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Chemotherapy combined with surgery is effective for patients with breast cancer (BC).
However, chemoresistance restricts the effectiveness of BC treatment. Immune
microenvironmental changes are of pivotal importance for chemotherapy responses.
Thus, we sought to construct and validate an immune prognostic model based on
chemosensitivity status in BC. Here, immune-related and chemosensitivity-related genes
were obtained from GSE25055. Then, univariate analysis was employed to identify
prognostic-related gene pairs from the intersection of the two parts of the genes, and
modified least absolute shrinkage and selection operator (LASSO) analysis was performed
to build a prognostic model. Furthermore, we investigated the efficiency of this model from
various perspectives, and further validation was performed using the Cancer Genome
Atlas (TCGA) cohorts. We identified seven immune and chemosensitivity-related gene
pairs and incorporated them into the Cox regression model. After multilevel validation, the
risk model was found to be closely related to the survival rate, various clinical
characteristics, tumor mutation burden (TMB) score, immune checkpoints, and
response to chemotherapeutic drugs. In addition, the model was verified to exhibit
predictive capacity as an independent factor over other candidate clinical features.
Notably, the constructed nomogram was more accurate than any single factor.
Altogether, the risk score model and the nomogram have potential predictive value and
may have important practical implications.

Keywords: chemoresistance, CIBERSORT, TMB, LASSO, WGCNA
1 INTRODUCTION

Breast cancer (BC) is the most prevalent cancer type and it is the principal cause of cancer-related
death in women. BC is highly curable when diagnosed early and treated appropriately (1).
Currently, comprehensive modality therapy, combining local treatment (surgery and
radiotherapy) with systemic therapy (endocrine therapy, chemotherapy, etc.), is a relatively well-
established treatment for BC (2). Among these, chemotherapy is an important treatment modality.
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Nevertheless, chemotherapy resistance always leads to the failure
of chemotherapy and the relapse of cancer, and it remains a
significant barrier for the treatment of BC patients. Therefore,
additional studies are urgently needed to overcome this obstacle
and develop anti-resistance strategies.

Much effort has been made to uncover the mechanisms of
chemoresistance and identify novel molecular targets in recent
years. Of these, immune checkpoint inhibitors (ICIs) have
attracted tremendous attention in overcoming drug resistance
because of their properties that harness patient’s own immune
system to selectively target and kill cancer cells (3). Recent
studies revealed that ICIs were involved in the progression of
BC (4), and blocking immune checkpoints can even increase the
sensitivity to chemotherapeutic drugs (5). Not only that, studies
have proven that tumor-associated macrophages (TAMs) and
CD8+ T lymphocytes within tumor immune microenvironment
are also critically associated with chemoresistance (6, 7).
Altogether, existing evidence suggests that the tumor immune
microenvironment inevitably interacts with the mechanisms of
chemoresistance while limiting the antitumor immune response
(3, 8, 9). Thus, predicting the evaluation of treatment response
and prognosis in BC patients and taking the immune infiltration
signature of tumors into consideration at the same time would be
of great clinical interest.

Currently, various kinds of models focusing on the immune
infiltration signature of tumors showed superior predictive
performance in BC (10–12). However, few models have
previously combined chemosensitivity and immune signatures.
We believe that evaluating chemosensitivity and tumor immune
infiltration at the same time may have a better predictive
value. Moreover, models constructed with two-biomarker
combinations, such as gene pairs, may have higher accuracy
than those constructed with a single marker, and no specific
expression data should be required. Given this, the aim of this
study was to build a prognostic model for BC constructed from
immune-related and chemosensitivity-related gene pairs. Then,
the evaluation was performed from various dimensions,
including survival rate, immune checkpoints, and the response
to chemo drugs.
2 MATERIALS AND METHODS

2.1 Identification of Differentially
Expressed Genes Associated With
Chemosensitivity Status
The normalized gene expression profiles of GSE25055, an
expression profile chip of BC from GEO (http://www.ncbi.nlm.
nih.gov/geo/), were prepared using the GEOquery package in R
4.0.2. This chip, performed on the GPL96 platform, comprises
113 samples with chemosensitivity and 197 insensitive samples.
Then, standard steps, including converting the probe names into
gene names, log 2 transformation, and removing duplicate
probes, were performed for initial processing.

Gene set enrichment analysis (GSEA) was utilized to obtain
the cognitive pathways most affected by chemosensitivity-related
Frontiers in Immunology | www.frontiersin.org 2
genes in the GSE25055 datasets with the clusterProfilter package.
We set the cutoff criterion to adj. p < 0.05. Next, visualization of
the interesting results, predominantly immune pathways and
cancer-related pathways in two parts, was performed using the
enrichplot package. Subsequently, the limma package was applied
to screen out the differentially expressed (DE) genes between the
chemosensitive and insensitive groups in the GSE25055 dataset
to obtain the DE chemosensitivity-related genes (DECRGs). p <
0.05 and log 2-fold fold change (logFC) > 0.5 served as the
cutoff criteria.

2.2 Screening Differentially Expressed
Chemosensitivity-Related and Immune-
Related Genes and Performing
Enrichment Analysis
To obtain the immune phenotype-relevant genes, first, single
sample gene set enrichment analysis (ssGSEA) and GenePattern
environment-based analysis were employed to evaluate the
immune infiltration level (recorded as the ssGSEA score) in
each sample (13). Next, unsupervised hierarchical clustering
analysis of the ssGSEA output matrix was carried out using the
ConsensusClusterPlus package to obtain the optimal immune
grouping (the K value), and the range of K values was set from 2
to 5 (14). Furthermore, the DE immune-relevant genes
(DEIRGs) were calculated across subgroups by the limma
package with the same cutoff criteria as described for the
process of screening out DECRGs. In general, investigation of
immune-related genes via the method described above instead of
downloading directly from the ImmPort database, a human
immunological database, results in higher accuracy and
precision (15).

Through the above analytic steps, the DECRGs and DEIRGs
were collected. Afterward, the intersection of the genes from the
two parts was crossed to obtain the DECRGs that were immune-
relevant at the same time (DECIRGs), and the online tool Venny
2.1 (https://bioinfogp.cnb.csic.es/tools/venny/index.html) was
utilized for visualization. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses were carried out using the R package clusterProfiler.
The inclusion criteria were as follows: p-value < 0.05 and
q-value < 0.05.

2.3 Validation of the Plausibility of the
Immune Phenotype Grouping
The tumor microenvironment (TME) of GSE25055, including
immune and stromal scores, was calculated using the
ESTIMATE algorithm. Visualization was implemented by the
pheatmap and ggpubr packages.

Subsequently, cell-type identification by estimating the
relative subset of known RNA transcripts (the CIBERSORT
algorithm), a common method used for the evaluation of
immune cell infiltration, was performed to quantify the
immune cell proportion with 1,000 permutations. Only
samples with a p-value < 0.05 were included.

In addition, human leucocyte antigen (HLA), a set of linkage
gene groups, is widely applied in the field of immune-related
October 2021 | Volume 12 | Article 734745
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diseases (16). Consequently, the expression matrix of HLA genes
was extracted from GSE25055.

The above three methods, tumor microenvironment score,
immune cell infiltration score, and HLA gene expression matrix,
were chosen to validate the plausibility of immune grouping. The
latter two were graphed as boxplots by the ggpubr package.

2.4 Construction of the Risk Assessment
Model Based on the DECIRG Pairs
In the majority of previous studies, the construction of a risk
assessment model or immune score prognostic model was based
on an expression matrix of screened genes. The clinical
application of such a strategy is significantly hindered by the
various sources of the expression matrix of genes, including gene
chip data and quantitative reverse transcription-PCR (qRT-PCR)
data. These data need batch correction before applying the
model, which undoubtedly increases the workload.

Thus, here, a 0-or-1 matrix was constructed through
an iterative loop to cyclically pair the DECIRGs. The
representation of the paired sample ID was “A|B”. When the
expression level of gene A was higher than that of gene B, the pair
was presented as “1”; otherwise, it outputted “0”. With this
strategy, only the relative expression of the genes was under
consideration without dwelling on the absolute figures.
Additionally, only samples with a 0.2–0.8 pair ratio, defined as
the total pair value/sample numbers ratio, were included.
Furthermore, after combining the survival data taken from the
GEO database, univariate analysis was computed using
Cox regression.

Next, least absolute shrinkage and selection operator
(LASSO) regression was run 1,000 times with the glmnet
package to preliminarily screen the DECIRG pairs, and then
Cox proportional hazard regression was used to further reduce
the number of pairs to build a risk assessment model. p < 0.05
was set as the inclusion criteria. A formula for the risk model was
established for all patients:

Riskscore = Sk
i=1   Cox coefficient of pair i

� Expression value of pair i

Moreover, the maximum area under the curve (AUC) was
calculated, and the inflection point with the largest sum of
sensitivity and specificity was identified as the optimal cutoff
point (opcut).

2.5 Evaluation of the Risk Model
Before evaluation of the risk model, the clinical data from
GSE25055 and the somatic mutation and clinical and gene
expression data of BRCA (breast invasive carcinoma) in The
Cancer Genome Atlas (TCGA) were downloaded and initially
processed. Of note, those samples whose follow-up was 0 days
were culled. The same cyclical pair treatment was performed for
the DECIRGs in TCGA to obtain the DECIRG pairs as the
validation set.

To determine the performance of the constructed model,
different aspects of the model have been assessed. First, survival
Frontiers in Immunology | www.frontiersin.org 3
curves were drawn by the survival package using the log-rank test
and Kaplan–Meier (K-M) method to compare the survival
difference between the high-risk and low-risk groups. In
addition, the grouping condition of patients and the survival
state per case were plotted. Second, the independent prognostic
value of the factors was computed by univariate and multivariate
analysis. If the p-value of one factor < 0.05, it means this factor
can be used as an independent predictor of survival. After that,
receiver operating characteristic curves (ROCs) were used to
evaluate the accuracy of the risk model (including the sensitivity
and specificity).

2.6 Exploration of the Value of the Clinical
Evaluation by the Risk Model
To further enhance the value of practical applications of the risk
score model, independent risk factors identified by previous
multivariate analysis was applied to construct a nomogram
that combined the risk score and the clinical features.
Moreover, the concordance index (C-index) was utilized to
measure the accuracy of the nomogram, and calibration curves
were plotted to assess the calibration of the models. Then, the
ROC curves of various clinical characteristics were drawn, and
the AUC was calculated. Subsequently, a series of chi-square tests
were applied to uncover the relationship between the risk score
and the clinicopathological features by the Wilcoxon signed-
rank test.

In general, ROC curves and AUC values are used to judge the
performance of a prognostic model. Nevertheless, this strategy
pursues accuracy, which does not always equate to the maximum
benefit for patients. Herein, decision curve analysis (DCA) was
employed to estimate the clinical benefits by logistic regression
analysis. More than those, Cox regression was also applied to
draw the DCA curves for taking the prognosis of patients under
consideration. In these operations, the R packages survival, rms,
survivalROC, rmda, and stdca were utilized.

2.7 The Correlation Between the Risk
Subgroups and the Chemo Drugs, Immune
Checkpoints, and Somatic Mutations
The linkages between the risk grouping and some
common chemotherapy agents for BC, for example, cisplatin,
vinblastine, docetaxel, cyclopamine, doxorubicin, and
gemcitabine, were primarily investigated since our study
focused on chemosensitivity-based biomarkers. In this
procedure, the limma, pRRophetic, and ggplot2 packages
were used.

In addition, immune-related phenotypes were also the
theoretical basis of our research. Immunotherapy, represented
by immune checkpoints (ICs), has made great progress in the
entire tumor area in recent years, and BC is no exception.
Therefore, the expression levels of ICs, including PDCD1
(PD-1, programmed cell death protein 1), LAG3 (lymphocyte
activation gene 3 protein), CTLA4 (cytotoxic T-lymphocyte-
associated protein 4), IDO1 (indoleamine 2,3-dioxygenase),
and CD27 (Cluster of Differentiation 27), between the high-
risk and low-risk groupings were measured.
October 2021 | Volume 12 | Article 734745
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In the third part, somatic mutation data of patients in the
TCGA cohort were obtained to investigate the mutation
differences among the risk groupings. Then, the maftools
package was applied to perform the analysis of the tumor
mutation burden (TMB) of TCGA, calculate the TMB score,
and draw the waterfall plot. Whether the TMB score is related to
the risk score and patient survival probability was then explored.
Based on the median value of the TMB score as a cutoff, the
samples were divided into two groups, high-TMB and low-TMB,
and integrated with their corresponding risk groupings. The
correlation between the risk cluster and the TMB cluster was
determined by Pearson correlation analysis.

2.8 Screening and Validation of Hub
DECIRGs Pairs
To improve understanding of association between the risk score
model and molecular clusters on the one hand, and screening the
hub gene pairs on the other hand, Weighted Gene Co-Expression
Network Analysis (WGCNA) was utilized. In detail, based on the
risk score, we first conducted the sample clustering and
calculated the power value. Then, the correlation coefficient
and the best soft power were filtered out using the WGCNA
package in R 4.0.2 (17). Modules with high correlation coefficient
were selected for further analysis. Furthermore, the hub gene
pairs were obtained by taking the intersection of selected
WGCNA modules above and the seven pairs of DECIRGs.

To further determine the expression level of the hub gene
pairs, immunohistochemical (IHC) images of all single genes
were downloaded from the Human Protein Atlas (HPA)
Frontiers in Immunology | www.frontiersin.org 4
database (https://www.proteinatlas.org/). Subsequently, clinical
cancer samples and adjacent paracancer tissues from three
patients with BC were collected at the Renmin Hospital of
Wuhan University (Wuhan, China). Total RNA was isolated
with Trizol from tissues using the Nucleospin RNA II Kit
(Servicebio). Then, the reversed transcription was carried out
by qRT-PCR kit (Servicebio). In this progress, relative gene
expression was standardized to GAPDH. The primers for
target gene pairs and internal reference gene are listed in
Supplementary Table S1. In addition, data were processed
using the comparative Ct (2−DDCT) method and each sample
was repeated at least three times.
3 RESULTS

3.1 Relationship of Chemosensitivity and
Immune Status in BC Patients
Flow chart of the study design is depicted in Figure 1. The GSEA
results are presented in Supplementary Table S2, from which 48
signaling pathways were enriched between the chemosensitive and
insensitive subgroups based on the cutoff criteria of adj. p < 0.05.
Figure 2 shows that the top 12 immune-related signaling
pathways (Figure 2A), including antigen processing and
presentation, B-cell receptor signaling pathway, and chemokine
signaling pathway, and the top 7 tumor-related signaling pathways
(Figure 2B), such as cell adhesion molecules, neuroactive ligand–
receptor interaction, and TNF signaling pathway, were visualized
according to their enrichment score. The findings listed above
FIGURE 1 | The study processes. GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; DEIRGs, differentially expressed immune-relevant genes;
DECRGs, differentially expressed chemosensitivity-related genes; ssGSEA, single sample gene set enrichment analysis; DECIRGs, differentially expressed
chemosensitivity-related and immune-related genes; ROC, receiver operating characteristic curves; ICs, immune checkpoints; TMB, tumor mutation burden; C-index,
concordance index; DCA, decision curve analysis; WGCNA, Weighted Gene Co-Expression Network Analysis; HPA, Human Protein Atlas; qRT-PCR, quantitative
reverse transcription-PCR.
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indicate that the chemo-insensitive status in BC patients is not
only related to the proliferation, invasion, and metastasis of
tumors but also related to the activity of the immune response
and tumor immune infiltration. Herein, we can reasonably
conclude that the relationship between chemosensitivity and
immune status in BC patients is intense.

Additionally, differential gene expression analysis comparing
chemosensitive versus insensitive samples yielded 262
significantly DECRGs (p < 0.05, logFC > 0.5).

3.2 The Grouping of GSE25055 on the
Basis of the Immune Landscape and
Then Obtaining the DECIRGs
Due to space limitations, the immune infiltration level of a
portion of the samples, recorded through the ssGSEA method,
is displayed in Supplementary Table S3 (five samples, 29
immune cell types).
Frontiers in Immunology | www.frontiersin.org 5
Generally, unsupervised hierarchical clustering analysis can
extract the features of samples and further classify them in the
case of samples without labels. In our study, the immune
infiltration level for each sample was obtained, and the
groupings of the samples had unclear opposite results. For this
reason, combined consensus clustering and PAC were used to test
the optimal value of K. As clarified in the consensus matrix (CM)
plots (Figures 3A–D), the clustering effect varies by the K value,
and the squares share the darkest blue and the least noise when K
is 2 (Figure 3A). Cumulative distribution function (CDF) plots,
which display the cumulative consensus distributions for each K,
indicate that the slope of the decline of CDF was considerably
weaker when K equals 2 (Figure 3E). It can be seen from the
tracking plot (Supplementary Figure S1A) that the ordinate
represented the grouping situation (K = 2–5), while the abscissa
indicates the different samples. The colors in Supplementary
Figure S1A represent different subclusters, and the samples with
A

B

FIGURE 2 | Visualization of the interesting results, including 12 immune-related and 7 tumor-related signaling pathways, was performed using the enrichplot package.
(A) The top 12 immune-related signaling pathways. (B) The top 7 tumor-related signaling pathways.
October 2021 | Volume 12 | Article 734745
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the same color have the same immune properties. The y-axis of the
delta area plot (Supplementary Figure S1B) and the relative
change of the area under the CDF curve indicates the relative
increase in cluster stability and further supports the finding that
the inflection point 2 is the most valuable.

All of the above results revealed that the optimal number of
immune classifications was 2, which means that two distinct
patterns of BC samples from GSE25055 can be observed: one
with low immunity (Immunity-L) and the other with high
immunity (Immunity-H). After unsupervised hierarchical
clustering analysis, at a cutoff of p < 0.05 and logFC > 0.5, 1,295
Frontiers in Immunology | www.frontiersin.org 6
significant DEIRGs were identified from the two groups. Moreover,
in Figure 3F, 135 DECIRGs are obtained from taking the
intersection of 262 DECRGs and 1295 DEIRGs. The detailed
DECIRGs are provided in Supplementary Table S4. Moreover,
GO enrichment analysis of the 135 DECIRGs revealed that they
were involved in immune-relevant biological processes such as T-
cell activation, leukocyte migration, and cell adhesion (Figure 3G
and Supplementary Table S5). The top 5 pathways are displayed in
Figure 3H and Supplementary Table S6, indicating that they
participate in proteoglycans in cancer, the estrogen signaling
pathway, endocrine resistance, and the PI3K-Akt signaling pathway.
A

B D

E

F

G H

C

FIGURE 3 | The process of identifying K values and DECIRGs and the results of the enrichment analysis. (A–D) The consensus matrix (CM) plots. (A) K = 2; (B) K = 3;
(C) K = 4; (D) K = 5. (E) The cumulative distribution function (CDF) plots. (F) Venn plot of the intersection of DECRGs and DEIRGs. (G) The GO enrichment results of the
135 DECIRGs (only the top 5 items). (H) The KEGG enrichment results of the 135 DECIRGs.
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3.3 Validation of the Feasibility of the
Immune Grouping Strategy
To further uncover the above immune heterogeneity between
groupings, ESTIMATE algorithms were performed with R
packages. Figures 4A, B show the tumor microenvironment
score analysis results of BC. From the figure, it can be seen that
in the Immunity-H group, the immune score and ESTIMATE
score were markedly enhanced, whereas the tumor purity was well
below that in the Immunity-L group. Concomitantly, the stromal
score is not visibly higher. Similarly, the immune cell infiltration
level per sample was measured by the CIBERSORT algorithm. As
shown in Figure 4C, the infiltration scores of 17 kinds of immune
cells contrasted starkly between the two groups. Alternatively, the
boxplot of the expression level of the HLA genes (Figure 4D)
shows that except for HLA-DR beta 6 (HLA-DRB6), HLA-DQB2,
and HLA-DQB1, the expression of the HLA genes depicts
distinguishable differences between the two groups.

These results indicated that the strategy of combining ssGSEA
with unsupervised hierarchical clustering analysis to divide the
samples into the Immunity-L group and Immunity-H group is
reasonable. Generally, in the Immunity-H group, the activity of
immune responses, expression of the majority ofHLA genes, and
the level of the immune score and ESTIMATE score increased,
and tumor purity decreased correspondingly.
Frontiers in Immunology | www.frontiersin.org 7
3.4 Construction and Valuation of the Risk
Score Model for DECIRG Pairs
Through an iterative loop, a total of 3,268 DECIRG pairs in 309
GEO samples were obtained and further reduced to 1,232 pairs
by univariate Cox analysis. One sample was excluded due to
missing follow-up data. Likewise, in the TCGA cohort, 3,087
pairs in 692 samples were included.

Depending on the LASSO regression method, 20 pairs of
DECIRGs were obtained (Supplementary Table S7), and then
the pairs were reduced to 8 after the Cox proportional hazard
regression, and 7 pairs of DECIRGs finally served as the
foundation of the risk score model (p < 0.05). See Table 1 and
Supplementary Figures S2A, B for details. The computational
method of the risk score for each patient is described in the
Materials and Methods section. Figure 5A shows that the opcut
is 5.049. Next, 258 low-risk and 51 high-risk samples were
obtained in the training set (GEO database). At the same time,
in the TCGA validation set, 587 samples were classified into
the low-risk group, and the remaining 105 were classified into
the high-risk group. The detailed clinical information of the
patients included in the training and validation datasets is shown
in Table 2.

Figures 5B, C presents the excellent prognostic value of the
risk model in both the training and validation sets. Patients with
A

B D

C

FIGURE 4 | Validation of the feasibility of the immune grouping strategy. (A) Heatmap of tumor purity, ESTIMATE score, immune score, and stromal score. (B) Violin
plots showing the comparisons of the tumor purity, ESTIMATE score, immune score, and stromal score between the Immunity-L and Immunity-H subtypes. (C) The
fraction of 17 kinds of immune cell infiltration scores between the two groupings. (D) Boxplot of HLA gene expression between the two groups. *p < 0.05, **p < 0.01,
***p < 0.001, ns, no significant differences.
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low-risk scores experience a significant enhancement in mean
survival time in both the GEO and TCGA datasets compared
with those at high risk. The heatmap of the grouping condition
and the survival status scatter plot of each case are shown in
Supplementary Figures S2C–F. We can see that the risk score
Frontiers in Immunology | www.frontiersin.org 8
model can sharply distinguish the surviving and nonsurviving
patients in the training set, while their differentiation capacities
are weaker in the validation set.

Figure 5D, showing forest plots of the training set using
univariate analyses, indicates that lymph node (N) TNM stage,
A B

D

E

F

G

C

FIGURE 5 | (A) The optimal cutoff points in the ROC curve with the maximum AUC. (B, C) The survival curves to estimate the difference in the survival time between the
high-risk and low-risk groupings in the (B) training and (C) validation sets. (D, E) Forest plots of the training set using (D) univariate and (E) multivariate independent
prognostic analyses. (F, G) To evaluate the accuracy of our risk model, 1-, 3-, and 5-year ROC curves were plotted in the (F) GEO and (G) TCGA datasets.
TABLE 1 | The seven pairs of DECIRGs that were used to build the risk score model.

Pair ID Coef HR HR.95L HR.95L p-value

LCK|APBA2 −1.05596 0.347859 0.204894 0.59058 9.23E-05
MSN|CD151 0.841157 2.319049 1.175758 4.574063 0.015217
ITGA4|NAT1 0.606283 1.833603 1.032612 3.255918 0.038498
ST8SIA4|PSD3 0.705933 2.025737 1.211581 3.386986 0.007107
PEX11A|GREB1 0.690695 1.995101 1.183866 3.362229 0.009492
ACACA|RABEP1 0.866912 2.37955 1.33674 4.235871 0.003215
ACOX2|AREG 0.767286 2.153912 1.265167 3.666974 0.004708
Octo
ber 2021 | Volume 12 | Artic
Coef, coefficient; HR, hazard ratio.
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tumor grade, FIGO stage, genomic grade index (GGI), residual
cancer burden (RCB) score, and risk score are risk factors. In
contrast, the positive expression of estrogen receptor (ER) and
progesterone receptor (PR), mutation of the ESR1 (estrogen
receptor-alpha) gene, and a sensitive response to chemotherapy
are protective factors. Correspondingly, only the RCB score and
risk score was verified as risk factors after multivariate
independent prognostic analyses (Figure 5E). The details of
the univariate or multivariate independent prognostic analyses
are displayed in Supplementary Table S8. More remarkably,
neither separate immunity nor separate chemosensitivity can be
treated as independent predictors, whereas the risk score
Frontiers in Immunology | www.frontiersin.org 9
combining immunity with chemosensitivity can be treated as
an independent predictor. Therefore, we conclude that regardless
of whether univariate or multivariate independent prognostic
analyses are performed, the risk score model is an independent
prognostic factor.

To evaluate the accuracy of our risk model, the 1-, 3-, and 5-
year ROC curves plotted by the timeROC package are presented
in Figures 5F, G, which demonstrates that the accuracy of the
model’s prediction is excellent in the GSE25055 dataset.
Although the prediction effect was worse in the TCGA cohort,
all AUC values > 0.5.

In summary, based on the results described above, the risk
score model is considered to be an independent prognostic factor
and it has a relatively good accuracy.

3.5 The Clinical Evaluation Ability of the
Risk Model
Due to the results of the previous step, the RCB and risk score were
introduced into the construction of the nomogram, in which the
risk score weighs heavily in the total points (Figure 6A). The C-
index of the nomogram is 0.830. The calibration diagrams,
Figures 6B–D, state that the predicted survival rate (the red
line) at 1, 3, and 5 years was very close to the actual survival
rate (the gray line). Additionally, the comparison of the ROC
curve with the other clinical characteristics highlights the
superiority of our risk score model, whose AUC value is the
maximum (Figure 6E). The relationship between the risk score
and the clinical characteristics is investigated in Supplementary
Figures S3A–L, which illustrates that the risk score is strongly
associated with those characteristics except for the phenotype of
HER2 (Supplementary Figure S3H).

Figures 6F, G show the decision curve plot. The lines in the
figure marked “All” and “None” represent two extreme
conditions. When the abscissa, the high-risk threshold, is in
the range of approximately 0.0–1.00, the net benefit (ordinate) of
the nomogram model is consistently higher than that of the risk
and RCB models. That is, the nomogram represents better
benefits for patients compared with any single factor. This
conclusion was also verified at multiple time points (1, 3, and
5 years).

3.6 Exploration of the Potential Relevance
of the Risk Score With Chemotherapy
Drugs, ICs, and TMB
The boxplots, Figures 7A–F, display that as the grouping of the
risk score varies, so does the half-maximal inhibitory
concentration (IC50) of some chemotherapeutic drugs. From
the figure, the IC50 of samples with high-risk scores are much
lower than that of the low-risk samples. The higher the risk score,
the lower the sensitivity to chemotherapeutic drugs such as
cisplatin, vinblastine, docetaxel, cyclopamine, doxorubicin, and
gemcitabine. This suggests that the risk model may serve as a
potential tool to predict the patient’s responsiveness to
chemotherapy agents.

In addition, the expression of common ICs is shown in
Figures 7G–K, which reveals that the risk score is positively
TABLE 2 | Detailed clinical information of the patients included in the training
and validation datasets.

Category GEO (n = 279) TCGA (n = 447)

OS (years ± SD) 2.88 ± 1.72 3.58 ± 3.27
Age (years ± SD) 50.38 ± 10.70 57.65 ± 12.87
Death 59 (21.15%) 66 (14.77%)
Alive 220 (78.85%) 381 (85.23%)
TNM-T0/T1 21 (7.53%) 117 (26.17%)
TNM-T2 153 (54.84%) 262 (58.61%)
TNM-T3 61 (21.86%) 47 (10.51%)
TNM-T4 44 (15.77%) 21 (4.70%)
TNM-N0 79 (28.32%) 168 (37.58%)
TNM-N1 133 (47.67%) 181 (40.49%)
TNM-N2 37 (13.26%) 70 (15.66%)
TNM-N3 30 (10.75%) 28 (6.26%)
TNM-M0 – 436 (97.54%)
TNM-M1 – 11 (2.46%)
Grade-1 18 (6.45%) –

Grade-2 109 (39.07%) –

Grade-3 142 (50.90%) –

Grade-4 10 (3.58%) –

Stage-I 6 (2.15%) 67 (14.99%)
Stage-II 151 (54.12%) 246 (55.03%)
Stage-III 122 (43.73%) 122 (27.29%)
Stage-IV – 12 (2.68%)
HER2-Positive 3 (1.08%) 66 (14.77%)
HER2-Negative 276 (98.92%) 381 (85.23%)
ESR1-Positive 156 (55.91%) –

ESR1-Negative 123 (44.09%) –

PR-Positive 126 (45.16%) 302 (67.56%)
PR-Negative 153 (54.84%) 145 (32.44%)
ER-Positive 158 (56.63%) 350 (78.30%)
ER-Negative 121 (43.37%) 97 (21.70%)
PAM50-Normal 23 (8.24%) 9 (2.01%)
PAM50-LumA 87 (31.18%) 217 (48.55%)
PAM50-LumB 41 (14.70%) 111 (24.83%)
PAM50-Basal 111 (39.78%) 78 (17.45%)
PAM50- Her2 17 (6.09%) 32 (7.16%)
GGI-High 185 (66.31%) –

GGI-Low 94 (33.69%) –

RCB-0/I 82 (29.39%) –

RCB-II 124 (44.44%) –

RCB-III 73 (26.16%) –

Immunity-Low 140 (50.18%) –

Immunity-High 139 (49.82%0 –

Chemosensitivity-Insensitive 178 (63.80%) –

Chemosensitivity-Sensitive 101 (36.20%) –

Riskscore-Low 231 (82.80%) 319 (71.36%)
Riskscore-High 48 (17.20%) 128 (28.64%)
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FIGURE 6 | (A) Nomogram to predict the 1-, 3-, and 5-year survival rate in GSE25055. (B–D) Calibration plots of the nomogram to predict the survival rate at 1 (B),
3 (C), and 5 years (D). (E) The comparison of the ROC curve with the other clinical characteristics highlights the superiority of our risk score model. The decision
curve plots of the “nomogram”, “RCB”, “risk”, “All” and “None” models by logistic regression (F) and Cox regression analysis (G).
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correlated with the expression levels of PDCD1, CTLA4, LAG3,
CD27, and IDO1 between the high-risk and low-risk groups.

Then, the somatic mutation data of 625 samples were
downloaded from the TCGA-BRCA databases. The waterfall
diagram expresses the rank of the genes’ mutation frequency in
those samples (Figure 7L). It can be seen from the legend that
the high-risk patients had a high gene mutation frequency.
Frontiers in Immunology | www.frontiersin.org 11
According to the TMB score, 489 high-TMB and 136 low-
TMB samples were obtained. The survivorship curve indicated
that patients with low TMB scores had a longer survival (P =
0.0024) (Figure 7M). Figure 7N shows that the low-risk patients
usually shared lower TMB scores; at the same time, there was a
positive association between the risk clusters and TMB clusters
(P = 0.00087) (Figure 7O).
A B

D

E F

G

I

H

J

K

L M

N

C

O

FIGURE 7 | (A–F) The linkages between the risk grouping and some common chemotherapy agents for BC, for example, (A) cisplatin, (B) vinblastine, (C) docetaxel,
(D) cyclopamine, (E) doxorubicin, and (F) gemcitabine. (G–K) Analyses of the relationship of ICs with the risk score, including (G) PDCD1, (H) CTLA4, (I) LAG3, (J) CD27,
and (K) IDO1. (L) The waterfall diagram of the altered genes in 625 samples. (M) The survivorship curve indicates that patients with low TMB scores have a longer survival
time (P = 0.0024). (N) The boxplot reflects the correlation between the risk cluster and the TMB score (p = 0.0024). (O) There was a positive association between the risk
clusters and TMB clusters (p = 0.00087).*p < 0.05, ***p < 0.001.
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3.7 Identification and Exploration of Hub
DECIRGs Pairs
A total of 3,268 gene pairs were obtained between high-risk and
low-risk groupings according to the method of constructing the 0
or 1 matrix described above. To identify the functional clusters,
the WGCNA was applied. As can be seen from Figure 8A, when
the soft threshold equals to 4, R2 > 0.8 and mean connectivity
<<100, which means the network we construct resembles the true
biological networks. Meanwhile, the tree diagram is drawn in
Supplementary Figure S4A. Figure 8B presented the module–
trait relationships, revealing that the blue module possesses the
highest correlation (Cor = −0.44, p = 3e-16 for the high-risk
group; Cor = 0.44, p = 3e-16 for the low-risk group). Moreover,
the blue module exhibited a high Cox correlation in
Supplementary Figure S4B (Cor = 0.86, p < 1e-200). Last, the
7 DECIRGs pairs and the 1,045 gene pairs contained in the blue
module (Supplementary Table S9) are intersected to obtain the
two key DECIRGs pairs (Supplementary Figure S4C), which are
LCK|APBA2 and ACACA|RABEP1.

As is evident from the IHC images (Figure 8C), the
expression of APBA2, ACACA, and RABEP1 in BC tissues was
significantly higher than in the adjacent normal tissues, whereas
LCK had not. RT-PCR was applied for further clinical validation
for BC patients to quantify the mRNA expression levels. The
results of qRT-PCR revealed that in comparison with adjacent
Frontiers in Immunology | www.frontiersin.org 12
normal breast tissues, the four key DECIRGs were all
upregulated in BC tissues (Figure 8D, p < 0.05).
4 DISCUSSION

The clinical application of chemotherapy has been the mainstay
of the treatment of BC for a long time. Currently, BC has a 5-year
survival rate close to 90%, far exceeding that of other types of
tumors (18). Nonetheless, chemoresistance is an intractable
problem and a clinical dilemma (3). After treatment with
chemotherapy agents, BC patients with resistant tumors have
limited improvement in progression-free survival, which is an
unmet clinical treatment need.

On the other hand, the number of studies about immune
infiltration in the tumor immune microenvironment has
increased dramatically. For example, Zhang et al. explored the
immune signature of BC and constructed a risk model to predict
patient outcomes (19). In 2020, the infiltration of immune cells
in 1109 BC samples was evaluated by Shen et al., and 11 long
noncoding RNAs (lncRNAs) were identified to construct a
signature (20). Unfortunately, studies simultaneously
evaluating immune infiltration and chemoresistance are
completely absent. Accordingly, the present study studied
A

B

D

C

FIGURE 8 | Identification and exploration of hub DECIRGs pairs. (A) Determination of soft-thresholding power. When soft threshold comparable to 4, R2 > 0.8 and
mean connectivity < 100, the network was scale-free topology. (B) Module–trait associations: Each row corresponds to a module and each column to a trait (low-
risk and high-risk). (C) The IHC staining images of LCK, APBA2, ACACA, and RABEP1. (D) The mRNA expression analysis of LCK, APBA2, ACACA, and RABEP1
by qRT-PCR. **p < 0.01.
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biomarkers relevant to chemosensitivity and immunity to build a
risk model.

The strengths herein are as follows. First, immune-related
genes were obtained by combining ssGSEA with unsupervised
hierarchical clustering analysis instead of downloading them
directly from the ImmPort database. Moreover, the TME,
intratumoral immune cell content, and HLA genes were
analyzed to investigate the heterogeneity of the groups divided
by the ssGSEA score. The results showed that the grouping
approach was sensible and trustworthy. Next, the cornerstones of
our model are not the single DECIRGs but the paired DECIRGs
obtained through cyclical pairs and iterative loops. The
expression matrix, composed of only 0 or 1, focuses only on
the relative expression level of the genes, without considering the
sources of the data. Thus, it does not need to struggle with batch
correction and detect the specific expression values of every
DECIRG. Last, for the selection method of the cutoff criteria to
generate the high-risk group and low-risk group, the point with
the largest sum of sensitivity and specificity on the maximum
AUC ROC curve was selected instead of simply choosing the
median of the risk score as the standard.

After the various dimensions were evaluated in the risk
model, the patients were distributed into a high-risk
pathological group, such as GGI-high, chemo-insensitive, and
ER-negative. The risk model was further linked to the clinical
features to generate the nomogram, in which the risk score and
the RCB were included as independent risk factors. Since the C-
index is 0.830, the nomogram offers advantages in practicality.
The concept of RCB, synthetic evaluation of the tumor bed in
tumors and regional lymph nodes, was suggested by the MD
Anderson Cancer Center. Its advantages in measuring the
response to neoadjuvant treatment have been demonstrated for
a long time through clinical practice. A retrospective study in
2007 revealed that RCB acted as a significant predictor of distant
relapse-free survival, and it can be used to define categories of
near-complete response and chemotherapy resistance (21). In a
large BC study, RCB accurately predicted long-term survival
after neoadjuvant chemotherapy in all three phenotypic subsets
of BC (22). Indeed, from the nomogram, ROC curves, and the
decision curve plots in Figure 6, it was noted that even though
the percentage of the risk score was not as high as that of RCB in
the nomogram, the AUC value and its decision curve
distribution did not appear to differ from that of RCB. All
these results highlight the value of the nomogram linking the
risk score with the RCB, which is likely to bring about a new
perspective for developing novel scoring systems.

Furthermore, the risk score and the immune checkpoints
maintained an adequate correlation to support the efficacy of our
modeling algorithms. It is generally known that immune
checkpoints are negative regulators of the immune system.
Among them, PDCD1, CTLA-4, LAG3, and IDO1 are
inhibitory checkpoint molecules, while CD27 is a stimulatory
checkpoint molecule. Their increased expression has been
proven to have adverse associations with tumor outcomes (23–
27). Other observations regarding the associations of the risk
Frontiers in Immunology | www.frontiersin.org 13
score with the TMB and chemotherapy agents are discussed in
the Results section.

Although numerous strengths exist, there are also some
shortcomings in the study. Because the RCB-related data were
unavailable, we could not build a nomogram constructed based on
the RCB and risk score in TCGA. Despite the fact that the high
accuracy of the nomogram has been proven by the C-index, ROC
curves, calibration curves, and DCA, the inherent flaws of the data
resulted in a partial reduction of the trustworthiness. Furthermore,
in the experimental validation part, we only focused on the
expression level of hub DECIRGs pairs, without delving into the
deep mechanism of their influence on the chemotherapy response
and prognosis of BC patients. As such, further prospective and
large-scale studies are warranted in the future.

Altogether, the risk score model built from seven pairs of
DECIRGs has potential predictive value. More importantly, the
nomogram constructed by the risk and RCB score has important
practical implications.
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