algebra,
probability theory, and statistics.

Entropy function and
Gaussian distribution

Scale-free phenomena
(without characteristic scale)

Power law, various hidden
scaling distributions

We cannot find effective
length, area, volume, density,
eigenvalue, mean value,
standard deviation, and so on.

Urban traffic network density
distribution, which follows
power law

Fractal geometry, complex
network theory, allometry
theory, scaling theory

Fractal dimension and
Pareto distribution
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2.3. How to Define City Fractals

The angle of view for fractal studies of cities depends on the definition of embedding space. A city
fractal based on digital maps or remote sensing images can be defined in a two-dimensional embedding
space, and also it can be defined in a three-dimensional embedding space [18]. Generally speaking,
fractal cities are defined in a two-dimensional embedding space based on digital maps or remote
sensing images [9,10,19]. However, some scholars study fractal cities through three-dimensional
embedding spaces [20]. The fractal city defined in a three-dimensional embedding space has attracted
the attention of geographers [18]. In fact, a fractal based on the three-dimensional embedding space
can be explored through the two-dimensional embedding space. In the simplest case, the relationship
between the fractal dimension based on two-dimensional embedding space, D(2), and the fractal
dimension based on three-dimensional embedding space, D(3), is as follows, D(3) = 1 + D(2) [21].

For simplicity, we define the city fractals in a two-dimensional embedding space. The main
reasons are as follows.

Firstly, fractal dimension is used to replace the two-dimensional urban area rather than the
three-dimensional urban volume. In order to study a city, we must describe a city; in order to describe
a city, we must know its basic measures such as population size, urban area, and economic output.
Unfortunately, urban form has no characteristic scales due to its fractal properties, and thus the urban
boundary cannot be objectively determined. Urban area cannot be objectively calculated because the
measurement results depend on scales. This is the well-known scale-dependence property of urban
form; the cause lies in scale-free distribution of urban land use. In this case, the fractal dimension of
urban form can be employed to replace the urban area to reflect the extent of space filling. The fractal
dimension as a degree of urban space filling is exactly a substitute of the urban area. Urban area is a
scale-dependent measure, while fractal dimension is scaleful parameter. In this sense, fractal dimension
is more effective than urban area to reflect urban spatial development. Incidentally, some scholars
prefer to define a city fractal in a three-dimensional space—this means that they try to calculate a
fractal dimension based on three-dimensional embedding space to replace urban volume.

Secondly, the general principle of model building is based on reduction of dimension. The effective
skill of scientific quantitative analysis is to reduce dimension instead of increasing dimension. The basic
relation between spatial dimension n and the degree of analytical complexity C can be expressed
as C = n(n − 1)/2, which represents the least statistical parameter number for quantitative analysis.
The well-known Clark’s law of urban population density distribution in a two-dimensional space
is actually based on a one-dimensional space modeling, but this model reflects the geographical
information in a three-dimensional space [14]. In other words, the population distribution in the
three-dimensional space is projected onto the two-dimensional space by population density, and then
the mathematical expression is established on the basis of the one-dimensional space with the help
of statistical averaging [15]. The same is the case with Smeed’s model of urban traffic density
distribution [9,16,17]. If we study a city fractal through a three-dimensional embedding space,
the amount of work and difficulty of fractal dimension calculation is considerably increased, and
the accuracy of fractal parameter estimation is reduced, but the increment of the gained geographic
information is very limited. In short, it is hard to promote the analytical effect of fractal cities significantly
by substituting the two-dimensional embedding space with the three-dimensional embedding space.

Thirdly, the allometric scaling relation between population and land use suggests that urban
form should be defined in a two-dimensional space. The allometric scaling exponent b is the ratio of
the fractal dimension of urban form Df to the dimension of urban population Dp; that is, b = Df/Dp.
Empirical studies show that the b values are close to 0.85 [22]. If Df > 2, then we have Dp > 2/0.85 = 2.35.
Based on Clark’s law and scaling analysis, urban population distribution proved to be a two-dimension
phenomenon (Dp = 2) [23]. If the urban form is defined in a three-dimensional embedding space,
the fractal dimension Df values will be between 2 and 3, and the allometric scaling exponent b values
will be greater than 1. However, the observational values of allometric scaling exponent b range from
2/3 to 1 in most cases; that is, 2/3 < b < 1 [22,24,25]. This suggests that the dimension of urban form,
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Df, is between 1 and 2. In fact, in urban studies, fractal dimension is not a concept of comparability.
The fractal dimension value depends on the definition of embedding space.

If a city fractal is defined in a two-dimensional embedding space, the fractal form includes two
aspects: urban area and urban boundary. The above discussion is actually based on urban area,
but urban boundary can be treated as fractal lines [9,26–31]. The closed urban boundary curve is
termed the urban envelope, in which we can determine a Euclidean urban area [9,32]. The length of
the urban boundary and the Euclidean area within the urban envelope follow the geometric measure
relation as follows:

A = aL2/Db (1)

where A refers to the Euclidean area of a city (urban area), L denotes the length of urban envelope
(urban perimeter), a is the proportionality coefficient, and Db is the fractal dimension of urban boundary,
which can be termed boundary dimension [28]. In fact, Equation (1) can be generalized to the more
general expression shown below [27,33]:

A = aLD f /Db (2)

where A denotes the Euclidean area of a city, and Df is the fractal dimension of “urban area”. Equation (2)
is in fact an allometric scaling relation of urban shape [33]. The topological dimension of the urban
boundary is dT = 1, so the boundary dimension is greater than 1. The fractal parameter value is
between 1 and 2; that is, 1 < Db < 2. Now, a question arises: what determines the lower limit of fractal
dimension of urban morphology, urban area or urban boundary? The answer is clear. If we study
urban form and try to substitute the urban area with form dimension, it is the topological dimension
of the urban area that determines the least value of the fractal dimension; on the other hand, if we
research urban boundary and attempt to replace urban perimeter length with boundary dimension,
it is the topological dimension of urban boundary that determines the minimum value of the fractal
dimension. In most cases, we study an urban impervious area which is represented by the pixels of
buildings (fractal separated spaces) rather than the urban boundary (fractal lines).

2.4. The Lower and Upper Limits of Fractal Dimension

Fractal dimension values have a strict lower limit and upper limit. This is beyond doubt. However,
what are the lower limit and upper limit of the fractal dimension of urban from? This is still a pending
question. Empirically, if a city fractal is defined in a two-dimensional embedding space, the fractal
dimension value is between 0 and 2 [34–37]. In theory, the lower and upper limits of the fractal
dimension of urban form rely on the topological dimension and embedding dimension. In many cases,
the box-counting method is employed to estimate the fractal dimension values of urban form. The lower
limit of the fractal dimension Dmin depends on the topological dimension of urban form dT, while the
upper limit Dmax depends on the Euclidean dimension of the embedding space dE. As indicated above,
the embedding space can be defined as a two-dimensional space; thus, the Euclidean dimension of dE

= 2, so we have Dmax ≤ dE = 2. As for the topological dimension of urban form, dT, in theory, it should
be dT = 0. Therefore, we have Dmin ≥ dT = 0.

How can we determine the topological dimension of urban form? As we know, the Lebesgue
measures of real fractals are zero [4]. This suggests that if we treat urban form as a fractal, the urban
area of land use should be treated as zero. Please note that this is based on theoretical understanding,
which is different from reality. How can we understand the assumption that the area of a city fractal is
zero? This means that an urban fractal can be reduced to either a separated space or a space-filling
curve under the limit conditions. For a separated space, the topological dimension is dT = 0, while for
a space-filling curve, the topological dimension is dT = 1. In fact, using the ArcGIS technique, we can
reduce a city fractal to a separated space rather than a space-filling curve. A separated space of a
city comprises pixels or building cells on a remote sensing image or digital map. This indicates that
the topological dimension of city fractals is dT = 0 instead of dT = 1. According to Shen [36], the box
dimension values of Baltimore are between 0.6641 and 1.7211 from years 1792 to 1992.
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In practice, the lower and upper limits of fractal dimension of urban form depend on the methods
of defining the study area. There are two approaches to obtaining the time series of the fractal dimension
values of urban growth and form [34]. One is based on a constant study area [9,36], and the other is
based on a variable study area [19,37]. Each approach has its advantages and disadvantages (Table 3).
If we define a study area with fixed size for different years, the largest box can be determined by the
urban boundary of the most recent year. Then, the largest box can be applied to digital maps of the city
in previous years (Figure 1a). Using the same set of boxes, we estimate the fractal dimension values of
urban form in different years. Based on this approach, the fractal dimension values of a city’s form in
different years are more comparable. The time series of fractal dimension values can better reflect the
space replacement process of an urban region. The subsets of the time series are termed sample paths.
If a sample path is very long, the original urban form can be treated as a point. As a result, the fractal
values may be between 0 and 2 [34,38]. In contrast, if we define a variable study area, the size of the
largest box is determined by the urban boundary in a given year. Thus, the largest boxes are different
from year to year (Figure 1b). Based on this approach, the comparability of fractal dimension values of
urban form in different years is reduced. However, these fractal dimension values can better reflect the
degree of urban space filling. As a result, the fractal values may be between 1 and 2 [34].

Table 3. Two approaches to defining the study area for fractal dimension estimation of urban form.

Approach Property Merit Demerit Dimension Range

Constant study area Fixed size

The comparability of fractal
parameters of different years
is strong. The time series of
fractal dimension can be
used to reflect space
replacement of urban region.

The reality of fractal
parameters of each
year is weak.

Between 0 and 2

Variable study area Unfixed size

The reality of fractal
dimension values of urban
form is strong. The time
series of fractal dimension
can be used to reflect space
filling of urban growth.

The comparability of
fractal parameters of
different years is weak.

Between 1 and 2
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3. Fractal Modeling of Urban Form

3.1. Two Research Directions of Fractal Cities

A complete scientific research process comprises two elements. One is to describe a system,
and the other is to understand the mechanism by which the system works. In short, scientific studies
should proceed first by describing how things work and later by understanding why [39]. Accordingly,
the scientific method contains two elements: description and understanding. Concretely speaking,
as stated by Henry [1] (p. 14), “The two main elements of this scientific method are the use of
mathematics and measurement to give precise determinations of how the world and its parts work,
and the use of observation, experience, and where necessary, artificially constructed experiments,
to gain understanding of nature.” A comparison between the two elements of the scientific process
can be drawn as follows (Table 4). The most important method of scientific description is to establish
mathematical models.

Table 4. A complete scientific research process consists of two elements.

Element Level Method Purpose Result Finding Fractal Theory

Description Macro level
Mathematics,
measurement,
and computation

Data, numbers
Show
characteristics of a
system’s behavior

How a
system works

Geometrical
method

Understanding Micro level

Observation,
experience,
experiments,
and simulation

Insight,
sharpen questions

Reveal dynamical
mechanism

Why the system
works in this way

Ideas of
complex systems

Fractal theory comprises two related parts: one is the scaling theory of complex systems, and the
other is the mathematical method known as fractal geometry. As a complex system theory, it can be
employed to understand the complexity of cities; as a geometry, it can be used to describe cities from
the angle of view of scaling analysis. In fact, a mathematical theory plays two roles in any type of
scientific research (Table 5). One is to produce models and develop a theory (mathematical modeling),
and the other is to process experimental and observational data (statistical analysis). In urban studies,
fractal geometry can serve two functions. One is to establish models for cities as systems and systems of
cities, and the other is to carry out empirical analysis of cities using observational data. Many scholars
utilize fractal geometry to process the observational data of urban geography, but I emphasize the basic
function: mathematical modeling. No matter what type of study is conducted, there is no contradiction
between models and observed data. All models rely heavily on observational data. The spatial data
can be used in the empirical analyses of fractal models of cities.

Table 5. Two functions of fractal geometry in urban studies.

Function Use Purpose Approach

Theoretical Present postulates and
produce models

Develop urban theory
based on the possible world

Build mathematical models based
on fractals or fractal dimension

Empirical Process experimental
and observational data

Solve practical problems in
the real world Rely heavily on fractal dimension

In fact, one of the main tasks in scientific research is to produce models. As Neumann [40] (p. 492)
said, “The sciences do not try to explain, they hardly even try to interpret, they mainly make models.”
I agree with Hamming [41], who said, “The purpose of modelling is insight, not numbers.” Karlin [42]
has a similar viewpoint, “The purpose of models is not to fit the data, but to sharpen the questions.”
However, the confidence level of a model depends heavily on the relationship between mathematical
expression and observed data. In order to verify a mathematical model, we must fit it to observational
data and illustrate the statistical relationships and analytical effect. I am very much in favor of the
viewpoint of Louf and Barthelemy [43], who said, “The success of natural sciences lies in their great
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emphasis on the role of quantifiable data and their interplay with models. Data and models are both
necessary for the progress of our understanding: data generate stylized facts and put constraints
on models. Models on the other hand are essential to comprehend the processes at play and how
the system works. If either is missing, our understanding and explanation of a phenomenon are
questionable. This issue is very general, and affects all scientific domains, including the study of cities.”
The basic functions of mathematical models are explanation and prediction. As Fotheringham and
O’Kelly [44] pointed out, “All mathematical modelling can have two major, sometimes contradictory,
aims: explanation and prediction.” Not only that, as Kac [45] observed, “The main role of models is
not so much to explain or predict—although ultimately these are the main functions of science—as to
polarize thinking and to pose sharp questions.” The chief uses of fractal models lie in explanation and
prediction. Let us take the logistic model of fractal dimension growth curves as an example. The model
can be used to explain the speed change characteristics of urban growth [35]. It can tell us when the
growth rate of a city will peak. It can also tell us the maximum space-filling index of a city’s land
use. What is more, the model can sharpen questions for us. For example, the similarity and difference
between the model of fractal dimension growth curves of Chinese cities such as Beijing and that of
cities in western countries such as London, Baltimore, and Tel Aviv gives rise to new thinking about
the spatial dynamics of urban evolution.

3.2. Two Approaches to Modeling Cities

As indicated above, one of the important tasks of fractal urban studies is to produce models.
As Longley [46] (p. 605) pointed out, “In the most general terms, a ‘model’ can be defined as a
‘simplification of reality’, nothing more, nothing less.” In scientific research, mathematical models
can be classified into two categories: mechanistic models and parametric models [47]. Accordingly,
there exist two approaches to establishing mathematical models: analytical methods and experimental
methods [48] (Table 6). The so-called analytical method is the approach to deriving a mathematical
model with the help of existing scientific theories and laws and in light of the relationship and evolution
of the various components of the studied system. The process is as follows: establish a functional
equation based on one or more postulates, and then find the general solution to the functional equation.
The solution to the equation is exactly the theoretical model (mechanistic or structural model) that
we need. The experimental method is to select the most appropriate model in a set of hypothetical
or imaginary models so that the model can be well fitted to the observational or experimental data.
What is more, the model will not give rise to logical contradiction and difficulty in interpretation. Thus,
we have an empirical model (parametric or functional model). In geography, the traditional gravity
model is an empirical model, which is obtained by analogy with Newton’s law of universal gravitation.
In contrast, the spatial interaction model of Wilson [49] is a theoretical model. The model is derived by
constructing the postulates and solving the maximum entropy equation of traffic flows. The two types
of models are not opposed but can be transformed into each other. An effective theoretical model must
be an empirical model, which must be well fitted to observational data. On the other hand, an empirical
model will become a theoretical model by mathematical demonstration. A typical example is Clark’s
urban population density model [14]. The model was originally presented as an empirical model based
on observation data [9]. However, it has become a theoretical model because it can be derived from the
postulates of spatial entropy maximization of urban population distribution [15]. In an article, limited
to the conditions at the time, we may fulfil some aspects of the research work but not necessarily
complete all the research processes.

Table 6. Two types of models and methods of model building.

Model type Property Building Method Principle Example

Mechanistic model
(structural model) Theoretical model Analytical method Postulates and

demonstration
Wilson’s spatial
interaction model

Parametric model
(functional model) Empirical model Experimental method Data and fitting Traditional gravity model
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3.3. Fractal Models and Parameters of Cities

We have at least three approaches to developing mathematical models of urban form by using
ideas from fractal theory. The first is to produce new models, the second is to improve the old models,
and the third is to borrow models from other disciplines (Table 7). A typical example is the models of
the fractal dimension growth curve of urban form: different approaches result in different models,
and different models are suitable for different situations [34,35]. It is necessary to briefly comment
on the third approach. In scientific research, a mathematical model can be transplanted from one
field and applied to another field. The logistic function was originally proposed by Verhulst in 1838
to predict population growth [50]. Today, the well-known logistic function has been employed to
predict many growing phenomena in many different fields, including urbanization levels and fractal
dimension growth [35]. Similarly, the Boltzmann equation can also be generalized to other fields and
used to model urban growth [34,51]. The allometric growth equation of urban geography came from
biology [28,52]. The gravity model of geography resulted from Newton’s law of universal gravitation by
analogy, and the spatial autocorrelation models of geography come from mathematical and statistical
biology. These examples are too numerous to enumerate. The uniqueness of different fields is always
determined by the physical meaning of model parameters rather than by the expression of mathematical
models. The mathematical expression of a model is often general, but the parameters are for special
purposes. The same mathematical model can be applied to many different fields, but different fields
have different parameter meanings.

Table 7. Three approaches to developing models for fractal dimension growth curves of urban form.

Approach Example and Mathematical Expression Name

Produce new models
D(t) = Dmax

1+(Dmax/D(1)−1)t−b Growth function of hidden scaling
D(t) = Dmin +

Dmax−Dmin
1+[(Dmax−D(1))/(D(1)−Dmin)]t−b

Improve old model D(t) = Dmax

1+(Dmax/D(0)−1)e−kt2 Quadratic logistic function

Borrow model from another discipline D(t) = Dmin +
Dmax−Dmin

1+[(Dmax−D(0))/(D(0)−Dmin)]e−kt Boltzmann equation

Note: (1) Models. The logistic function and Boltzmann equation of fractal dimension growth curve were demonstrated
by Chen [34], and the quadratic logistic function was derived and demonstrated by Chen [35]. (2) Parameters.
D(t)—fractal dimension of urban form at time t; D(0)—the initial value of fractal dimension of urban form (t = 0);
Dmax, Dmin—the upper limit and lower limit of fractal dimension; b—the scaling exponent of fractal dimension
growth; r—the original growth rate of fractal dimension.

The notion of maximum and minimum of fractal dimension discussed above is important for
producing models of the fractal dimension growth curves of urban form. The fractal dimension growth
curve results from the time series of urban growth. In theory, we can calculate the fractal dimension
values of a city’s form at different times. These values compose a sample path of fractal dimension
and further form a curve of fractal dimension change of urban morphology. A sample path can be
regarded as a subset of a time series [53]. Due to the lower and upper limits of urban fractal dimension,
a fractal dimension growth curve takes on a squashing effect and can be described with one of the
sigmoid functions such as logistic function and Boltzmann’s equation [34,35,54]. On the other hand,
the question of how to determine fractal parameter values depends on specific research objectives and
data conditions. This is a complex problem and needs to be judged on the basis of long-term research
experience. Even for theoretical research, if the sample path of fractal dimension is short, we can take
Dmin = 1 and adopt the quadratic Boltzmann equation. For example, in one of the studies conducted by
Chen [35], the time span was around 25 years (1984–2008). All the fractal dimension values are greater
than 1. On the other hand, even for application research, if the sample path of fractal dimension is
very long, we can take Dmin = 0 and adopt the quadratic logistic function. For instance, in the study of
Shen [36], the time span was around 200 years (1792–1992). One of the fractal dimension values for
early years was less than 1. The situations can be classified into four groups and tabulated as below
(Table 8).
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Table 8. Four cases for the lower limit of fractal dimension growth curves of urban form.

Fixed Study Area Variable Study Area

In theory Dmin = 0, logistic function Dmin = 0, long sample path, logistic function;
Dmin = 1, usual cases, Boltzmann equation

In practice Dmin = 1, short sample path, Boltzmann
equation; Dmin = 0, usual cases, logistic function Dmin = 1, Boltzmann equation

4. Questions and Discussion

4.1. Problems of Fractal Dimension Values

The concept of fractal dimension proceeded from Hausdorff’s fractional dimension. Today,
there are various definitions for fractal dimension, and the common fractal dimensions in urban studies
are the box dimension and similarity dimension. The box dimension is mainly suitable for the spatial
structure of cities and systems of cities, while the similarity dimension is chiefly applied to urban
hierarchies, including hierarchies of cities and hierarchies of urban internal elements such as land
use patches. Generally speaking, fractal dimension values come between the topological dimension
and the Euclidean dimension of embedding space. For a regular fractal, if fractal copies/units have
no overlapping, the Hausdorff dimension will equal the similarity dimension. Empirically, both the
Hausdorff dimension and similarity dimension can be represented with the box dimension. All these
dimension values are less than the Euclidean dimension of the embedding space and greater than the
topological dimension of fractal objects. However, if fractal copies have overlapped parts, the similarity
dimension will exceed the dimension of embedding space in value. Thus, similarity dimension will
not equal the Hausdorff dimension or box dimension. In contrast, the box dimension will never exceed
the embedding dimension.

Let us examine two kinds of fractal dimension of the fractals with overlapped parts. The interior
boundary line of the Sierpinski gasket is a typical fractal line with overlapped parts (Figure 2).
The initiator is a straight-line segment with length of unit (Figure 3a); the generator is a curve consisting
of five straight-line segments with the length of 1/2 unit (Figure 3b). From step 3 onward, fractal copies
begin to overlap with one another, and the overlapped parts are marked with red circles (Figure 3c,d).
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The similarity dimension and box dimension can be calculated by the ideas from fractal dimension.
In the mth step, the length (linear size) of line segments can be expressed as

sm = (
1
2
)

m−1
(3)

where m = 1, 2, 3, . . . denotes the ordinal numeration of steps. The number of line segments in
each step can be counted in two different ways. One is to repeat the counting of the overlapped
parts, and the other is to count the overlapped parts only once. For example, for the curve of step 3
(Figures 2c and 3c), the number of line segments is N3 = 52 = 25 according to the first counting method
and N3 = 3 × 5 + 22 = 19 according to the second counting method. According to the first method with
repeated counting, the line segment number in the mth step is

Nm = 5m−1 (4)

Thus, the similarity dimension is

Ds = −
ln(Nm+1/Nm)

ln(sm+1/sm)
=

ln 5
ln 2

= 2.322 > d = 2 (5)

According to the second method without repeated counting, the line segment number of step m is

Nm = 3Nm−1 + 2m−1 (6)

where N0 = 0 for m = 1. By recurrence, we have

Nm =
m−1∑
j=0

(3m−1− j2 j) = 3m−1
m−1∑
j=0

[(
2
3
)

j
] (7)

where j = 1, 2, . . . m−1. Under the condition of limit, the result is

Nm = lim
m→∞

3m−1
m−1∑
j=0

[(
2
3
)

j
]

 = 3m−1 1
1− 2/3

= 3m (8)

This suggests that when m becomes large enough, Nm will approach 3m. Therefore, the box dimension is

Db = −
ln Nm

ln sm
=

m ln 3
(m− 1) ln 2

m→∞
→

ln 3
ln 2
≈ 1.585 < d = 2 (9)

For this special regular fractal, the box dimension equals the Hausdorff dimension in theory. Therefore,
for the regular monofractals with overlapped units, we have the following relation: topological
dimension < Hausdorff dimension = box dimension < embedding space dimension < similarity
dimension. However, for the regular monofractals without overlapped units, the dimension
relation is as follows: topological dimension < Hausdorff dimension = box dimension = similarity
dimension < embedding space dimension.

The phenomenon of overlapped fractal units resulting in fractal dimension values greater than
the embedding space dimension can be employed to explain abnormal multifractal spectral curves.
In theory, the generalized correlation dimension, Dq, should be between 0 and 2 if a fractal city is
defined in a two-dimensional embedding space. However, in many cases, the generalized correlation
dimension values of urban morphology always exceed 2 or even go beyond 3 if the moment order,
q, approaches negative infinity [55]. The reason is that, even based on the box-counting method,
if q < 0 or q > 1, we will obtain the similarity dimension instead of a strict box dimension of urban
form. When q < 0, the small patches in the urban pattern are enlarged gradually, and this leads to the
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overlapping and interlacing of random fractal units. If and only if the urban spatial structure is very
well organized, the overlapping distributions of the magnified patches will be reduced in order to
be omitted. In this sense, multifractal spectra can be adopted to appraise the quality of the spatial
structures of cities and systems of cities.

4.2. Spatial Meanings of Fractal Dimension

Fractal dimension is a measure for scale-free phenomena which have no characteristic scales and
cannot be effectively described by traditional mathematical methods. Where cities are concerned,
the meanings and uses of fractal dimension of urban form rest with at least three aspects: degree
of space filling, degree of spatial uniformity, degree of spatial complexity. As a space-filling index,
fractal dimension can be used to reflect the replacement process of urban and rural space in theory.
Unfortunately, it is both impossible and unnecessary to distinguish between urban area and rural area
strictly. When we define a study area for a fractal cities, it comprises urban buildings, rural buildings,
and other types of land. Various types of land form a hierarchy, with a cascade structure of land use
based on different levels of scales [56]. In the urban regions, there are rural buildings, and in the rural
regions, there are urban buildings. If we examine a city’s form from various spatial scales, we can
find interlaced distributions of urban and rural land and buildings. The hierarchy with the cascade
structure of urban and rural landscapes should be described with multifractals [57]. To solve this
problem, we can use the concepts of space-filling extent, U(t), and space-saving extent, V(t), to replace
urban land use and rural land use [34].

In the generalized correlation dimension spectrum, three parameters are very important, namely
capacity dimension, information dimension, and correlation dimension. Among the three common
parameters, capacity dimension is the most basic. The essence of capacity dimension is just space-filling
ratio, and this can be demonstrated easily. Space-filling measures should be defined by logarithmic
scales rather than conventional scales. The reason is that the spatial recursion process is based on
exponential decay and logarithmic scale [9,57,58]. Let us define an index of space filling as follows:

F =
ln Ab(r)
ln A(r)

=
ln Nb(r)
ln N(r)

(10)

where F denotes the space-filling ratio, Ab refers to filled area, which can be represented by impervious
area, A is the total area, Nb is the number of nonempty boxes, and A is the number of all boxes. It can
be proven that

2F =
2 ln Ab(r)

ln A(r)
=

2 ln Nb(r)
ln N(r)

= D0 (11)

where r denotes the ordinal numeration of steps, and D0 refers to capacity dimension. For example,
for the growing fractal displayed in Figure 1, we have

2F =
2 ln(5m)

ln(9m)
=

2 ln(5)
ln(9)

=
ln(5)
ln(3)

= D0 (12)

where m refers to the ordinal numeration of steps. This suggests that the doubling space-filling
ratio yields the capacity dimension of a regular fractal. This conclusion can be generalized to urban
morphology. On the other hand, in Equation (10), the numerator is the Hartley entropy, H, and the
denominator is the maximum entropy, Hmax [55]. If the minimum entropy and minimum fractal
dimension are zero, the space-filling ratio is proven to be the normalized entropy and the normalized
capacity dimension [59]. What is more, fractal dimension is proven to be the scaling exponent of spatial
correlation, and a correlation function can be expressed as

C(r) = C1r2(D0−d)+1 (13)
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where r refers to distance, C(r) denotes spatial correlation function, C1 is proportionality coefficient,
and d represents embedding space dimension [60]. Spatial correlation suggests spatial displacement,
which corresponds to time lag and implies spatial complexity. In short, fractal dimension means space
filling, spatial uniformity, and spatial complexity (Table 9).

Table 9. The three basic meanings of fractal dimension of urban morphology.

Basic Measurement Principle Meaning Explanation

Degree of space filling 2F =
2 ln Ab(r)

ln A(r) =
2 ln Nb(r)

ln N(r) = D0
Capacity dimension equals
doubled space-filling ratio

The space-filling ratio
equals the logarithm of
occupied area divided by
the logarithm of total area

Degree of
spatial uniformity 2F = 2 ln H

ln Hmax
=

2 ln Nb(r)
ln N(r) = D0

Capacity dimension equals
doubled normalized
Hartley entropy

Entropy is a measure of
spatial uniformity

Degree of
spatial complexity C(r) = C1r2(D0−d)+1

Capacity dimension
suggests a spatial
correlation exponent

Spatial correlation indicates
spatial complexity of cities

Note: The formula of space-filling degree is derived in this paper, and the spatial correlation function was presented
by Chen [60]. Regarding the relationships between entropy and fractal dimension, see [59].

4.3. Statistical Evaluation of Fractal Parameters

It is necessary to discuss fractal dimension measurement methods and related statistical test
parameters simply. In practice, the double logarithmic linear regression based on the least square
method can be employed to estimate fractal dimension values. Two methods can be utilized to carry
out regression analysis: one is fixed intercept to 0, and the other is to let the intercept be free. The former
can be termed fixed intercept regression, and the latter can be termed free intercept regression.
For theoretical analysis, the intercept should be fixed to 0 so that the proportionality coefficient of the
corresponding fractal model equals 1. For positive studies, the intercept depends on the measurement
results and should not be fixed to a certain value [61]. No matter which method is adopted, a statistical
test should be carried out for the calculation of results (Table 10). The basic and most important statistic
for fractal dimension test is goodness of fit, R2, which is also termed the determination coefficient.
Actually, the R statistic is called the multiple correlation coefficient, which equals the absolute value of
the Pearson correlation coefficient for univariate linear regression analysis. Sometimes, we examine
standard error and probability value, i.e., p value, of a fractal dimension. A proper statement in scientific
research should be presented with a confidence statement [59]. A confidence statement comprises two
elements: margin of error and level of confidence [62]. According to the standard error, δ, we can
estimate the margin of error of a fractal dimension; according to the p value, we can calculate the level
of confidence of the fractal dimension. In most cases, the fractal dimension calculation is based on
univariate linear regression analysis. For univariate linear regression, the R2 value, the F statistic,
t statistic, and the corresponding p value are equivalent to one another. What is more, the fractal
dimension D and the R2 value can be associated with the standard error δ. The formulae are as follows
(see Appendix A):

F = t2 =
vR2

1−R2 (14)

δ = D

√
1/R2 − 1

v
(15)

where v denotes the degree of freedom. If the intercept of the log-log linear model for regression
analysis is free, the degree of freedom is v = n − 2; if the intercept is fixed to 0, the degree of freedom
is v = n − 1. Here, n is the sample size, i.e., the data point number. Then, using the t distribution
function tdist, we can convert the t statistic into the corresponding p value by means of MS Excel.
The grammar is “= tdist(abs(t value), v, 2)”. Thus based on the 95% level of confidence, the margin of
error of the fractal dimension value can be approximately expressed as D±2δ.This means that, in the
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absence of special requirements, the R2 value will provide enough numerical information for statistical
description of fractal dimension.

Table 10. The transformation relationships between F statistic, t statistic, p values, standard deviation,
and fractal dimension.

Item Free Intercept (Arbitrary Value) Fixed Intercept (Zero)

Fractal model N(r) = Kr−D(0 < K < 2) N(r) = Kr−D(K = 1)
Logarithmic linear relation ln N(r) = ln K −D ln r ln N(r) = −D ln r (lnK=0)
Degree of freedom, v v = n− 2 v = n− 1
F statistic, F, t statistic, t, and goodness of
fit, R2 F = t2 =

(n−2)R2

1−R2 F = t2 =
(n−1)R2

1−R2

Standard error δ, fractal dimension D,
and R2 δ = D

√
1/R2−1

n−2 δ = D
√

1/R2−1
n−1

Margin of error of fractal dimension D
(significance level α=0.05) D± 2δ D± 2δ

Excel conversion formula from t statistic
to p value tdist(abs(t), n− 2, 2) tdist(abs(t), n− 1, 2)

Definition of R statistic Pearson correlation coefficient Cosine coefficient

Note: (1) Fomulae. See Appendix A for derivation. (2) Parameters. r—spatial measurement scale such as linear size
of box; N(r)—spatial measurement with linear size r such as the number of non-empty boxes; K—proportionality
coefficient; D—fractal dimension; ln—natural logarithm function; n—sample size; F—F statistic; t—t statistic;
R—multiple correlation coefficient; tdist, abs—MS Excel functions for t distribution and absolute value.

The analytical process and discussion of this paper are based on the standard definition of fractals.
A fractal has three elements, i.e., form, chance, and dimension [63]. The first definition of Mandelbrot [4]
(p. 15) based on dimension and chance is as follows: “A fractal is by definition a set for which the
Hausdorff-Besicovitch dimension strictly exceeds the topological dimension.” The second definition
based on form and chance is as follows: “A fractal is a shape made of parts similar to the whole in some
way.” The second definition is given by Mandelbrot but published by Feder [3] (p. 11). The quantitative
criterion of fractals is the Hausdorff–Besicovitch dimension. Recently, Jiang and his co-workers tried
to relax the definition of fractals and gave the third definition as follows: a set or pattern is fractal if
the scaling of far more small things than large ones recurs multiple times [64]. According to the new
definition, the quantitative criterion of fractals is replaced by the head/tail index [65,66]: the ht-index
of a fractal set or fractal pattern is at least three [64]. The new definition and criterion of fractals are
very interesting and instructive. Sometimes, definitions of concepts or terms are most likely to lead
to ambiguity, misunderstanding, and controversy. Therefore, scientific studies should sidestep the
terminological minefield so that we can move beyond the semantic debate [67]. On the one hand,
we should leave certain room for developing and consolidating a definition as the research approach
continues to mature [67]. On the other hand, as West and West [68] (p. 210) once pointed out, “ . . .
science does not wait for definitions, it continues forward in exploring phenomena with or without
a clear understanding, confident that such understanding will eventually emerge.” Saint Thomas
Aquinas once said, “What, then, is time? If no one asks me, I know what it is. If I wish to explain it to
him who asks me, I do not know.” Now, for me, what, then, is city/fractal/science? If no one asks me,
I know what it is. If I wish to explain it to him who asks me, I do not know. Even so, as Potter Stewart,
the well-known former judge of the United States, said, “I know it when I see it.” [12]. I know if it is a
city when I see a city, I know if it is a fractal when I see a fractal, and I know if it is scientific research
when I see a research result.

5. Conclusions

Fractal geometry provides us with a new mathematical framework of describing urban
morphology. To characterize urban form and explain urban growth, we need various fractal dimensions.
Fractal dimensions can be defined by generalized entropy and correlation functions. To understand
the essence of fractal dimension, we must learn about entropy and correlation functions. On the one
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hand, fractal dimension is a characteristic value of entropy, and on the other, fractal dimension is a
scaling exponent of correlation function. Where entropy is concerned, fractal dimension indicates
uniformity, and inequality degree and uniformity degree represent two different sides of the same
coin. In this sense, fractal dimension suggests difference and diversity. Where correlation is concerned,
fractal dimension implies the complexity degree of dynamical systems. Moreover, to understand the
concept of fractal dimension, we should know the notions of topological dimension and Euclidean
dimension of embedding space in which fractal cities are defined. Fractal theory can be employed to
carry out spatial analysis for the scale-free aspects of urban morphology. To research urban growth,
we can employ sigmoid functions to model fractal dimension growth curves of urban form based on
time series of fractal dimension. Thus, we have to know the upper limit and lower limit of fractal
dimension values. The lower limit of fractal dimension relates to the topological dimension of fractal
sets, while the upper limit depends on the embedding space dimension.

The main points of this paper can be summarized as follows. Firstly, fractal geometry is a
powerful tool of scale-free analysis, and urban morphology is a typical scale-free geographical
phenomenon. Therefore, fractal theory can be naturally applied to urban studies. Cities are not
true fractals, but they can be treated as random pre-fractals, which bear fractal properties within
certain scaling ranges. If urban form had characteristic scales, we would be able to calculate urban
area and urban perimeters. Thus, urban form can be described with the methods from traditional
advanced mathematics. Unfortunately, urban form has no characteristic scales: it belongs to scale-free
distributions. A great many studies show that urban form follows power laws indicative of fractal
nature. In this case, it is an advisable selection to employ fractal geometry to describe urban morphology
and carry out scaling analysis of urban patterns and dynamic processes. Secondly, the most appropriate
dimension of embedding space for city fractals is two dimensions rather than three dimensions.
The upper limit of the fractal dimension of urban form should not exceed the embedding dimension.
A city fractal can be defined in a two-dimensional space, and it can also be defined in a three-dimensional
space. It is better to define city fractals in a two-dimensional space. On the one hand, fractal dimension
is used to replace urban area, which cannot be objectively measured due to the scale-free distribution
of cities. Urban area is a measure defined in a two-dimensional space. Therefore, city fractals can be
defined in two-dimensional space so that fractal dimension can be employed to successfully replace
urban area. On the other hand, the criterion of the scientific method is to reduce dimensions rather
than increase dimensions. Moreover, more available datasets of cities are based on two-dimensional
space. It is simpler and more effective to analyze a city fractal through two-dimensional space. Thirdly,
the topological dimension of urban form is zero dimension rather than one dimension. The lower
limit of fractal dimension is equal to or greater than the topological dimension. For modeling fractal
dimension growth curves of urban form, it is significant to identify the lower limit of fractal dimension.
In theory, urban form can be reduced to separated spaces, so the topological dimension of city fractals
is dT = 0. The lower limit of the fractal dimension of urban form is Dmin = 0. The topological dimension
of the urban boundary is 1, but the most important city fractals are based on the urban area instead of
urban boundary. In practice, the lower limit of the fractal dimension of urban form can also be treated
as Dmin = 1, especially when the sample path is short. Based on a constant study area and fixed largest
box, the lower limit of the fractal dimension of urban form should be taken as Dmin = 0. Based on a
variable study area and unfixed largest box, the lower limit of the fractal dimension of urban form
should be taken as Dmin = 1. Based on a constant study area, fixed largest box, and long sample path
(time span is very large), the fractal dimension values of urban form are sometimes D < 1. The question
of how to measure the Dmin value depends on the concrete situation.
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Appendix A. Derivation of the Relationships between Fractal Dimension and Standard Error

The relationships between fractal dimension and standard error can be derived with the help
of knowledge of linear algebra and statistics. The following regression coefficient formula and basic
statistics such as correlation coefficient R and F and t statistics can be seen in many statistical analysis
textbooks and will not be explained in detail. The fractal model can be expressed as a power function
as below:

N(r) = Kr−D (A1)

where r denotes the spatial measurement scale such as linear size of box, N(r) is the corresponding
spatial measurement with linear size r, such as the number of non-empty boxes, K is the proportionality
coefficient, and D is the fractal dimension. The natural logarithm of both sides of the Equation (A1) is

ln N(r) = ln K −D ln r (A2)

Then, the relationships between fractal dimension and its standard error can be deduced in two cases.
(1) Free intercept regression. Suppose that K > 0 but K , 1. Thus, we have free intercept regression.

In this case, the degree of freedom is v = n − 2. For simplicity, Equation (A2) is expressed as a univariate
linear regression equation as follows:

y = a + bx (A3)

in which x = ln(r) refers to the independent variable and y = lnN(r) to the dependent variable. As for
the parameters, a = lnK denotes the intercept, and b = −D is the slope. The slope value is termed
regression coefficient in linear regression analysis. By the idea of least error sum of squares, we can
construct a normal equation system. Suppose the time of measurements is n, and the measurement
sequence is numbered as i = 1, 2, . . . , n. Then, by using the Cramer rule, we can derive the formula of
the regression coefficient:

b =

n∑
i=1

(xi − x)(yi − y)

n∑
i=1

(xi − x)2
(A4)

where x,y represent arithmetic means of the independent variable x and dependent variable y,
respectively. The multiple correlation coefficient is defined as

R2 =

(
n∑

i=1
(xi − x)(yi − y))2

n∑
i=1

(xi − x)2 n∑
i=1

(yi − y)2
=

n∑
i=1

(ŷi − y)2

n∑
i=1

(yi − y)2
= 1−

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − y)2
(A5)

Substituting Equation (A5) into Equation (A4) yields

b =

n∑
i=1

(xi − x)(yi − y)√
n∑

i=1
(xi − x)2 n∑

i=1
(yi − y)2

√√√√√√√√√√√√ n∑
i=1

(yi − y)2

n∑
i=1

(xi − x)2
= R

√√√√√√√√√√√√ n∑
i=1

(yi − y)2

n∑
i=1

(xi − x)2
(A6)

In fact, Equations (A4) and (A5) can be found in many textbooks of multiple statistical analyses. The F
statistic is defined as

F =

n∑
i=1

(ŷi − y)2

1
n−2

n∑
i=1

(yi − ŷi)
2

(A7)



Entropy 2020, 22, 961 18 of 21

Substituting Equation (A5) into Equation (A7) yields

F =

(n− 2)
n∑

i=1
(ŷi − y)2/

n∑
i=1

(yi − y)2

n∑
i=1

(yi − ŷi)
2/

n∑
i=1

(yi − y)2
=

(n− 2)R2

(1−R2)
(A8)

The t statistic is defined as
t =

b
s

(A9)

where s refers to the standard error of the regression coefficient based on sample. In contrast, the standard
error δ is based on population. The formula is

s =

√√√√√√√√√√√√ 1
n−2

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(xi − x)2
(A10)

Equations (A7)–(A10) can be found in many statistics textbooks. Substituting Equations (A5), (A6),
and (A10) into Equation (A9) yields

t = R

√√√√√√√√√√√√ n∑
i=1

(yi − y)2

n∑
i=1

(xi − x)2
/

√√√√√√√√√√√√ 1
n−2

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(xi − x)2
=

√√√√√√√√√√√√ n∑
i=1

(ŷi − y)2

1
n−2

n∑
i=1

(yi − ŷi)
2
=
√

F (A11)

Combining Equations (A8) and (A11), we have

F = t2 =
(n− 2)R2

(1−R2)
(A12)

Substituting Equations (A9) into Equation (A12) yields

|b|
s

=

√
(n− 2)R2

(1−R2)
(A13)

Considering the definition of slope given above, b = −D, we have

s = |b|

√
1−R2

(n− 2)R2 = D

√
1/R2 − 1

n− 2
(A14)

Thus, based on the 95% level of confidence, corresponding to the significance level of 0.05, the margin
of error of the fractal dimension value can be expressed as

D± tinv(α, n− 2) ·D

√
1/R2 − 1

n− 2
≈ D(1± 2

√
1/R2 − 1

n− 2
) = D± 2s (A15)

where tinv is the MS Excel function for threshold value investigation of the t statistic, α denotes
significance level. The grammar the function “tinv” is “tinv(α, v)”, and here the level of significance
should be α = 0.05.
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(2) Fixed intercept regression. If K = 1, then a = lnK = 0. Thus, we have fixed intercept regression.
In this case, the degree of freedom is v = n − 1. Then, the Pearson coefficient is replaced by the cosine
formula, that is

R2 =

(
n∑

i=1
xiyi)

2

n∑
i=1

x2
i

n∑
i=1

y2
i

(A16)

Using the similar method, we can derive the relation between fractal dimension and standard error
based on fixed intercept regression as below:

s = D

√
1/R2 − 1

n− 1
(A17)

In order to save space, the detailed derivation of Equation (A17) is omitted. Readers can derive it by
analogy with the process of deriving Equation (A14). Based on the 95% level of confidence, the margin
of error of the fractal dimension value is

D± tinv(α, n− 1) ·D

√
1/R2 − 1

n− 1
≈ D(1± 2

√
1/R2 − 1

n− 1
) = D± 2s (A18)

This means that, based on the 95% confidence level, the error margin of the fractal dimension is
approximately the fractal dimension value plus or minus twice the standard error. Note that the sample
standard error s here is used instead of the population standard error δ in the text. The population
standard error δ is mainly for theoretical derivation, while the sample standard error s is principally
for empirical analyses.
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