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Abstract

The current diagnostic work-up of inborn errors of metabolism (IEM) is rapidly

moving toward integrative analytical approaches. We aimed to develop an inno-

vative, targeted urine metabolomics (TUM) screening procedure to accelerate

the diagnosis of patients with IEM. Urinary samples, spiked with three stable

isotope-labeled internal standards, were analyzed for 258 diagnostic metabolites

with an ultra-high performance liquid chromatography-quadrupole time-of-

flight mass spectrometry (UHPLC-QTOF-MS) configuration run in positive and

negative ESI modes. The software automatically annotated peaks, corrected for

peak overloading, and reported peak quality and shifting. Robustness and repro-

ducibility were satisfactory for most metabolites. Z-scores were calculated

against four age-group-matched control cohorts. Disease phenotypes were

scored based on database metabolite matching. Graphical reports comprised a

needle plot, annotating abnormal metabolites, and a heatmap showing the prior-

itized disease phenotypes. In the clinical validation, we analyzed samples of

289 patients covering 78 OMIM phenotypes from 12 of the 15 society for the

study of inborn errors of metabolism (SSIEM) disease groups. The disease

groups include disorders in the metabolism of amino acids, fatty acids, ketones,

purines and pyrimidines, carbohydrates, porphyrias, neurotransmitters, vita-

mins, cofactors, and creatine. The reporting tool easily and correctly diagnosed

most samples. Even subtle aberrant metabolite patterns as seen in mild multiple

acyl-CoA dehydrogenase deficiency (GAII) and maple syrup urine disease

(MSUD) were correctly called without difficulty. Others, like creatine trans-

porter deficiency, are illustrative of IEM that remain difficult to diagnose. We

present TUM as a powerful diagnostic screening tool that merges most urinary

diagnostic assays expediting the diagnostics for patients suspected of an IEM.
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1 | INTRODUCTION

First-line diagnostic screening for inborn errors of metab-
olism (IEM) comprises several dedicated assays aimed at
a specific selection of biomarkers.1 New analytical
approaches providing broad coverage of metabolism with
a short turn-around-time would improve the biochemical
diagnostic workflow and facilitate functional elucidation
of the many variants of unknown significance (VUS) that
are found in molecular medicine. Since its introduction,
researchers have embraced high-resolution mass spec-
trometry to create comprehensive analytical approaches
providing an all-inclusive view of metabolism including
known and “orphan” metabolites. What we now call
([un]targeted) metabolomics is a powerful tool to gather
insight into disease mechanism, but also for diagnostics.2,3

Application of single-platform untargeted met-
abolomics in diagnostics decreases the need for different
methods, operated on different analytical platforms, and
would speed up the diagnostic process. However, bring-
ing untargeted single-platform metabolomics to diagnos-
tics is a daunting challenge.

Current metabolomics methods have many time-
consuming steps, such as feature identification, and
require large numbers of samples to obtain proper statis-
tical power.2 In reality, diagnostic results are needed on
short notice to enable a rapid diagnosis and treatment of
IEM patients. Often, they deal with emergency situations
and have to work with a single sample of a single patient.
This underlines the need for suitable, targeted single-
platform metabolomics since methods based on within-
run comparison are unfit for emergency diagnostics in an
N = 1 setting. Unfortunately, the chemical properties of
IEM-associated metabolites are extremely diverse and for
now prohibit an all-in-one test. Therefore, the combina-
tion of the diagnostic question addressed, together with
the body fluid analysed, directs the choice of analytical
platform and subsequent data analysis.

Previously, we have implemented an ultra-high per-
formance liquid chromatography-quadrupole time-of-
flight mass spectrometry (UHPLC-QTOF-MS) method for
fast and accurate quantitative detection of 71 metabolites,
replacing GC-MS for the analysis of organic acids.4 This
was already promising in the light of metabolomics litera-
ture5,6 since we obtained explicit biochemical signatures
for 16 of the 18 organic acidurias included in the clinical
validation.

This method provided the basis for the targeted semi-
quantitative single-platform metabolomics method pres-
ented here. We expanded the number of metabolites to
258, covering 153 phenotypes described in IEMbase
(http://iembase.org/). We call this method targeted urine
metabolomics (TUM).

Our primary goal was the consolidation of several
commonly applied dedicated assays to speed up diagnos-
tics of (treatable) IEM based on known detectable metab-
olites in urine. The focus was on intermediary
metabolism (amino acids, acylcarnitines, purines and
pyrimidines, and sugars) and we excluded metabolites
known as biomarkers for lysosomal storage disorders and
congenital defects in glycosylation. Generalized, but not
single enzyme peroxisomopathies were identified
through increased excretion of pipecolic acid.

An automated pipeline extracted a panel of
metabolite-associated features in a targeted manner and
processed them resulting in age-corrected z-scores. Next,
the interpretation and reporting tool analysed the results
to aid interpretation by a laboratory specialist. We
applied TUM to 289 urine samples, covering 78 IEM. The
results we present here prove the suitability of this novel
screening method for routine and emergency metabolic
screening.

2 | MATERIALS AND METHODS

2.1 | Chemicals and (internal) standards

All organic solvents and water used in sample and mobile
phase preparation were UPLC-MS-grade and purchased
from BIOSOLVE Chemicals (Valkenswaard, The Nether-
lands). Reference standards for 250 metabolites were
analysed to annotate retention time (Rt) and spectral
information (Table S1a lists the chemicals used and
Table S1b lists analytical information per compound).
For the remaining eight, we used patient urine samples.
The three stable isotope-labeled internal standards
(IS) were 13C6-galactitol (positive and negative electron
spray ionization modes [ESI±], for all metabolites with a
Rt < 1 minute), D4-sebacic acid (ESI−, Rt > 1 minute)
and D3-hexanoylglycine (ESI+, Rt > 1 minute).

2.2 | Control cohort and clinical
validation samples

The control cohort was composed of 261 random urine
samples from patients without an IEM or any abnormal
biochemical findings. The clinical validation included
289 urine samples supplied by multiple laboratories, cov-
ering 78 IEM. Most samples were from the archive of the
Maastricht Laboratory of Clinical Genetics or were from
the ERNDIM Diagnostic Proficiency Testing (DPT)
schemes. Colleagues kindly provided other samples as
mentioned in the acknowledgement. We re-analysed
samples that were collected over 2 years ago with current
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dedicated assays to ensure suitability and proper compar-
ison between methods.

2.3 | UHPLC-QTOF-MS method

A 25 μL of the sample diluted with water to ±1 mM cre-
atinine was mixed with 275 μL 0.1% formic acid in
UPLC-MS water and 25 μL of the internal standard
(IS) mixture containing 187 μM 13C6 galactitol, 8.9 μM
D3-hexanoylglycine and 11.6 μM D4-sebacic acid. Sam-
ples were analysed in ESI+ and ESI-− modes with LC-
conditions as described before.4 The injection volume
that was 1 μL for ESI+ and 0.5 μL for ESI−. Our
approach is nonenantioselective.

2.4 | Data processing and statistics

The QTOF-MS acquired untargeted data were imported
into Agilent MassHunter Quant software, extracted for
the relative concentration of 540 targeted analytes of
258 metabolites. The results were compared and aber-
rant results presenting as (a) a divergent retention time
(cut-off 0.05 minutes), (b) a too low peak height (cut-off
2500), or (c) a too low mass match score (cut-off 80)
were marked. For peaks with an overloading problem
(cut-off fold difference = 1.3 and cut-off
height = 300 000), the signal at 50 ppm was used for fur-
ther data processing. For the remaining peaks signals at
10 ppm were used.

The corrected relative response was normalized to
creatinine. Z-scores were calculated against an age-
matched control cohort: 0 to 18 months (N = 58);
18 months to 10 years (N = 73); 10 to 20 years (N = 48)
and > 20 years (N = 82) (see Figure S1 for the calcula-
tions). The age groups were based on IEMbase (2018)
and Blau (2014). Outliers were removed from the control
cohort.

A sample's z-score profile was compared to our urine
metabolite database (172 phenotypes, 232 OMIM diseases)
and for each phenotype a match score was calculated
(scale 0-100, z-score cut-off 2 and 3). Listed are the top
10 of potential phenotypes for either z-score cut-off 2 or 3.

Data were processed in R environment (version R 3.5)
and results were presented in excel sheets.

2.5 | Data visualization

The sample's z-score profile was visualized in needle
plots labeled with metabolite names for analytes with
absolute z-score values above the cut-off.

The prioritized phenotypes with match scores were
plotted in a heatmap showing their theoretical z-score
profiles. Plots were made using ggplot2 package (v3.1.1)
and pheatmap packages (v1.012) in R.

2.6 | Interpretation of data

Four laboratory specialists performed blinded interpreta-
tion of the needle-plots, the heatmaps and the excel
sheets with results. Consensus determined if a diagnosis
could be made, or if the results were indicative and
warranted further analysis.

3 | RESULTS

3.1 | Analytical characteristics of the
UPLC-QTOF/MS method

The QTOF-MS method separated and identified
258 metabolites represented by 540 analytes expressed as
relative response ratios (RRR) to the respective internal
standards.

We already reported on the extensive analytical vali-
dation of 68 metabolites (organic acids) regarding linear-
ity, recovery and within- and between-run variation.4 In
this study, we introduced new metabolite classes, includ-
ing amino acids, acylcarnitines, and purines and pyrimi-
dines. The first two metabolite classes gave better
responses in ESI+ than ESI− which we took into account
in the final protocol. We validated this semi-quantitative
method for within- and between-run variation.

3.2 | Within- and between-run variation

We determined within and between-run variation using
three quality control (QC) samples: (a) a mixture of urine
samples from patients with an IEM, (b) a mixture of urine
samples from controls without biochemical abnormalities,
and (c) urine samples spiked with specific metabolites.

The average within-run variation was 4%, and under
10% for 270 of 285 analytes (95%).

Between-run variation was determined for
271 analytes with a peak signal >1*e4. The between run
variation was 16 ± 9% for 234 of the 271 analytes. The
variation was >25% for 37 of the 271 analytes, probably
because of in source fragmentation, suboptimal peak
shape and concentrations near detection limits. Among
the metabolites with high variation were several amino
acids (Table 2) and glycolic acid. These few metabolites
with a higher variation pose little problem since the
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diagnostic match-score incorporates information from
several metabolites. Diagnosis of hyperoxaluria type
1 (OMIM 259900) might be problematic because its bio-
markers are glycolic acid and oxalic acid, of which the
latter has low sensitivity and solubility.

3.3 | Clinical validation

We applied TUM to 289 patient urines representing
78 OMIM phenotypes belonging to 12/15 disease groups
according to the 2011 society for the study of inborn
errors of metabolism (SSIEM) classification of IEM
(Figures 1 and 2; http://www.ssiem.org/images/
centralstore/resources/SSIEMClassificationIEM2011.
pdf). Most of the 289 urine samples represented disor-
ders of amino acid and peptide metabolism (n = 162).
Because 36 patients were on diagnosis-specific treat-
ment, we expected biochemical abnormalities to be less
pronounced compared to those detected in samples of
untreated patients.

3.3.1 | SSIEM disease group 1—disorders
of amino acid and peptide metabolism

TUM detected most of the 40 IEM represented by
162 samples, or it pointed toward an IEM (see Figure 2
for details). In three instances, we faced challenges diag-
nosing urea cycle disorders (UCD) inherent to treatment,
sample condition, or biochemistry as explained by the
following examples. Argininemia (OMIM 207800) and
ornithine transcarbamylase deficiency (OMIM 311250)

were not unequivocally diagnosed; however, the pheno-
type prediction score only pointed in the direction of an
urea cycle disorder. This was due to degradation of the sam-
ple and proper clinical treatment, respectively. Hyper-
ammonemia in the absence of increased orotic acid and other
pyrimidines could indicate a carbamoylphosphate synthetase
I deficiency (OMIM 237300). When biochemically stable,
these patients are indistinguishable from controls, as was the
case in the sample we obtained.

TUM diagnosed all 18 organic acidurias (Figure 3A,
isovaleric aciduria as an example). One patient with Barth
syndrome had subtle but detectable biomarker changes
discernible in TUM and in the dedicated organic acid anal-
ysis.4 In disorders of phenylalanine and tyrosine metabo-
lism, one tyrosinemia type I patient was hard to identify
because of NTBC treatment. Patients with defects in
sulfur-amino acid metabolism and patients with glutamate
formiminotransferase deficiency (OMIM 229100) and D-
glyceric aciduria (OMIM 220120) were found by TUM.

Regarding mild forms of amino acid metabolism defi-
ciencies, we correctly identified the MSUD patient and
two GAII patients in this clinical validation.

3.3.2 | SSIEM disease group 2—disorders
of carbohydrate metabolism

We included 7 of the 44 phenotypes suitable for TUM.
Galactitol is the prime biomarker for galactokinase defi-
ciency (OMIM 230200) and galactose-1-phosphate:
uridyltransferase deficiency (OMIM 230400). Samples
from patients on galactose restriction showed non-
discriminant z-scores.

FIGURE 1 Summary of phenotypes and samples in clinical validation. Diseases are grouped according to the SSIEM classification of

Inborn Errors 2011 (http://www.ssiem.org/images/centralstore/resources/SSIEMClassificationIEM2011.pdf). Left: the distribution of the

78 different IEM in the clinical validation. Right: the disease distribution of 289 urine samples in the clinical validation. The number of

disease/samples in each group are indicated next to the pie plots
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While glycerol and sedoheptulose are not quantified in
dedicated assays, we can analyze them in TUM. Even in
samples with many abnormal biomarkers, these specific
metabolites resulted in high-ranking prediction scores for
untreated patients with fructose-1,6-biphosphate deficiency
(OMIM 229700) or sedoheptulose kinase deficiency (OMIM
617213).

Untreated patients with disorders in glyoxylate metabo-
lism can be diagnosed based on glycolic and glyceric acid.

3.3.3 | SSIEMdisease group 3—disorders
of fatty acid and ketone body metabolism

TUM gave comparable results to urine organic acid anal-
ysis for the disorders included here, including six disor-
ders of ketone body metabolism, malonyl-CoA
decarboxylase deficiency (OMIM 248360), and combined
malonic and methylmalonic aciduria (OMIM 614265).
We excluded defects of long-chain fatty acid oxidation

FIGURE 2 Clinical validation summary of IEM disease groups included in clinical validation. IEM are shown on the y-axis and

grouped according to the SSIEM classification of Inborn Errors 2011 (http://www.ssiem.org/images/centralstore/resources/

SSIEMClassificationIEM2011.pdf). Disease groups are color coded per SSIEM category (legend on the right). The number of patient samples

per IEM is indicated on the x-axis. Turquoise = diagnosable with this screening, yellow = result points in the right direction, red = not

diagnosable with this screening. A list of abbreviations can be found in Table S3
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(LCHADD, VLCADD), as they have no (specific) urinary
biomarkers.

3.3.4 | SSIEM disease group 4—disorders
of energy metabolism

Our validation included fumarase deficiency (OMIM
136850) and disorders of creatine metabolism. In case of

fumarase deficiency (Figure 4), TUM even resulted in the
identification of previously unknown, but theoretically
logical, disease-associated metabolites.

Disorders of creatine biosynthesis and transport lead
to subtle metabolite abnormalities and proved more diffi-
cult to diagnose. In addition, creatine treatment disturbs
the phenotype prediction. In case of arginine:glycine
amidinotransferase (AGAT, n = 2) deficiency (OMIM
612718) the diagnosis was obvious in one sample,

FIGURE 3 Representative needle plots and heatmaps. A, Isovaleric aciduria with isovaleryl carnitine and isovaleryl glycine as primary

metabolites, B, APRT deficiency with a prominent 2,8-dihydroxyadenine peak, C,molybdenum cofactor deficiency with S-sulphocysteine, xanthosine,

xanthine and oxypurinol. Needle plot—The z-scores of all unique metabolite/analyte combinations are plotted. The chemical category of the

metabolite is color coded. The peak score is visualized by different line styles. Solid line = analytes with a reliable peak integration. Three types of

dashed lines = score 1, 3 or 4, implying a doubtful analytical peak. The metabolites/analytes are sorted by metabolite category and name. The z-score

cut-off = 3 is shown here and indicated as a dotted line in the plot. Metabolites whose analyte (ion) reaches a jz-scorej above the cut-off is labeled.
Heatmap plot—The first line of the heatmap shows the distribution of the metabolites in the sample. The metabolites are colour coded by chemical

category. The second line shows the z-score profile of the sample (increased metabolites are shown in red and decreased metabolites in blue). The

theoretical z-score profiles for the candidate phenotypes are plotted underneath. The left two columns show the phenotype match scores (colour

scale: more reddish indicates a higher matching score) at cut-off = 2 and cut-off = 3. The corresponding phenotype names can be read on the right
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whereas in other sample, we observed multiple
abnormalities.

TUM correctly called two of the eight samples of
patients with cerebral creatine deficiency syndrome
2 (guanidinoacetate methyltransferase [GAMT]; OMIM
612736). In two cases, treatment with creatine disturbed
the prediction algorithm. In the remaining four samples,
z-scores for guanidinoacetate and creatine were within
reference. Creatine Transporter (CrT) deficiency was dif-
ficult to diagnose with our pipeline.

3.3.5 | SSIEM disease group 5—disorders
in the metabolism of purines, pyrimidines,
and nucleotides

TUM detected all disorders of purine and pyrimidine
metabolism included in the clinical validation (Figure 2).

All needle plots and heatmaps were obvious (Figure 3B nee-
dle plot and heatmap of APRT deficiency as an example).

3.3.6 | SSIEM disease group 6—disorders
of the metabolism of sterols

Mevalonate kinase deficiency (OMIM 610377) is the sole
disorder in this group with a known urinary biomarker,
and we successfully identified it.

3.3.7 | SSIEM disease group 7—disorders
of porphyrin and heme metabolism

We included metabolites for acute intermittent porphyria
(AIP, OMIM 176000) and diagnosed it in the four sam-
ples analysed.

FIGURE 3 (Continued)
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3.3.8 | SSIEM disease group 10—
lysosomal disorders

We included one urine sample from a patient with
Salla disease (OMIM 269920) and found the correct
diagnosis.

3.3.9 | SSIEM disease group 12—
disorders of neurotransmitter metabolism

TUM easily called both aromatic L-amino decarboxylase
(AADC) deficiency (OMIM 608643) and succinic semi-
aldehyde dehydrogenase (SSADH) deficiency (OMIM
271980).

3.3.10 | SSIEM disease group 13—
disorders in the metabolism of vitamins
and cofactors

The diagnoses of cobalamin C deficiency (OMIM
277400), alpha-amino adipic semialdehyde (α-AASA)
dehydrogenase deficiency (PDE-ALDH7A1, OMIM
266100) and two disorders in molybdenum cofactor
metabolism (MOCS1 and MOCS2 deficiency, respec-
tively; OMIM 603707 and 603 708) were straightforward.
Molybdenum cofactor deficiency type A (OMIM 252150)
(Figure 3C) was easily detected by the combination of
metabolites of purine metabolism and S-sulphocysteine.
The prominent α-AASA excretion in the α-AASA-DH
deficiency resulted in an obvious pattern.

FIGURE 3 (Continued)
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3.3.11 | SSIEM disease group 14—
disorders in the metabolism of trace
elements and metals

Hypophosphatasia (OMIM 241500) which was easily
detected by the prominent phosphoethanolamine peak.

3.3.12 | SSIEM disease group 15—
disorders and variants in the metabolism
of xenobiotics

The group of disorders and variants in the metabolism of
xenobiotics only includes dimethylglycinuria (OMIM
605850), which was correctly diagnosed.

4 | DISCUSSION

We describe a single platform high-resolution UHPLC-
QTOF-MS metabolomics approach for analysis of urine
using targeted ion extraction, automated data processing,
age-group-matched z-scores and a phenotype prediction
score. We tested 78 of the total 232 OMIM diseases in our
urine disease-metabolite database and found the correct
diagnosis in 68 samples. In 7 out of the remaining 10 sam-
ples a normalized metabolite pattern, due to treatment,
hampered detection of the correct diagnosis.

As TUM is intended as a screening method, we there-
fore foresee no problems using TUM to diagnose yet
untreated patients with IEM within context. Our primary
goal was the consolidation of dedicated assays in urine,

FIGURE 4 Needle plot and heatmap from a patient with fumarase deficiency displaying new metabolites due to a secondary

adenylosuccinate lyase deficiency
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for example, organic acids, amino acids, purines and
pyrimidines, and acylcarnitines. We aimed to include
screening for acute intermittent porphyria, which is
often performed in an emergency setting requiring short
turn-around time, and screening for creatine biosynthe-
sis and transport disorders. Combining these assays in
TUM streamlines the diagnostic process, reduces the
time to results to 24 hours in case of emergency, and
gives an unbiased overview of metabolites potentially
leading to discovery of new disease-associated metabo-
lite profiles.7,8

We successfully combined the mentioned dedicated
assays into TUM, and disorders in amino acid, fatty acid,
ketone body, purines and pyrimidines, neurotransmitters,
and vitamin metabolism could be identified. Disorders in
carbohydrate, sterol, and xenobiotics metabolism and
porphyrias were detected (Figure 2).

Main issues affecting sensitivity were (a) suboptimal
separation of metabolites, (b) metabolites with great
analytical variation, and (c) high biological variability
for a few metabolites in the youngest age-group. Regard-
ing the separation, polar metabolites are not optimally
separated as they have limited retention on a reversed-
phase column, which holds true for amino acids and
sugars. Theoretically, parallel runs with, for example, a
hydrophilic interaction liquid chromatography column
could be performed to reach improved coverage of these
polar metabolites. However, this would decrease time
efficiency, and therefore we opt for performing a dedi-
cated assay as a second tier test in case of inconclusive
results or high suspicion of a certain IEM based on
TUM results. Regarding analytical variability, certain
metabolites (methylglutaconic acid and creatine) show a
high within-run variation seldom resulting in z-score
values above j3j in patients. Unfortunately, these metab-
olites are equally troublesome in dedicated assays. Thus,
biochemical diagnosis of creatine transporter deficiency
can be challenging, regardless of the chosen analytical
method. Regarding the youngest age group, the large
variation in intensity of some metabolites could poten-
tially result in false-normal z-scores. We require more
control samples in this group allowing us to further
specify the current age group of 0-18 months to several
age groups in order to obtain more reliable z-scores.
Until that moment we advise to apply TUM for patients
aged >18 months.

The goal of diagnostic metabolomics in whatever
matrix, be it urine, plasma or CSF, is a comprehensive
screening using a stringently limited number of runs to
detect diagnostically relevant metabolites for as many
IEM as possible, with emphasis on the treatable condi-
tions.9,10 As mentioned in the introduction, a single run

analysis is not feasible because of the chemical spectrum
of the relevant biomarkers. However, to be as complete
as possible we can strive to develop logistics for the paral-
lel runs needed and make concomitant analysis pipelines
as fast as possible. Our TUM workflow takes 24 hours
and could complement data from additional analysis of
macromolecules or lipidomics, having different sample
work-up and separation.

Our partner laboratory has recently developed (un)
targeted plasma metabolomics.3 We envision the consoli-
dation of our two workflows allowing for ultrafast analy-
sis of plasma samples parallel to TUM to broaden our
metabolite profiling with apolar metabolites. Addition-
ally, the raw data is still available for different processing
to probe the untargeted data for discovery of potential
novel biomarkers. In a pilot study, we performed
untargeted metabolomics on urine samples using the
pipeline described by Coene et al.,3 and the data look
promising (data not published).

This integrative approach of TUM with untargeted
data-extraction also led to the expansion of biomarker
profiles for some well-known IEM. For instance, in two
out of three urine samples of fumarase deficiency (OMIM
606812) SAICA-riboside (SAICAr), succinyladenosine
(SAdo) and argininosuccinate were increased next to the
primary metabolite fumarate. The former two metabo-
lites are associated with adenylosuccinate lyase (ADSL)
deficiency (OMIM 103050) and the latter with
argininosuccinate lyase (ASL) deficiency (OMIM
207900). The accumulating fumarate in fumarase defi-
ciency inhibits the fumarate-releasing reactions of ADSL
and ASL,11,12 thereby causing secondary deficiencies of
these enzymes and leading to the corresponding meta-
bolic profile.13,14 This sheds a new light on fumarase defi-
ciency, and we await further confirmation of these
findings in additional samples.

In conclusion, we have developed an innovative,
targeted urine metabolomics procedure, TUM, that
includes a prediction software tool to assist the diagnosis
of IEM. We present TUM as a powerful diagnostic
screening tool that merges most urinary diagnostic
assays, thereby accelerating the diagnostic work-up for
patients suspected of IEM.
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