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The lung is morphologically structured into a complex tree-like network with branched
airways ending distally in a large number of alveoli for efficient oxygen exchange. At
the cellular level, the adult lung consists of at least 40–60 different cell types which
can be broadly classified into epithelial, endothelial, mesenchymal, and immune cells.
Fibroblast growth factor 10 (Fgf10) located in the lung mesenchyme is essential to
regulate epithelial proliferation and lineage commitment during embryonic development
and post-natal life, and to drive epithelial regeneration after injury. The cells that
express Fgf10 in the mesenchyme are progenitors for mesenchymal cell lineages
during embryonic development. During adult lung homeostasis, Fgf10 is expressed in
mesenchymal stromal niches, between cartilage rings in the upper conducting airways
where basal cells normally reside, and in the lipofibroblasts adjacent to alveolar type 2
cells. Fgf10 protects and promotes lung epithelial regeneration after different types of
lung injuries. An Fgf10-Hippo epithelial-mesenchymal crosstalk ensures maintenance of
stemness and quiescence during homeostasis and basal stem cell (BSC) recruitment
to further promote regeneration in response to injury. Fgf10 signaling is dysregulated in
different human lung diseases including bronchopulmonary dysplasia (BPD), idiopathic
pulmonary fibrosis (IPF), and chronic obstructive pulmonary disease (COPD), suggesting
that dysregulation of the FGF10 pathway is critical to the pathogenesis of several human
lung diseases.
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EPITHELIAL FGF10 SIGNALING DURING LUNG DEVELOPMENT

Fibroblast growth factor 10 (Fgf10) was first detected using whole-mount in situ hybridization 20
years ago in the splanchnic mesoderm surrounding the foregut around E9.5 when the primary lung
buds start to emerge. Lung primordial mesoderm-specific transcription factor Tbx4 defines the
Fgf10 expression domain, at both the anterior and posterior boundaries (Sakiyama et al., 2003). The
importance of Fgf10 in lung development is well illustrated by the total failure of lung formation
and perinatal lethality of Fgf10 deficient mice (Min et al., 1998; Xu et al., 1998; Sekine et al., 1999).
Even though Fgf10 binds with high affinity to Fgfr2b, it has a weaker affinity for Fgfr1b (Ohuchi
et al., 2000). The Fgf10 knockout phenotype is phenocopied in mice lacking Fgfr2b (Arman et al.,
1999; De Moerlooze et al., 2000), which is highly expressed in respiratory epithelium from the early
embryonic lung bud stages through late fetal lung development (Peters et al., 1992). Intriguingly,
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Fgfr2b has also been detected in the lung mesenchyme (Al
Alam et al., 2015), but its mesenchymal function requires
further investigation. Although Fgfr2b is a receptor for both
Fgf7 and Fgf10 during lung development, Fgf7 knockout
mice do not exhibit an obvious lung defect (Guo et al.,
1996), even though Fgf7 is expressed in the developing lung
mesenchyme starting at E14.5 (Mason et al., 1994). However,
overexpression of Fgf7 in mice using the human Sftpc promoter
results in severe pulmonary malformations, including bronchial
airway enlargement, cystic lung lesions and impaired branching
morphogenesis leading to embryonic lethality (Simonet et al.,
1995).

From E10.5 to E12.5, Fgf10 expression is restricted to the distal
lung mesenchyme at sites where branching occurs (Bellusci et al.,
1997) and the ventral mesenchyme of the trachea (Sala et al.,
2011; Figure 1A). For a long time, the localized pattern of Fgf10
expression in the distal lung was thought to determine where
new lung buds sprout. However, proper epithelial branching
still occurs in developing Fgf10−/− lungs in which Fgf10 is
overexpressed in every cell. This indicates that the precise
spatial organization of Fgf10 expression is not required for
the highly preserved and stereotypic branching morphogenesis.
Hence, other mechanical and/or signaling pathways systems
must be in place to control bud outgrowth. Instead, localized
Fgf10 expression in the distal mesenchyme is required to
regulate epithelial lineage commitment (Volckaert et al., 2013)
by maintaining the undifferentiated status of the distal Sox9-
expressing epithelial progenitors and preventing them from
differentiating into Sox2pos bronchial epithelium (Figure 1A).
Fgf10 achieves this, in part, by activating epithelial β-catenin
signaling through activation of Akt, which negatively regulates
Sox2 expression (Volckaert et al., 2013). Indeed, Wnt/β-catenin
signaling is important for the regulation of proximal-distal
differentiation in the developing airway epithelium (De Langhe
et al., 2005; Hashimoto et al., 2012; Ostrin et al., 2018). As the
epithelium grows out, cells which become further and further
displaced from the source of Fgf10 start to differentiate into
Sox2pos bronchial epithelium (Volckaert et al., 2013; Volckaert
and De Langhe, 2014; Figure 1A). As a corollary, Fgf10
hypomorphs and conditional Fgf10 (Dermo1-cre;Fgf10) and
Fgfr2 (Sftpc-cre;Fgfr2) mutants fail to maintain distal progenitors,
resulting in a proximalized lung with impaired alveolar epithelial
lineage formation and reduced capacity to produce surfactant
proteins (Mailleux et al., 2005; Ramasamy et al., 2007; Abler
et al., 2009). In addition, in lungs overexpressing Fgf10 early
on, distal epithelial progenitors fail to differentiate into bronchial
epithelium (Volckaert et al., 2013). Taken together, these findings
indicate that epithelial-mesenchymal interactions between Fgfr2b
and its ligand Fgf10 is required for lung epithelial lineage
commitment (Xu et al., 1998; Sekine et al., 1999; Ohuchi et al.,
2000).

The localized expression of Fgf10 in the trachea, on the other
hand, drives submucosal gland (SMG) and basal cell development
and their maintenance (Rawlins and Hogan, 2005; Volckaert
et al., 2013; Volckaert et al., 2017). At the onset of lung and
trachea initiation, Fgf10 is detected in the ventral mesenchyme
of the trachea (Sala et al., 2011), and then becomes restricted

to the intercartilage mesenchyme at later stages and into
adulthood (Sala et al., 2011). Interestingly, although Fgf10−/−

and Fgfr2b−/− embryos are born without lungs, they still develop
a trachea (Sekine et al., 1999; De Moerlooze et al., 2000; Sala
et al., 2011). SMGs are severely reduced in number and size in
Fgf10 heterozygotes (Jaskoll et al., 2005; Rawlins and Hogan,
2005). Abnormal function of SMGs of the upper respiratory tract
are associated with severe/fatal asthma and cystic fibrosis later
in life (Benayoun et al., 2003; Salinas et al., 2005). However,
despite the significance of SMGs for human respiratory diseases,
little is known about the mechanisms of Fgf10 signaling that
controls their growth, differentiation, and homeostasis during
early postnatal and adult life.

Overexpression of Fgf10 at later stages of lung development,
post-Sox2pos bronchial epithelial specification, directs the
differentiation of Sox2pos proximal airway epithelium toward the
p63/Krt5pos basal cell lineage while blocking Foxj1pos ciliated cell
fate throughout the conducting airway (Volckaert et al., 2013).
The cells that express Fgf10 in the mesenchyme are themselves
progenitors for airway and vascular smooth muscle cells as
well as lipofibroblasts (LIFs) during embryonic development,
and a subset of lung resident mesenchymal stem cells during
adult life (Mailleux et al., 2005; Taniguchi et al., 2007; El Agha
et al., 2014). Interestingly, Fgf10 also directly and indirectly
orchestrates differentiation of these mesenchymal progenitors (El
Agha and Bellusci, 2014; Chao et al., 2015). Epithelial BMP4, a
target of Fgf10, controls the differentiation of cells arising from
the distal mesenchymal Fgf10-expression domain into the airway
smooth muscle cell (ASMC) lineage (Mailleux et al., 2005). In
addition, Fgf10 hypomorphs demonstrate defective formation
of alveolar myofibroblasts (aMYFs) at different developmental
stages (Mailleux et al., 2005; Ramasamy et al., 2007).

Starting at E16.5, Id2pos Sox9pos Sftpcpos Pdpnpos

alveolar/bipotent epithelial progenitors give rise to alveolar
type I and II (AT1/AT2) cells (Desai et al., 2014; Treutlein
et al., 2014). Alveolar epithelial differentiation is coordinated
by both mechanical forces and growth factors. In this context,
it was recently shown that mechanical forces generated by
fetal breathing movements stimulate AT1 cell differentiation,
whereas Fgf10-mediated ERK1/2 signaling in distal progenitor
cells prevents them from differentiating, thereby ensuring their
AT2 fate (Li et al., 2018). In the mesenchyme, Glipos Pdgfrapos

mesenchymal progenitor cells give rise to aMYFs and LIFs (Li
et al., 2015; Chao et al., 2016). Although aMYFs and LIFs are
both derived from Gli1pos Pdgfrαpos mesenchymal progenitors,
LIFs exhibit lower Pdgfrαpos expression and higher levels of
Fgf10 expression in association with its receptors Fgfr1b and
Fgfr2b. This suggests that different Fgfr and ligand profiles
might mediate the direction of differentiation from Pdgfrαpos

mesenchymal progenitors toward LIF or aMYF (McGowan
and McCoy, 2015). Interestingly, it has been shown that LIFs
consist of both Fgf10pos and Fgf10neg subpopulations (Al Alam
et al., 2015). Fgf10 reduction in Fgf10 hypomorphs as well
as knockdown of Fgfr2b ligand in vivo led to significantly
decreased expression of LIF marker Adrp at E18.5 in global
LIF subpopulations (Fgf10pos and Fgf10neg). This suggests that
Fgf10 signals promote the formation of LIFs in an autocrine
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FIGURE 1 | A Wnt7b-Fgf10 epithelial-mesenchymal crosstalk maintains distal epithelial progenitors during lung development and becomes reactivated in the adult
lung to regenerate injured airway epithelium. (A) During the branching stage of lung development, Fgf10 is expressed by mesenchymal progenitor cells, which
depends on Wnt/β-catenin signaling, and acts on the distal epithelium to induce Bmp4 and Sox9 expression to keep them in an undifferentiated state. As the
epithelial tube grows toward the Fgf10 source, Sox9 + progenitors acquire more proximal positions, switch on Sox2 expression and acquire bronchial epithelial fate.
Simultaneously, distal Fgf10-expressing airway smooth muscle (ASMC) progenitors encounter epithelial Bmp4 and Shh (not shown) causing them to stop expressing
Fgf10 and differentiate into mature ASMCs as they relocate proximally. (B) In the adult, basal stem cells (BSCs) generate their own Fgf10-expressing niche mediated
by Yap-Wnt7b, and their maintenance is critically dependent on Fgf10-Fgfr2b signaling. The non-cartilaginous airway epithelium is kept quiescent during
homeostasis, by active Integrin-linked kinase (Ilk)-Hippo signaling, which prevents Fgf10 expression in ASMCs. In response to injury, surviving epithelial cells spread
out, leading to a destabilization of Merlin and inactivation (dephosphorylation) of Hippo kinases Mst1/2. This increases nuclear Yap in spreading epithelial cells
causing these cells to secrete Wnt7b. Epithelial-derived Wnt7b then acts on ASMCs to induce Fgf10 expression, which is required for epithelial regeneration. Solid
cell borders represent lineage labels to follow the fate of epithelial cells in response to injury.

and/or paracrine fashion (Al Alam et al., 2015). Additionally,
constitutive Fgfr1b knockouts and conditional partial loss of
Fgfr2b in lung mesenchyme revealed that Fgfr1b and Fgfr2b
are likely to play redundant roles in LIF formation (Al Alam
et al., 2015). Finally, Apert syndrome mice, which exhibit
a splicing switch defect resulting in increased mesenchymal
Fgfr2b expression, demonstrate increased Fgf10 expression
and signaling in the mesenchyme. These mice display reduced
epithelial branching, arrested development of terminal airways
and an “emphysema like” phenotype in post-natal lungs resulting
from decreased canonical Wnt signaling (De Langhe et al., 2006),

likely due to sequestering of the Fgf10 ligand by the misexpressed
Fgfr2b receptor.

FGF10 SIGNALING DURING LUNG AND
TRACHEA HOMEOSTASIS

During homeostasis, adult mouse lungs harbor three main
stem cell populations that maintain the lung epithelium: basal
stem/progenitor cells (BSCs) in the cartilaginous airways, club
cells in the conducting airways and subsets of AT2 cells in the
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FIGURE 2 | Fgf10-expressing lipofibroblasts are a source of activated
myofibroblasts, which re-acquire lipogenic fate during fibrosis resolution.
During homeostasis, lipofibroblasts (LIFs) express Fgf10 and are near alveolar
type II (AT2) cells. In response to bleomycin-mediated alveolar epithelial injury,
LIFs undergo a lipogenic to myogenic switch in fibroblastic phenotype and
upregulate Fgf10 expression. Vice versa, during fibrosis resolution,
myofibroblasts re-acquire lipofibroblast fate yet retain high Fgf10 expression.
Solid cell borders represent lineage labels to follow the fate of (lipo)fibroblasts.

alveoli (Rawlins et al., 2009; Rock et al., 2010; Barkauskas et al.,
2013). During homeostasis Fgf10 is expressed in mesenchymal
stromal niches, between cartilage rings in the upper conducting
airway where basal cells normally reside, and in the LIFs adjacent
to AT2 cells in the alveoli (El Agha et al., 2014; Figures 1B, 2).

BSCs are progenitors for club, Tuft1/2, neuroendocrine and
ionocyte cells (Rock et al., 2009, 2010; Montoro et al., 2018).
In the developing trachea, Fgf10 secreted by the inter-cartilage
stromal tissue is involved in the development and maintenance
of BSCs (Figure 1B). Overexpression of Fgf10 in the trachea leads
to BSC amplification whereas overexpressing Fgf10 in adult club
cells extends the BSC niche and induces club and BSC hyperplasia
in conducting airways (Volckaert et al., 2017). Consistently, both
Fgfr2b ligands Fgf7 and Fgf10 can promote basal cell colony
expansion in vitro (Balasooriya et al., 2017). Furthermore, Fgfr2b
signaling in the trachea is required for BSC maintenance during
adult lung homeostasis (Volckaert et al., 2013, 2017). Even loss
of one copy of Fgfr2 in adult mouse airway BSCs is sufficient to
reduce BSC self-renewal with cells quickly becoming senescent
(Balasooriya et al., 2017). Interestingly, conditional deletion of
Fgfr1 or Spry2 specifically in adult mouse tracheal BSCs using
the Krt5 promoter causes increased ERK/AKT signaling and
BSC proliferation and a block in ciliated cell differentiation
(Balasooriya et al., 2016), possibly due to increased Fgfr2b

signaling caused by a lack of Spry2 activation by Fgfr1. This
phenotype resembles that of tracheas overexpressing Fgf10,
suggesting that this Fgfr1-SPRY2 signaling axis might function to
antagonize Fgf10/Fgfr2b/ERK/AKT signaling, which is required
for maintaining quiescence and restricting BSC proliferation in
the steady-state airway epithelium in vivo.

FGF10 SIGNALING IN REPAIR OF THE
INJURED LUNG

Recent studies indicate that Fgf10 prevents lung injury and
promotes lung epithelial regeneration after various stresses,
including bleomycin-induced alveolar epithelial lung injury
(Gupte et al., 2009), influenza-induced acute respiratory distress
syndrome (Quantius et al., 2016), high altitude pulmonary edema
(She et al., 2012), LPS-induced lung injury (Tong et al., 2014),
mechanical ventilation induced lung injury (Bi et al., 2014),
ischemia-reperfusion lung injury (Fang et al., 2014), hyperoxia-
induced neonatal lung injury (Chao et al., 2017), and naphthalene
injury (Volckaert et al., 2011). In a post-pneumonectomy model,
Fgfr2b ligands were shown to be required for aMYF formation
during the regenerative response (Chen et al., 2012).

In the bleomycin model of pulmonary fibrosis, Fgf10
overexpression in the alveolar epithelium of Sftpc-rtTA;Tet-
Fgf10 mice attenuates fibrosis through inhibition of TGF-β
and improved survival of AT2 cells This indicates that
Fgf10 has a protective as well as regenerative effect on
epithelial progenitor cells (Gupte et al., 2009). Similarly,
Fgf10 via the Grb2-SOS/Ras/Raf-1/MAPK pathway attenuates
H2O2-induced alveolar epithelial DNA damage (Upadhyay
et al., 2004). Overexpression of a dominant-negative Fgfr2
receptor (dnFgfr), specifically in the lung epithelium, inhibited
retinoic acid-induced alveolar regeneration in association with
increased PDGFRαpos and reduced expression of SMA in
interstitial myofibroblasts (Perl and Gale, 2009). Intra-tracheal
administration of Fgf10 attenuates lipopolysaccharide (LPS)-
induced acute lung injury with increased AT2 proliferation (Tong
et al., 2014). Lung resident mesenchymal stromal cells (MSCs)
isolated from Fgf10 pretreated rats are protected against LPS-
induced acute lung injury (Tong et al., 2016). However, the
mechanism underlying these protective effects of Fgf10 signaling
during injury and regeneration in adult lung have not yet been
fully elucidated.

Fgf10-expressing cells were identified as a subset of
LIF progenitors during embryonic development (El Agha
et al., 2014). Fgf10-expressing LIFs have been shown to
differentiate into activated MYFs upon bleomycin injury, while
simultaneously upregulating their Fgf10 expression levels (El
Agha et al., 2017). Fgf10-expressing MYFs dedifferentiate back
into LIFs but do not downregulate their Fgf10 expression levels
during the resolution phase of lung fibrosis (El Agha et al., 2017)
suggesting that they retain a memory of the injury which might
protect against further injury. This supports the concept that
LIFs serve as a source of activated MYFs during fibrogenesis
which revert back to LIFs during fibrosis resolution (El Agha
et al., 2017; Figure 2).
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Naphthalene injury is a well-established injury model to
study conducting airway epithelial regeneration by selectively
ablating club cells except for a few naphthalene-resistant club
stem cells located at bronchoalveolar duct junctions (BADJs) and
adjacent to neuroendocrine bodies (NEBs). In the adult lung,
Fgf10 is not expressed in mature ASMCs during homeostasis
(Figure 1B). However, upon conducting airway epithelial injury,
when surviving differentiated epithelial cells spread in an
attempt to maintain barrier function, they downregulate their
Hippo pathway to drive Yap into the nucleus, and induce
the secretion of Wnt7b. Epithelial-derived Wnt7b, in turn,
induces Lgr6pos ASMCs to release Fgf10 (Volckaert et al.,
2011, 2017; Volckaert and De Langhe, 2014; Lee et al., 2017),
which activates Notch and β-catenin signaling in surviving
club cells to drive their amplification to promote regeneration
(Volckaert et al., 2011; Lee et al., 2017; Figure 1B). Together,
these findings provide strong evidence that ASMCs function
as a niche for conducting airway epithelial stem cells. Besides
club cell regeneration, the induction of Fgf10 expression by
the ASMC niche in non-cartilaginous airways extends the
BSC niche, allowing the recruitment of tracheal BSCs and/or
driving the differentiation of Sox2posp63posKrt5neg progenitors
along the BSC lineage (Volckaert et al., 2017; Yang et al.,
2018). In summary, the Fgf10-Hippo epithelial-mesenchymal
crosstalk ensures maintenance of stemness and quiescence
during homeostasis and recruitment of BSCs to promote
regeneration in response to injury (Volckaert et al., 2017;
Figure 1B).

A similar tonic Hedgehog signal maintains lung airway
epithelial and mesenchymal quiescence in the distal mouse
airways (Peng et al., 2015). In this model, loss of Hedgehog
signaling drives regeneration in response to naphthalene-induced
epithelial injury via a mesenchymal feedback mechanism,
and deregulation of hedgehog during naphthalene induced
epithelial lung injury leads to aberrant repair and regeneration
(Peng et al., 2015). These findings imply that the Wnt-
Fgf10 epithelial-mesenchymal cross-talk and Shh pathway may
function as an interactive signaling network in airway and
alveolar remodeling responses to chronic injury in asthma,
chronic obstructive pulmonary disease (COPD) and pulmonary
fibrosis.

FGF10 SIGNALING IN HUMAN LUNG
DISEASES

Several syndromic craniosynostoses have been associated
with dominantly acting mutations of FGFR1, FGFR2, and
FGFR3 (Hajihosseini et al., 2001). FGFR2B is up-regulated in
cultured fibroblasts of some Apert’s and Pfeiffer’s syndrome
patients (Oldridge et al., 1999). Gain-of-Fgfr2b function mice
Fgfr2c+/1 show phenotypic resemblance to Apert’s and Pfeiffer’s
syndromes, including visceral and growth defects, neonatal
growth retardation and death, coronal synostosis, ocular
proptosis, precocious sternal fusion, and abnormalities in
secondary branching in lung and kidney that undergo branching
morphogenesis (Hajihosseini et al., 2001; De Langhe et al., 2006).

In humans, haploinsuffiencies for FGF10 or FGFR2B result in
autosomal dominant aplasia of lacrimal and salivary glands and
lacrimo auriculo-dentodigital syndrome, respectively (Entesarian
et al., 2005; Klar et al., 2011). In the former syndrome, patients
exhibit irreversible airway obstruction, indicating that genetic
variants affecting the FGF10 signaling pathway are important
determinants of lung function which ultimately contribute to
COPD (Klar et al., 2011). Notably, an airway branch variant
with absence of the right medial-basal airway associated with
polymorphisms within the FGF10 gene is associated with COPD
among smokers (Smith et al., 2018). Interestingly, increased
nuclear YAP levels, along with FGFR2B and WNT7b expression,
were observed in squamous metaplastic areas within the airway
epithelium of COPD subjects (Volckaert et al., 2017), suggesting
that the Hippo pathway is inactivated to induce FGF10 expression
and BSC amplification in human COPD.

Bronchopulmonary dysplasia (BPD) is a chronic pulmonary
disease of prematurely born infants characterized by arrested
alveolar development (Chao et al., 2017). BPD biopsy samples
show reduced FGF10 expression (Benjamin et al., 2007),
implicating that FGF10 signaling may be involved in BPD. By
using hyperoxia-induced neonatal lung injury from post-natal
day 0 (P0) to P8 as a mouse model of BPD, Chao et al. (2017) have
shown that Fgf10 deficiency causes lethality from P5 in Fgf10+/−

pups due to impaired AT2 formation after hyperoxic injury.
In this study, overexpression of a secreted dominant negative
Fgfr2b, demonstrated that post-natal deficiency of Fgfr2b ligands
in the context of hyperoxia-exposure causes decreased Sftpc
expression and eventually leads to significant lethality. This
indicates that Fgfr2b ligands are important for repair after
hyperoxia exposure in neonatal lung.

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial
lung disease characterized by the loss of alveolar epithelial
integrity, progressive invasion of the lung parenchyma by
myofibroblasts and increased extracellular matrix (ECM)
deposition leading to respiratory failure, and death often within 5
years of diagnosis (Thannickal et al., 2004; King et al., 2011; Steele
and Schwartz, 2013; Yang et al., 2013). Gene expression profiles
of MSCs from IPF patient lungs revealed that FGF10 expression
in MSCs is suppressed in IPF subjects with progressive disease,
along with upregulation of both TGF-β1 and SHH signaling.
This suggests that FGF10 deficiency is a potentially critical factor
in disease progression (Chanda et al., 2016). However, recently it
has been shown that FGF10 is significantly upregulated at both
mRNA and protein level in IPF lungs compared to the donor
lungs, especially in dense fibrotic islands where ACTA2pos cells
accumulate (El Agha et al., 2017).

CONCLUSION

Fgf10 signaling is essential for lung development and adult
stem cell maintenance. Important questions remain regarding
the mechanisms that regulate Fgf10 expression in the niche to
unleash the full therapeutic potential of Fgf10. In addition, very
little is known about the importance of FGF10 signaling in
human lung development and homeostasis. During homeostasis,

Frontiers in Genetics | www.frontiersin.org 5 September 2018 | Volume 9 | Article 418

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00418 September 21, 2018 Time: 14:45 # 6

Yuan et al. Fgf10 Signaling in the Lung

BSCs are restricted to the cartilaginous airway in mice as
they require Fgfr2b signaling for their maintenance, whereas in
humans they can be found deep in the lung. However, upon
different types of injury BSCs are deployed throughout the mouse
lung as ASMCs in the non-cartilaginous airways re-express Fgf10
to regenerate the airway epithelium. It is therefore likely that
the apparent restricted BSC pattern in the mouse lung is due
to it being housed in a fairly sterile environment rather than
constantly being exposed to environmental insults as is the case
for humans.
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