
1

A machine learning toolbox for the analysis of sharp-wave ripples reveal 1
common features across species 2

Andrea Navas-Olive1*�, Adrian Rubio1*, Saman Abbaspoor2, Kari L. Hoffman2,3 3
and Liset M de la Prida1,� ,# 4
1Instituto Cajal, CSIC, Madrid 28002. Spain 5
2Psychological Sciences, Vanderbilt Brain Institute, Vanderbilt University, USA 6
3Biomedical Engineering, Vanderbilt University, USA 7

 8

 9

* These authors contributed equally 10
�Correspondence to: acnavasolive@gmail.com and lmprida@cajal.csic.es 11
Lead author: lmprida@cajal.csic.es 12

 13

Abstract 14

The study of sharp-wave ripples (SWRs) has advanced our understanding of memory function, and 15
their alteration in neurological conditions such as epilepsy and Alzheimer’s disease is considered a 16
biomarker of dysfunction. SWRs exhibit diverse waveforms and properties that cannot be fully 17
characterized by spectral methods alone. Here, we describe a toolbox of machine learning (ML) 18
models for automatic detection and analysis of SWRs. The ML architectures, which resulted from a 19
crowdsourced hackathon, are able to capture a wealth of SWR features recorded in the dorsal 20
hippocampus of mice. When applied to data from the macaque hippocampus, these models were 21
able to generalize detection and revealed shared SWR properties across species. We hereby 22
provide a user-friendly open-source toolbox for model use and extension, which can help to 23
accelerate and standardize SWR research, lowering the threshold for its adoption in biomedical 24
applications. 25
 26

Keywords: ripples; neural networks; convolutional neural networks; hippocampus; monkey 27

 28

 29

 30

 31

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

2

Introduction 32

The study of brain rhythms has bolstered our understanding of the neural basis of cognition. 33
Because these signals emerge from the coordinated activity of multiple neurons, they can be used 34
as biomarkers of the underlying cognitive process1. For example, hippocampal sharp-wave ripples 35
(SWRs) represent the most synchronous pattern in the mammalian brain, and are widely 36
considered to contribute to the consolidation of memories2. SWRs consist of brief high-frequency 37
oscillations or ‘ripples’ (100-250Hz), which can be detected around the hippocampal CA1 cell layer 38
during rest or sleep. An avalanche of excitatory inputs from the CA3 region, typically visible as a 39
slower sharp-wave component, triggers ripples locally in CA13,4. Within the ripple event, neural 40
firing patterns that occurred during exploratory behavior are reactivated outside of the experience5,6, 41
leading the SWR to be used as an index of consolidation-associated reactivation or replay7–10. 42

Although SWRs can be detected across an array of recording methods, subfield locations, and 43
species2,11 their underlying mechanisms and consequent local field potential (LFP) features are 44
understood almost exclusively from measurements in rat and mouse dorsal hippocampal CA1. 45
Even within this region, SWRs exhibit a large diversity of waveforms that presumably reflect the 46
myriad combinations of reactivating ensembles12–14. Using spectral methods their characteristics 47
are shown to vary along the long (septotemporal) CA1 axis within animals15 and most notably with 48
phylogenetic distance across species e.g. when measured in the human versus non-human 49
primates11,16,17. Furthermore, in diseases affecting hippocampal function, such as in Temporal Lobe 50
Epilepsy, pathological forms of ripples have been reported 18–21, as well as along aging 22,23. 51
However, spectral properties alone are suboptimal to separate these events from other types of 52
faster oscillations 24–26. 53

To address this challenge, many researchers have developed feature-based strategies for 54
detecting LFP oscillations using machine learning (ML) tools16,27–32. These novel strategies have 55
accelerated our understanding the underlying mechanisms of SWRs, and the improvement of 56
closed-loop interventions beyond those using spectral features alone31,33. Yet these methods have 57
been focused on a single detection method optimized for a single target application, typically either 58
in mouse dorsal CA1 or within lab-specific approaches to detection in brains of humans with 59
epilepsy. As LFP recordings are increasingly common in the clinic, the need to scale analysis from 60
small laboratory animals to the human brain is pressing10,34–39. Developing these new tools will 61
provide the community with straightforward methods to identify SWRs from pathological 62
oscillations across the range of recording technologies, sampled regions, and background 63
pathologies. Therefore, there is a broad demand for a consolidated toolbox of ML methods for LFP 64
feature analysis that can be easily applied across species, to aid in understanding of brain function, 65
but also advance biomedical applications. 66

Here, we develop and analyze a set of ML architectures applied to the problem of SWR 67
identification, and compiled in an open toolbox: https://github.com/PridaLab/rippl-AI. To favor an 68
unbiased screening of potential ML solutions, we ran a hackathon with people from very disparate 69
fields with the mission of detecting SWR using algorithms in a supervised manner. Using 70
community-based solutions in neuroscience is gaining traction due to their ability to foster 71
interdisciplinary and diverse perspectives, and to promote collaboration and data sharing40–43. We 72
selected the most promising architectures from the hackathon and standardized them for fair 73
comparisons. We show how the different ML models could bias SWR detection and identify 74
conditions for their optimal performance and stability in the mouose hippocampus (Mus musculus). 75
We then extend the analysis to SWRs recorded in the macaque hippocampus (Macaca mulatta), to 76
demonstrate the generalizability of SWRs detection methods to the primate order. This proof of 77
principle will foster the development of feature-based detection algorithms for future applications to 78
a range of models and approaches, including the human brain. 79

 80

Results 81

Community-based proposal of ML models of SWR 82

To create a diversity of ML supervised models of SWRs, we organized a hackathon that promoted 83
unbiased community-based solutions from scientists unfamiliar with neuroscience research, and 84
SWRs in particular (see Methods). The hackathon challenge was to propose a ML model that 85

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

successfully identifies SWR in a dataset of high-density LFP recordings from the CA1 dorsal 86
hippocampus of mice, used before for similar purposes31. Preparatory courses introduced 87
participants into the main topics required for the challenge (Fig.1A). To standardize the different ML 88
models, they were given access to Python functions for loading the data, to evaluate model 89
performance, and to write results in a common format. Annotated data consisted of raw LFP 90
signals (8-channels) sampled at 30 kHz, and containing SWR events manually tagged by an expert 91
(training set: 1794 events, two sessions from 2 mice; test set: 1275 events; two sessions from 2 92
mice; Fig.1B). 93

 94

95
Figure 1: Unbiased community-based proposals of ML models of SWR. A, Organization of the 96
hackathon. A preparatory phase (Prep) established the basic grounds of the challenge in terms of minimal 97
knowledge about SWR, Python programming and Machine Learning (ML) models. It also looked to 98
standardize scripts and data management. The second phase consisted on the hackathon, which lasted over 99
53h during three days, with participants having access to the annotated training dataset and some Python 100
scripts. During the last evaluation phase, a new test set was released to participants 3 hours before the end 101
of the hackathon. Solutions were ranked using the F1-score (see methods). B, Example of the training data 102
consisting on 8 channels of raw LFP (black) sampled at 30 kHz, with the manually tagged ground truth (GT), 103
corresponding to SWR events. C, Results from the hackathon. Solutions were ranked by the F1-score. F1 104
represents the harmonic mean between Precision (percentage of good detections) and Recall (percentage of 105
detected GT events). Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), Recurrent 106
Neural Networks (RNN) with/without Long-Short Term Memory (LSTM); Random Forest decision trees (Rand 107
Forest), Extreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), k-Nearest Neighbors (kNN).108
Chosen solutions are marked with arrowheads. Darker arrows point to the group that got the highest score of 109
each particular architecture; light arrows point repeated architectures. D, Schematic representation of the 110
SWR detection strategy and the 5 ML models used in this work. 111
 112
 113

al
d
L
el
P
rt

 2

he
al
to
er
n
d
ta
),
1

of
nt
d

N).
of
e

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

Participants submitted eighteen different solutions (Fig.1C). The most used architecture was the 114
Extreme Gradient Boosting (XGBoost; 4 proposals), a decision tree-based algorithm very popular 115
for its balance between flexibility, accuracy and speed44 (Fig.1C). Some other popular architectures 116
were one and two-dimensional Convolutional Neural Networks (1D-CNN, 2D-CNN; 3 and 3 117
solutions, respectively), Deep Neural Networks (DNN, 3 solutions)45, and Recurrent Neural 118
Networks (RNN; 2 solutions)45 (Fig.1C). RNN were presented in both their standard feed-forward 119
version, and as the Long-Short Term Memory (LSTM) version that includes feedback connections, 120
more suited for processing time series data46. 121
 122
Although all these architectures are neural networks typically used for pattern recognition, the way 123
they process and learn from data is remarkably different. For example, whereas CNNs are based 124
on kernels specialized in spotting particular spatially contiguous features of the input, LSTMs use 125
memory cells that look for time-dependent relationships in the data. Two other algorithms were 126
also submitted: a Support Vector Machine (SVM; 1 solution; Fig.1C) and a clustering-based 127
solution based on dimensionality reduction by Principal Component Analysis (PCA), followed by k-128
Nearest Neighbors (kNN) clustering (1 solution; Fig.1C). From the 18 solutions submitted, 5 were 129
not functional and could not be scored (Fig.1C, bottom). Analysis of the hackathon experience in 130
relationship to the submitted solutions are summarized in Fig.S1 (see methods for details). 131

132
Figure S1. Information about the hackathon. A, A hackathon was organized to seek for community-based 133
solutions to the SWR challenge from people unfamiliar to SWR neurophysiology. Among the 116 participants, 134
there were undergraduate students (45%), Master students (38%), PhD students (15%), and industry 135
workers (3%). B, There was a general lack of neuroscience knowledge, although most participants declared 136
a high-level performance in Python. Most groups integrated people with programming abilities and basic ML 137
knowledge. C, Participant age (left), gender (middle; 71% male, 29% female participants) and involvement in 138
research (right; 21% already in research; 56% interested in doing basic research; 23% not motivated for 139
basic research activities). D, Self-reported participation rate during the three days of the hackathon. E,140
Correlation between the performance metric of the proposed solution and emotional states of participants as 141
quantified from their responses to surveys recorded during the hackathon (Spearman rank-order correlation *,142
p<0.05; **, p<0.01). Only performance of functional solutions were used. See Methods for details. 143
 144
 145

e
ar
es
3
al
rd
s,

ay
d
e

re
d
-

re
in

d

ts,
y
d
L

 in
or
E,
as
 *,

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

5

We sought to identify the more promising architectures for a subsequent in depth analysis. 146
Performance of submitted ML models was measured using the F1-score (see next section). The 147
best performances were achieved by the 2D-CNN, one of the XGBoost models, and the SVM 148
algorithm. Since 1D-CNNs and RNNs were submitted by several groups, and given their previously 149
successful application to SWR detection28,31, we decided to include them as well, resulting in five 150
different machine learning architectures (Fig.1C; dark arrowheads). 151

The goal of the ML models is to identify the presence of a SWR (or part of it) in a given analysis 152
window (Fig.1D, left). The selected ML architectures covered a range of processing strategies 153
(Fig.1D, right). XGBoost is a very popular ML algorithm that uses many decision trees in a parallel 154
fashion, making it one of the fastest algorithms47. SVM regression lays within the statistical learning 155
framework, and its objective is to find a new space where samples from different categories (SWRs 156
vs no-SWRs) are maximally separated, making it one of the most robust classification methods48. 157
LSTMs are especially suited for regression and classification of temporal series like in natural 158
language processing, using a memory-based strategy to extract relationships between non-159
continuous time points46. CNNs represent a very common approach for many detection and 160
classification tasks applied to different data modalities (1D for signals, 2D for images and 3D for 161
video or volumetric reconstructions), and can approach human performance on many tasks49. 162
While 2D-CNNs process input data by considering adjacency on both dimensions (spatial and 163
temporal, in our case), the 1D-CNN solution treats each channel independently and only considers 164
time adjacency, making them two distinct processing algorithms. 165
 166
This community-based ML architecture bank that was produced by participants who were 167
unfamiliar with SWR studies can be used to evaluate the problem of SWR automatic detection in 168
experimental contexts. We next focused on standardizing processing and retraining the different 169
models. 170
 171
 172
Standardization and retraining of selected algorithms 173

After careful examination of the submitted solutions, we noticed that data pre-processing and 174
training strategies were very different between groups. Data characteristics, like the sampling 175
frequency or the number of channels used for detection can influence operation. To standardize 176
analysis, we chose to down sample to 1250 Hz, and normalize input data using z-scores, which 177
account for differences in mean values and standard deviation across experimental sessions. 178

We then retrained the submitted ML architectures using the same training set of the hackathon. We 179
randomly divided the dataset into a training set (70%), and a test set (30%) to evaluate their 180
performance in unseen data prior to a more thorough validation (Fig.2A). We explored a wide 181
range of hyper-parameters for each architecture, which included the number of LFP channels (1, 3 182
or 8), the size of the analysis window (from 6.4 up to 50 ms) and model-specific parameters like 183
“maximum tree depth” for XGBoost, “bidirectionality” for LSTM or “kernel factor” for CNNs (Fig.2A). 184
A trained ML architecture set with a particular combination of its hyper-parameters gives rise to a 185
particular “trained model” (Fig.2A). Because each architecture had different numbers of hyper-186
parameters, we ended up with different numbers of trained models for each architecture (1944 for 187
XGBoost, 72 for SVM, 2160 for LSTM, 60 for 2D-CNN, and 576 for 1D-CNN). We then used the 188
test set to choose the 50-best models from each architecture, and further tested their performance 189
using a new validation dataset (7586 SWR events; 21 sessions from 8 mice), previously used for 190
the 1D-CNN model31 (Fig.2A, right). 191
 192
The goal of training is to make the model output as similar as possible to the ground truth (GT). 193
Because model outputs are continuous numbers between 0 and 1 representing the probability of 194
the presence of the event in the window of analysis, choosing the detection threshold can affect 195
performance (Fig.2B). Lower thresholds would result in more detections (Fig.2B, light-gray 196
discontinuous threshold line), normally implying a larger number of both True and False Positives, 197
while higher thresholds are more conservative at the expenses of False Negatives (Fig.2B, dark-198
gray threshold line). An ideal model would perform well regardless the threshold, but in practice 199
selecting the threshold that optimizes the True Positive-False Positive trade-off is unavoidable but 200
crucial for experiments. A performance score that takes into account this trade-off is the F1-score, 201
computed as the harmonic mean between Precision (percentage of good detections) and Recall 202

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

(percentage of detected GT events) (Fig.2C). F1 values of 1.0 would reflect a perfect match 203
between detections and GT, whereas 0.0 reflects a perfect mismatch. Note this was the same 204
score used to rank models in the hackathon. 205
 206
After training all architectures by optimizing F1-scores over the test set, we assessed 207
generalization and performance using the validation dataset. We inspected what parametric 208
combinations gave rise to optimal ML models, and found a remarkable variety of distributions 209
(Fig.S2A). All architectures showed a great deal of variability, with almost all available parameter 210
combinations covered. However, some parameters showed biases that depended on the ML 211
architectures, pointing to the necessary requirements for a good performance. For example, all of212
the 50-best XGBoost models used 8-channels, and in general, more than 1-channel was used 213
across successful architectures (Fig.S2A). Furthermore, different architectures had distinct ranges 214
of parameter values. XGBoost models required longer time windows (25 ms), whereas most SVM 215
models employed shorter windows (<3.2 ms). LSTM, 2D-CNN and 1D-CNNs with variable window 216
sizes all showed very strong performance for >12.8 ms. Finally, LSTM models used both uni- and 217
bi-directional input flow, whereas all of the best models resorted to bidirectionality, suggesting that 218
there should be SWR information also coded in the period preceding an event50. 219
 220
A plug-and-play toolbox to use any of the best 5 models of each architecture for SWR detection is 221
available: https://github.com/PridaLab/rippl-AI. 222
 223

224
 225
Figure 2: Training design and performance of ML models. A, Training and selection criteria scheme. The 226
training dataset used in the hackathon was z-scored and down-sampled to 1250Hz. Training data were227
shuffled and distributed into train and test subsets (70%-30% respectively). Each architecture was trained to 228
optimize F1 of the test set using several parameters. The 50 best models were tested over a new validation 229
data set (7586 events; 21 sessions from 8 animals), generating an F1 vs threshold curve per model/ 230
architecture. Among these 50, the model with highest mean F1 was selected for between-models 231
comparison (right panel). B, LFP example of the validation set and the corresponding model outputs per 232
window of analysis. Note different duration of true events. Setting a threshold allows defining the windows 233
containing detected events. Colored ticks represent detections by the different models. Two different 234
thresholds (dark and light gray) can influence what events are detected. Note how detections marked with 235
arrows are dismissed when the threshold increases. Since SWRs constitute about 1-4% of the total 236
recording duration, performance is computed using positive detections; that is windows without GT or 237

ch
e

d
ric
ns
er
L

of
d

es
M
w
d

at

 is

e
re
to
n

el/
ls
er
s

nt
ith
tal
or

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

detected events are not computed for performance. C, Schematic illustration of Precision (percentage of 238
good detections), Recall (percentage of ground truth events that have been detected) and F1-score239
(harmonic mean between Precision and Recall). 240
 241
 242

243
Figure S2: Definition of parameter space in the different ML architectures. A, Results from the different 244
architectures in the training dataset: XGBOOST, SVM, LSTM, 2D-CNN and 1D-CNN. Tables indicate the 245
different hyper-parameters used to train each architecture. The resulting 10-best models are color-coded by 246
their F1-score in the validation dataset. The remaining 40-best models are shown in light gray. B, Evolution 247
of accuracy along training epochs for the ML models shown in A. 248

 249
 250
Influence of the temporal and spatial sampling in training performance 251

Next, we sought to evaluate the relationship between model performance, parameters and LFP 252
input characteristics. Given the relevance of the temporal and spatial LFP sampling in the definition 253
of SWRs31, we started evaluating how the size of the analyzed window and the number of 254
recording channels influenced performance. In order to have as much data as possible, we used 255
F1-scores of all the trained models over the test set. 256

We found that XGBoost and LSTM were very stable, with performances changing very little for any 257
combination of window size and the number of channels used, suggesting that these architectures 258
can capture SWR features that are relatively invariant across temporal/spatial windows in the input 259
data (Fig.3A,B). Interestingly, the training parameter that most influenced these two architectures 260
was the number of LFP channels, with 3 and 8 channels providing better performances (Fig.3A). 261

Spatial information was also important for the SVM model, which scored poorly using a single 262
versus several channels (Fig.3A; magenta). As mentioned above, temporal resolution was also 263
critical for SVM, which required smaller time windows of <3.2 ms to succeed in detecting SWR 264
(Fig.3B). For analysis windows >6.4 ms (i.e. the temporal scale of one 150Hz-ripple oscillation) 265

of
re

nt
e

by
n

P
n

of
d

ny
es
ut
es

le
so
R
n)

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

performance dropped significantly, indicating that a single SWR cycle and its particular waveform 266
across channels are optimal input information for the SVM architecture to detect events. This effect 267
could be due to the low number of trainable parameters used for SVM (ranging from 1 to 100; see 268
methods), which requires less but more informative data to achieve good performances. 269

Figure 3: Influence of number of channels and analysis window on training performance. A, Final test 270
F1-score of all trained models depending on the number of input channels: one (pyramidal channel; see 271
methods), three (pyramidal channel and extreme channels), or eight (all channels of the probe). Kruskal-272
Wallis tests with repeated measures for every architecture: XGBOOST, Chi2(2)=1282.2, p<0.0001; SVM, 273
Chi2(2)=33.1, p<0.0001; LSTM, Chi2(2)=964.4, p<0.0001; 2D-CNN, not significant; 1D-CNN, Chi2(2)=14.6, 274
p=0.0007. Post hoc tests *, p<0.05; **, p<0.01, ***, p<0.001. B, Same as panel A, but depending on the time 275
window used for analysis. Kruskal-Wallis tests with repeated measures for every architecture: XGBOOST, 276
Chi2(2)=369.5, p<0.0001; SVM, Chi2(7)=48.8, p<0.0001; LSTM, Chi2(5)=48.0, p<0.0001; 2D-CNN, 277
Chi2(4)=16.5, p=0.0024; 1D-CNN, Chi2(3)=126.5, p<0.0001. Post hoc tests *, p<0.05; **, p<0.01, ***, 278
p<0.001. 279

 280
 281

Finally, both the 2D- and 1D-CNN models had similar performance for any number of channels, 282
although there was also a trend for higher spatial sampling (Fig.3B, yellow and acqua). 283
Interestingly, both CNN models presented a large F1 dispersion because their performance was 284
very dependent on the window size (Fig.3B). The 2D-CNN model exhibited maximal F1-score for 285
32ms, while most 1D-CNN models best scored for 25 ms (Fig.3B). This may be related to the286
number of training parameters: the more parameters, the more complex tasks these algorithms 287
can solve, provided the amount of training data is representative enough of the expected variance. 288
This supports accurate detection in longer LFP windows. Examination of the remaining parameters 289
suggested additional differences across architectures (Fig.S3A-E). Interestingly, evaluating their 290
impact on F1-scores confirmed the effect of channels and window size on model behavior 291
(Fig.S3F). For CNN models, the batch size (1D-CNN) and the number of kernels (2D-CNN) were 292
also critical. 293

m
ct
e

st
e
-
,

6,
e
T,
N,
**,

ls,
).

as
or
e
s
.

rs
ir

or
re

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

294
Figure S3: Influence of architecture-specific training parameters on performance. A-E, F1-scores from 295
the test set for all models of each architecture. All statistical tests were Kruskal Wallis (KW) with repeated 296
measures. A, XGBoost training parameters: maximum tree depth (KW: Chi2(3)=1321.6, p<0.0001), learning 297
rate (KW: Chi2(2)=1109.4.6, p<0.0001), gamma (KW not significant), lambda regularization (KW: 298
Chi2(2)=67.8, p<0.0001) and scale (KW: Chi2(2)=111.6, p<0.0001). Post hoc tests *, p<0.05; **, p<0.01, ***, 299
p<0.001. B, SVM training parameters: under-sampling percentage (KW not significant). Higher % of 300
undersampling means training the model with higher representativity of GT data. C, LSTM training 301
parameters: bidirectionality (KW: Chi2(1)=320.1, p<0.0001), number of layers KW: Chi2(3)=602.4, p<0.0001),302
number of units per layer (KW: Chi2(9)=543.8, p<0.0001) and training epochs (KW: Chi2(2)=836.1.6, 303
p<0.0001). D, 2D-CNN training parameters: number of kernels scaling factor (KW: Chi2(3)=16.0, p=0.0011), 304
number of epochs and batch size (KW not significant). E, 1D-CNN training parameters: number of kernels 305
scaling factor (KW not significant), number of training epochs (KW not significant), and batch size (KW: 306
Chi2(2)=196.9, p<0.0001). F, F1-score variability as a function of all training parameters. F1 variability was 307
computed as the difference between the maximum and minimum mean F1. 308
 309
 310

Comparison between optimized models 311

The analysis above provided insights on how input characteristics and processing parameters can 312
influence detection performance in different ML models. Understanding how each architecture 313
learns to identify ripple-like events can not only can aid the development of new tools, but unveil 314
what are the key LFP features used for detection. We thus evaluated conditions for their best 315
performance. 316

For fair comparison between architectures, we selected the 10-best models from the validation set. 317
Remarkably, our previously published 1D-CNN model31 was among the 10-best 1D-CNN, 318
outperforming other configurations. Plotting F1-scores of all models across a range of thresholds 319
allowed visualization of their performance stability as a function of the probability threshold (Fig.4A).320

m
d
g
:

**,
of
g

1),
6,
),
ls
:

as

n
re
eil
st

t.
,

ds
A).

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

We analyzed their performance along a range of characteristics (performance, robustness, and 321
threshold dependency) to better inform their selection depending on research applications. Five of 322
the 10-best trained models of all architectures are available at https://github.com/PridaLab/rippl-323
AI/blob/main/optimized_models/ 324

The consistency of F1-threshold curves depended on the model architectures (Fig.4A). Most 325
models reached their maximal F1-score at relatively low threshold values of 0.3-0.4 and remained 326
stable until a probability of around 0.5-0.7. Such a behavior indicates robust performance, since 327
even low probability (i.e., relatively uncertain) output predictions overlapped with the ground truth. 328
This property is very useful for online experimental applications, when choosing different 329
thresholds is not manageable, making detection more robust. Interestingly, we found that XGBoost 330
models exhibited good performance at two threshold ranges (0.2-0.4 and 0.6-0.8), depending on 331
how trained models penalized False negative predictions. Similarly, for both CNN architectures, we 332
found several models operating sharply at low thresholds, while others exhibited a relatively stable 333
operation in the 0.4-0.6 range especially for 1D-CNN models. We confirmed the variability of 334
different models within a given architecture by looking at their Precision vs Recall curves for the 335
entire threshold range (Fig.S4A). This variability suggests that even when arising from the same 336
architecture, algorithmic processes and detection strategies by which the different models were 337
detecting SWR events could differ. This may provide a range of models for different applications. 338

339
Figure 4: Comparison between best performing ML models. A, F1 against threshold from the 10-best 340
models of each architecture as evaluated in the validation set. Each line represents the performance of one 341
trained model, colored by its maximal F1 (mean from all sessions is plotted in dark color). Data reported as 342
mean±95% confidence interval for validation sessions. Arrows indicate the best model of each architecture. 343
B, F1-scores for the best model of panel A. Thresholds used are: 0.4 for XGBoost, 0.5 for SVM, 0.4 for 344
LSTM, 0.1 for CNN2D, 0.5 for CNN1D. Each dot represents a session of the validation set (n=21 sessions; 8 345
mice). In gray, the F1-score for a consensus detector. Kruskal-Wallis, Chi2(5)=26.9, p<0.0001; post hoc tests 346
*, p<0.05; **, p<0.01, ***, p<0.001. C, Stability index for the best model of each architecture (left), and the 347
stability index vs the F1 (right). Kruskal-Wallis, Chi2(4)=10.5, p=0.03; post hoc tests. D, Similarity between 348
predicted events of different architectures. Models are the same as in panels B-C. To measure the similarity, 349
the mean F1 across validation sessions have been computed, using detected events in the y-axis as 350
detections, and detected events in the x-axis as ground truth. Note the similarity between LSTM and 1D-351
CNN (white *), and that by XGBoost against SVM, LSTM and 1D-CNN (white +). 352

 353
 354

d
of
-

st
d

ce
h.
nt
st
n
e
le
of
e
e

re

st
e

as
e.
or
 8
ts

he
n

ty,
as

-

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

Next, we selected the model that reached the highest F1 value from each architecture (Fig.4A, 355
best models, arrowheads), and compared their scores using all validation sessions (Fig.4B). We 356
found that the LSTM and 1D-CNN best models outperformed other architectures, with mean F1-357
scores over 0.6 (as a reference, the inter-expert F1-score in our lab is ∼0.731. Precision-Recall 358
curves from these two models clearly stood out of the other solutions (Fig.S4B). Importantly, a 359
consensus prediction based on the 5-best models did not perform better than individual 360
architectures alone (Fig.4B; gray). 361
 362
Given the importance of consistent threshold performance for practical applications, we quantified 363
the robustness of F1-threshold curves for the best models using a stability index in the validation 364
dataset (see methods). Models with a stability index of 1.0 provide at least 90% of its maximal 365
performance for any threshold value, a property especially suitable for experimental applications. 366
While the best 2D-CNN model exhibited stability in some validation sessions, the best LSTM and 367
especially the best 1D-CNN best models exhibited more consistent behavior (Fig.4C, left; Fig.S4C).368
We confirmed this result by plotting the stability index versus F1, where both the best LSTM and 369
1D-CNN best models clearly segregated (Fig.4C, right; arrowhead). 370

 371
Figure S4: Precision-Recall curves of optimized models. A, Precision (P) vs Recall (R) curves for the 10-372
best models of each architecture. Each dot represents P-R values for a particular threshold. Each line 373
represents the performance of one trained model, colored by its maximal F1 (mean of all sessions is plotted 374
in dark color; sessions are light colored). B, P-R curves for the best model of each architecture (all 375
thresholds). Thick lines represent mean values. Thin lines curves are individual validation sessions. C, F1-376
score as a function of the threshold. Data reported as mean±95% confidence interval for validation sessions. 377
D, Similarity between the events predicted by the best model (maximum F1) of each architecture. Models 378
shown are the ones with maximum F1. To measure the similarity, we computed the mean Precision (right) 379
and Recall (left) across validation sessions have been computed, and used detected SWR events of models 380
in the y-axis as detections, and detected events of models in the x-axis as ground truth. 381
 382
 383
Finally, to evaluate whether the different models were targeting similar or different subsets of SWR 384
events, we compared how similar their detections were. To quantify this similarity, we computed the 385
F1 between both groups of detections, using one of them as the ground truth (Fig.4D). Interestingly,386
the 1D-CNN and LSTM showed a high level of similarity, in line with their consistent and accurate 387
behavior (Fig.4D, white *). XGBoost scored a high similarity with all other architectures except for 388
the 2D-CNN (Fig.4D, white +). Possibly, this reflects the fact that very few of the XGBoost 389
detections were also predicted also by 2D-CNN, leading to a very low Precision (Fig.S4D). In 390
general, high similarities did not seem to be caused by a particularly high Precision or Recall 391

A,
e
-

all
 a
al

d
n
al
s.
d

C).
d

-

e
d

all
-

s.
ls
t)
ls

R
e
ly,
te
or
st
In
all

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

(model A detects so few events that all coincide with detections of model B), but by a good balance 392
between both (events of model A and B highly overlap) (Fig.S4D). 393
 394
 395
 396
Effect of different ML models on the features of detected SWRs 397

Results above suggest that different models may be relying on different strategies for recognizing 398
SWRs. We thus wondered whether models could be biased towards SWRs with different features399
(e.g. frequency, amplitude, etc…), and whether these biases could also be reflected over different 400
ranges of output probabilities. 401

In order to evaluate these issues, we resorted to a low-dimensional analysis of SWRs which allows 402
for their unbiased topological characterization14. In this strategy, SWR events are considered points 403
in an N-dimensional space, where each dimension X (dimX) represents the LFP value sampled at 404
a given timestamp X (Fig.5A). In our case, as events were GT ripples of 50 ms sampled at 1250Hz 405
(i.e. 63 timestamps), the original space was 63 dimensions. Plotting all SWR events will result in a 406
point cloud, with events sharing similar LFP features lying close to each other, while those of 407
different characteristics distribute separately (Fig.5A). To ease visualization, the SWRs were408
embedded in a low-dimensional representation using Uniform Manifold Approximation and 409
Projection (UMAP)14,51. 410

411
Figure 5. Effect of ML models and thresholds on the type of detected SWR. A, Low-dimensional 412
analysis of SWR features14. GT ripples are represented into a high-dimensional space by mapping each 413
timestamp to a particular dimension. Since the sampling rate is 1250Hz, and windows around SWRs were 414
cut to 50ms, there are 63 timestamps per event, and so the original space has 63 dimensions. The SWR 415
cloud is embedded in a low-dimensional space using UMAP. B, UMAP embedding projected into the two 416
first axes. Each dot represents a GT ripple, and its color reflects its frequency (left) and power (right). Note 417
how ripples in the cloud are distributed according to frequency and power, meaning that in the original space 418

e

g
es
nt

s
ts
at
z

 a
of
re
d

al
ch
re
R
o
te
ce

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

13

ripples with similar features are close together. C, Colored dots superimposed over gray GT data represent 419
the top 1% of detected events for every given architecture, i.e., True Positive events with an output SWR 420
probability above 99% of the maximum probability for that given model. Note that different distributions of 421
events in the cloud reflect biases of ML model used for detection. D, Frequency of True Positive SWR 422
detected by each architecture. Each dot represents the mean frequency of detected ripples of one validation 423
session (21 sessions from 8 animals). Kruskal-Wallis tests for every architecture: XGBOOST, not significant; 424
SVM, Chi2(5)=11.1, p=0.049; LSTM, Chi2(5)=29.9, p<0.0001; 2D-CNN, Chi2(5)=13.8, p=0.017; 1D-CNN, not 425
significant. E, Spectral power of True Positive events detected by each architecture. Kruskal-Wallis tests for 426
every architecture: XGBOOST, SVM, 2D-CNN and 1D-CNN are not significant; LSTM, Chi2(5)=14.0, 427
p=0.016. Post hoc tests *, p<0.05; **, p<0.01, ***, p<0.001. 428
 429
 430

First, we analyzed how ripple frequency and power were distributed in the UMAP embedding by 431
coloring each dot (i.e. each SWR) based on their frequency (Fig.5B, left) and power (Fig.5B, right). 432
As expected from our previous work14, these features followed different distributions, segregating 433
high-frequencies towards the bottom of the cloud and high-power events radially out (Fig.5B). We 434
then inspected events detected by the best model of each architecture by plotting the top 1% 435
detections, defined as True Positive events for which the model output probability was >99% of its 436
maximum probability (Fig.5C). Interestingly, each model showed different distributions of preferred 437
SWRs. For example, XGBoost was biased towards a subset of high-power and fast SWR events 438
(Fig.5C, green arrowhead), whereas the SVM model exhibited a more heterogenous distrinution. In 439
turn, LSTM and both CNNs assigned higher probabilities to events that had a good frequency-440
power balance (Fig.5C, orange, yellow and blue arrowheads). Note how these models have more 441
colored events, consistent with their higher stability indices reported above (Fig.4C). 442

To quantify detection biases in each ML model, we analyzed the frequency and power of their True 443
Positive events and compared them against those in the GT. Consistent with the UMAP 444
distributions, SWR frequency was highly dependent on the threshold for SVM, LSTM and 2D-CNN 445
algorithms (Fig.5D). The case of LSTM was particularly striking with differences accumulating for 446
all thresholds. Instead, for the SVM and 2D-CNN biases were significant only when thresholds 447
differed ±0.2 from the optimal value (Fig.5D). As previously reported31, the 1D-CNN exhibited 448
roughly consistent behavior with SWR features not statistically different from GT events. SWR 449
power exhibited no major dependency on the threshold in any of the models but the LSTM, 450
especially at higher detection thresholds (Fig.5E). 451

Altogether, this analysis suggests that the different ML models can be exploited to detect a wide 452
range of SWRs with different characteristics. 453

 454
Using the toolbox to identifying SWRs in non-human primates 455
 456
A major motivation of our study is to develop methods which can be generalizable for a wider 457
range of detection contexts, including a greater range of species and biomedical applications. Thus, 458
we applied our ML models to LFP recordings from the hippocampus of the macaque, which shares 459
a high level of genetic, morphological and physiological characteristics with that of its fellow 460
primate, the human, while enabling precise localization of signals roughly comparable to those 461
used for the algorithm development. To accomplish this, we recorded hippocampal LFP signals 462
from a freely moving macaque using a multichannel linear probe52 (Fig.6A). Unlike the original 463
high-density probes (20 µm), recordings were obtained every 90/60 µm and spanned CA1 layers 464
(Fig.6A). As in mice, SWRs were manually identified (4133 events) to generate the annotated 465
ground truth (Fig.6B). Consistent with the literature16,17, macaque SWRs had lower frequencies and 466
higher power as compared to mouse ripples (Fig.6C). 467
 468
We applied the best model of each architecture trained in head-fixed mice to macaque recordings, 469
and evaluated their performance. For fair comparison, we flipped laminar LFP signals upside down 470
and sampled the channel combination that best matched the characteristic mouse LFP profile (see 471
Methods and layer orientation in Fig.6A). Strikingly, 4/5 models reached a maximum F1 of ~0.5 472
(Fig.6D), close to their maximal performance on mice data (~0.6). SVM, 1D-CNN and LSTM 473
exhibited the best performance, as compared to XGBoost and 2D-CNN (Fig.6D). Importantly, the 474

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

fact that both LSTM and 1D-CNN have relatively good generalization capability, suggests that they 475
successfully capture shared features of SWRs from mice and macaques. 476
 477

 478
 479

480
Figure 6. Extending sharp-wave ripple detection to non-human primates. A, Linear multichannel probes 481
were used to obtain LFP recordings from the anterior hippocampus of a freely moving monkey. B, SWR 482
events were manually tagged (4133 events) as in mouse data. C, Significant differences between SWR 483
recorded in mice and monkey. Kruskal-Wallis Chi2=1649, p<0.0001 for frequency; Kruskal-Wallis Chi2=407, 484
p<0.0001 for power. Posthoc, ***, p<0.001. Data from the GT in both cases. D. The best model of each 485
architecture trained in mouse data was applied to detect SWRs on the macaque data. Input data consisted 486
of 5 LFP channels of SO, SP and SR, and 3 interpolated channels (see methods for details). We evaluated 487
all models by computing F1-score against the ground truth (GT). Note relatively good results from non-488
retrained ML models. E, Results of model re-training using macaque data. Data were split into a training and 489
test dataset (50% and 20% respectively), used to train the models; and a validation set (30%), used to 490
compute the F1 (left panel). F, F1-scores for the maximal performance of each model before and after re-491
training. Kruskal-Wallis test, Chi2(2)=8.06, p=0.018. Post hoc tests *, p<0.05. 492
 493
 494
 495
We next chose to re-train the 5 models with the macaque dataset, using 50% for training and 20% 496
for testing. The remaining 30% was used for validation to compute the final F1. For re-training, we 497
reset all trainable parameters (internal weights) but kept all architectural hyper-parameters fixed 498
(number of input number of channels, input window length, number of layers, etc…). Performances 499
improved after retraining for 4/5 models, reaching a F1 increase of +0.3 for 2D-CNN (Fig.6E). The 500
best model was LSTM, followed by 1D-CNN and XGBoost. SVM was the only model that did not 501
improve after retraining, but exhibited a shift towards larger thresholds. Furthermore, performance 502
of macaque SWR detection after re-training reached the mouse level (Fig.6E), suggesting that 503
these models identified similar key features in both species, and could readily be trained to similar 504
levels of accuracy across mice and monkeys. A user-friendly open python notebook to re-train any 505
of the 5 models and use it for event detection is available at https://github.com/PridaLab/rippl-506
AI/blob/main/examples_retraining.ipynb 507
 508
 509
 510

ey

es
R
R
7,
ch
d
d
-
d
to
-

%
e
d

es
e

ot
ce
at
ar
ny

-

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

15

Discussion 511
 512
Here, we provide a pool of models for automatic SWR detection based on different ML 513
architectures. These include some of the most used ML solutions, such as XGBoost, SVM, 1D- 514
and 2D-CNN and LSTM. The models, which resulted from unbiased community-based proposals, 515
are able to capture a wealth of SWR features recorded in the dorsal hippocampus of head-fixed 516
mice. When applied to LFP recordings from a freely moving macaque, these models were able to 517
generalize detection. 518
 519
The need for detecting and classifying high-frequency oscillations such as SWR has accelerated 520
over recent years for advanced biomedical applications28,33,35,41,53. Identification of these events can 521
help to delineate normal from pathological epileptogenic territories18,54,55, and to develop closed-522
loop intervention strategies for boosting memory function33,35. However, spectral-based methods 523
have revealed suboptimal and the community is actively seeking for novel feature-based strategies. 524
Recently, solutions based in ML methods have started to emerge25,28,31,54. Using these tools will 525
drive advances not only in online detection of SWRs, but also their unbiased categorization for 526
better mechanistic understanding11,13,31,56,57, including their functional ties to visuospatial and 527
episodic memory10,11,16,34,38,39. 528
 529
Amongst the 5 ML models examined here we found the LSTM and 1D-CNN to provide the best 530
performance and reliability using rodent data. The other models exhibited roughly similar behavior 531
depending on the input parameter selection (recording channels and analysis windows). While in 532
general, we found that all of them performed better with high-density multi-channel recordings (8 533
channels), some of them (e.g. 2D-CNN) exhibited similar results while operating over data sampled 534
with 1 to 3 channels. This suggests they may be able to identify characteristic features with 535
reduced spatial information, which could facilitate applications to human recordings19,37. 536

Detection of SWR candidates with ML models is based on using a probability threshold. We found 537
that the different models exhibited a degree of sensitivity to threshold selection, with LSTM, 538
XGBoost and 1D-CNN providing a wider range of operational stability. This suggests there is a 539
larger range of thresholds in these models which provide relatively similar performance. Instead, 540
SVM and the 2-CNN better operate in a very narrow threshold range. This is very important for 541
online applications, when threshold selection can affect experimental results in real time25. 542

The different ML models are biased towards SWRs with slightly different properties, probably 543
reflecting their internal representations of SWR characteristic LFP features31. During training, each 544
model learns to identify what specific LFP features made ripples distinguishable from background 545
LFP signals, so that during SWR detection, the presence of those features raises their output 546
probability. The fact that the properties of detected SWR depend on the probability threshold for 547
SVM and 2D-CNN suggests that frequency and relative power are some of the LFP features these 548
models identified during training. On the contrary, XGBoost, LSTM and 1D-CNN models, which 549
showed less bias, may be capturing other LFP features such as the spatial profile. This is 550
consistent with results from the analysis of the influence of spatial sampling in training performance 551
in these ML models. 552

When applied to data from the macaque anterior hippocampus, we found that models trained with 553
LFP signals from the dorsal hippocampus of mice can perform relatively well, especially 554
considering established differences in frequency and in LFP shape in monkey and human10,16,17. 555
After re-training, their operation improved significantly, reaching the inter-experts’ performance 556
levels at 0.731. This demonstrates the strong capability of the ML models to generalize and 557
suggests the existence of shared features across species. This is of particular importance, 558
because many human applications may not have the exact spatial localization or the same 559
electrode types, in some cases even within studies, and so any effective ML applications will need 560
a high degree of generalizability. It also demonstrates the proof of principle for applying to a wider 561
range of measurements, including other animal models and ripple-adjacent pathologies such as 562
MTL seizures54. 563
 564
More testing along these lines will identify the extent of generalizability across different 565
permutations of species, location, electrode sampling and type, to find the limits of these ML 566
models. To enable such developments, we made several of the 10-best trained models and our 567

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

16

coding strategies for detection and retraining openly available to the research community at 568
https://github.com/PridaLab/rippl-AI. They can be tested through open-source notebooks that are 569
ready to use, with enough examples to illustrate their operation capability. Although the notebooks 570
provide easily readable code, they may not be optimal for further code development. That is why 571
the core functions are written as separate Python modules. Users can test these models for SWR 572
detection by loading their own data and defining the channels. The ripple_AI repository has a wide 573
variety of SWR detection tools that include optional supervised detection curation, and a graphical 574
user interface for a quick visual exploration of detected events depending on the threshold chosen, 575
as well as the option of retraining a model with the user’s own data. 576
 577
This collection of resources joins to the many other community-based approaches for model 578
benchmarking30,41,o53,58. Crowdsourced solutions are becoming a tool to advance solutions of 579
particularly difficult problems which require knowledge integration40,43. This provides the field with 580
a set of platforms for detecting events from diverse datasets using traditional and state-of-the-art 581
algorithms (e.g., our own ripple-AI toolbox, and https://www.sharpwaveripples.org/). Our toolbox 582
goes beyond SWR detection, easing development of personalized ML models to detect other 583
electrophysiological events of interest32. This may be critical in experimental and/or clinical cases, 584
where other detection criteria, i.e. F-values, than those maximizing performance may be more 585
important. For instance, different experiments may call for avoiding either type I or type II errors, 586
and hence the balance between Precision and Recall. Such a versatility of our toolbox may be 587
further exploited to accelerate our understanding of hippocampal function and to support the 588
development of biomedical applications. 589
 590
References 591
 592
1. da Silva, F. L. EEG and MEG: Relevance to Neuroscience. Neuron 80, 1112–1128 (2013). 593
2. Buzsáki, G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and 594

planning. Hippocampus 25, 1073–188 (2015). 595
3. Csicsvari, J., Hirase, H., Mamiya, A. & Buzsáki, G. Ensemble patterns of hippocampal CA3-596

CA1 neurons during sharp wave-associated population events. Neuron 28, (2000). 597
4. Stark, E. et al. Pyramidal cell-interneuron interactions underlie hippocampal ripple 598

oscillations. Neuron 83, 467–480 (2014). 599
5. Buzsáki, G., Lai-Wo S., L. & Vanderwolf, C. H. Cellular bases of hippocampal EEG in the 600

behaving rat. Brain Research Reviews 6, 139–171 (1983). 601
6. Kudrimoti, H. S., Barnes, C. A. & McNaughton, B. L. Reactivation of hippocampal cell 602

assemblies: effects of behavioral state, experience, and EEG dynamics. J. Neurosci. 19, 603
4090–4101 (1999). 604

7. Genzel, L. et al. A consensus statement: defining terms for reactivation analysis. Philos. 605
Trans. R. Soc. Lond. B. Biol. Sci. 375, (2020). 606

8. Joo, H. R. & Frank, L. M. The hippocampal sharp wave–ripple in memory retrieval for 607
immediate use and consolidation. Nature Reviews Neuroscience 19, 744–757 (2018). 608

9. Pfeiffer, B. E. The content of hippocampal ‘replay’. Hippocampus (2017). 609
doi:10.1002/hipo.22824 610

10. Mil, A. et al. Replay of cortical spiking sequences during human memory retrieval. Science 611
367, 1128–1130 (2020). 612

11. Liu, A. A. et al. A consensus statement on detection of hippocampal sharp wave ripples and 613
differentiation from other fast oscillations. Nat. Commun. 2022 131 13, 1–14 (2022). 614

12. Reichinnek, S., Künsting, T., Draguhn, A. & Both, M. Field potential signature of distinct 615
multicellular activity patterns in the mouse hippocampus. J. Neurosci. 30, 15441–9 (2010). 616

13. Ramirez-Villegas, J. F., Logothetis, N. K. & Besserve, M. Diversity of sharp-wave-ripple LFP 617
signatures reveals differentiated brain-wide dynamical events. Proc. Natl. Acad. Sci. U. S. A. 618
112, E6379-87 (2015). 619

14. Sebastian, E. R. et al. Topological analysis reveals input mechanisms behind feature 620
variations of sharp-wave ripples. Under Revis. (2023). 621

15. Patel, J., Schomburg, E. W., Berényi, A., Fujisawa, S. & Buzsáki, G. Local generation and 622
propagation of ripples along the septotemporal axis of the hippocampus. J. Neurosci. 33, 623
17029–41 (2013). 624

16. Leonard, T. K. et al. Sharp Wave Ripples during Visual Exploration in the Primate 625

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

17

Hippocampus. J. Neurosci. 35, 14771–14782 (2015). 626
17. Skaggs, W. E. et al. EEG sharp waves and sparse ensemble unit activity in the macaque 627

hippocampus. J. Neurophysiol. 98, 898–910 (2007). 628
18. Bragin, A., Engel, J., Wilson, C. L., Fried, I. & Mathern, G. W. Hippocampal and entorhinal 629

cortex high-frequency oscillations (100-500 Hz) in human epileptic brain and in kainic acid-630
treated rats with chronic seizures. Epilepsia 40, 127–137 (1999). 631

19. Worrell, G. A. et al. High-frequency oscillations in human temporal lobe: Simultaneous 632
microwire and clinical macroelectrode recordings. Brain 131, 928–937 (2008). 633

20. Alvarado-Rojas, C. et al. Different mechanisms of ripple-like oscillations in the human 634
epileptic subiculum. Ann. Neurol. 77, 281–290 (2015). 635

21. Valero, M. et al. Mechanisms for Selective Single-Cell Reactivation during Offline Sharp-636
Wave Ripples and Their Distortion by Fast Ripples. Neuron 94, (2017). 637

22. Cowen, S. L., Gray, D. T., Wiegand, J. P. L., Schimanski, L. A. & Barnes, C. A. Age-638
associated changes in waking hippocampal sharp-wave ripples. Hippocampus 30, 28–38 639
(2020). 640

23. Born, H. A. et al. Genetic suppression of transgenic APP rescues Hypersynchronous 641
network activity in a mouse model of Alzeimer’s disease. J. Neurosci. 34, 3826–3840 642
(2014). 643

24. Engel, J., Bragin, A., Staba, R. & Mody, I. High-frequency oscillations: What is normal and 644
what is not? Epilepsia 50, 598–604 (2009). 645

25. Sethi, A. & Kemere, C. Real time algorithms for sharp wave ripple detection. Annu. Int. Conf. 646
IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Int. Conf. 2014, 2637–2640 647
(2014). 648

26. Liu, A. A. et al. A consensus statement on detection of hippocampal sharp wave ripples and 649
differentiation from other fast oscillations. Nat. Commun. 2022 131 13, 1–14 (2022). 650

27. Kulkarni, P. M. et al. A deep learning approach for real-time detection of sleep spindles. J. 651
Neural Eng. 16, 36004 (2019). 652

28. Hagen, E. et al. RippleNet: a Recurrent Neural Network for Sharp Wave Ripple (SPW-R) 653
Detection. Neuroinformatics 19, (2021). 654

29. Nadalin, J. K. et al. Application of a convolutional neural network for fully-automated 655
detection of spike ripples in the scalp electroencephalogram. J. Neurosci. Methods 360, 656
109239 (2021). 657

30. Valenchon, N. et al. The Portiloop: A deep learning-based open science tool for closed-loop 658
brain stimulation. PLoS One 17, e0270696 (2022). 659

31. Navas-Olive, A., Amaducci, R., Jurado-Parras, M.-T., Sebastian, E. R. & de la Prida, L. M. 660
Deep learning based feature extraction for prediction and interpretation of sharp-wave 661
ripples in the rodent hippocampus. Elife 11, (2022). 662

32. Frey, M. et al. Interpreting wide-band neural activity using convolutional neural networks. 663
Elife 10, (2021). 664

33. Talakoub, O., Gomez Palacio Schjetnan, A., Valiante, T. A., Popovic, M. R. & Hoffman, K. L. 665
Closed-Loop Interruption of Hippocampal Ripples through Fornix Stimulation in the Non-666
Human Primate. Brain Stimul. 9, 911–918 (2016). 667

34. Norman, Y. et al. Hippocampal sharp-wave ripples linked to visual episodic recollection in 668
humans. Science (80-.). 365, (2019). 669

35. Geva-Sagiv, M. et al. Augmenting hippocampal-prefrontal neuronal synchrony during sleep 670
enhances memory consolidation in humans. Nat. Neurosci. 26, 1100–1110 (2023). 671

36. Tong, A. P. S., Vaz, A. P., Wittig, J. H., Inati, S. K. & Zaghloul, K. A. Ripples reflect a 672
spectrum of synchronous spiking activity in human anterior temporal lobe. Elife 10, (2021). 673

37. Curot, J. et al. Local neuronal excitation and global inhibition during epileptic fast ripples in 674
humans. Brain 146, 561–575 (2023). 675

38. Leonard, T. K. & Hoffman, K. L. Sharp-Wave Ripples in Primates Are Enhanced near 676
Remembered Visual Objects. Curr. Biol. 27, 257–262 (2017). 677

39. Hussin, A. T., Leonard, T. K. & Hoffman, K. L. Sharp-wave ripple features in macaques 678
depend on behavioral state and cell-type specific firing. Hippocampus 30, 50–59 (2020). 679

40. Berens, P. et al. Community-based benchmarking improves spike rate inference from two-680
photon calcium imaging data. PLoS Comput. Biol. 14, (2018). 681

41. Kuhlmann, L. et al. Epilepsyecosystem.org: crowd-sourcing reproducible seizure prediction 682
with long-term human intracranial EEG. Brain 141, 2619–2630 (2018). 683

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

18

42. Wheeler, D. W. et al. Hippocampome.org: A knowledge base of neuron types in the rodent 684
hippocampus. Elife 4, (2015). 685

43. de la Prida, L. M. & Ascoli, G. A. Explorers of the cells: Toward cross-platform knowledge 686
integration to evaluate neuronal function. Neuron 109, 3535–3537 (2021). 687

44. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. Proc. ACM SIGKDD 688
Int. Conf. Knowl. Discov. Data Min. 13-17-Augu, 785–794 (2016). 689

45. Schmidhuber, J. Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 690
(2015). 691

46. Hochreiter, S. & Schmidhuber, J. Long Short-Term Memory. Neural Comput. 9, 1735–1780 692
(1997). 693

47. H, F. J. Greedy Function Approximation: A Gradient Boosting Machine on JSTOR. Ann. 694
Stat. 29, 1189–1232 (2001). 695

48. Cortes, C., Vapnik, V. & Saitta, L. Support-vector networks. Mach. Learn. 1995 203 20, 696
273–297 (1995). 697

49. Cun, L. et al. Handwritten Digit Recognition with a Back-Propagation Network. Adv. Neural 698
Inf. Process. Syst. 2, 396--404 (1990). 699

50. de la Prida, L. M. et al. Threshold behavior in the initiation of hippocampal population bursts. 700
Neuron 49, 131–142 (2006). 701

51. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection 702
for Dimension Reduction. (2018). 703

52. Abbaspoor, S., Hussin, A. T. & Hoffman, K. L. Theta- and gamma-band oscillatory 704
uncoupling in the macaque hippocampus. Elife 12, (2023). 705

53. Dutta, S., Ackermann, E. & Kemere, C. Analysis of an open source, closed-loop, realtime 706
system for hippocampal sharp-wave ripple disruption. J. Neural Eng. 16, (2019). 707

54. Blanco, J. A. et al. Unsupervised classification of high-frequency oscillations in human 708
neocortical epilepsy and control patients. J. Neurophysiol. 104, 2900–2912 (2010). 709

55. Kucewicz, M. T. et al. High frequency oscillations are associated with cognitive processing 710
in human recognition memory. Brain 137, 2231–2244 (2014). 711

56. Liu, X. et al. E-Cannula reveals anatomical diversity in sharp-wave ripples as a driver for the 712
recruitment of distinct hippocampal assemblies. Cell Rep. 41, (2022). 713

57. Valero, M. et al. Mechanisms for Selective Single-Cell Reactivation during Offline Sharp-714
Wave Ripples and Their Distortion by Fast Ripples. Neuron 94, 1234-1247.e7 (2017). 715

58. Modi, B. et al. Benchmarking algorithms that automatically detect sharp wave ripples. Under 716
Rev. (2023). 717

 718

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

19

Methods 719

The hackathon 720

In order to explore a wide variety of ML solutions to the problem of SWR detection, we organized a 721
hackathon (https://thebraincodegames.github.io/index_en.html). We specifically targeted people 722
unfamiliar with SWR studies, who could provide unbiased solutions to the challenge. A secondary 723
goal of the hackathon was to promote their interest and engagement at the interface between 724
Neuroscience and Artificial Intelligence especially for future young scientists. The event was held in 725
Madrid in October 2021, using remote web-platforms. Some of us (ANO) coordinated the event. 726
Consent to participate and to share relevant personal data was obtained prior to the event. All 727
participants were informed on the goal of the hackathon and agreed that their solutions were 728
subject to subsequent investigation and modification. 729

The hackathon comprised 36 teams of 2 to 5 people (71% males, 29% female), for 116 participants 730
in total. They represent 45% of Undergraduate students, 38% Master students, 15% PhD students 731
and 3% non-academic workers (Fig.S1A). On average, they were young in their professional 732
career with 77% of participants being research-oriented (Fig.S1A). Previous to the hackathon, we 733
monitored the participants’ self-declared knowledge level on Neuroscience, Python programming 734
and ML in general using a survey (Fig.S1B). To provide a homogenous floor to address the 735
challenge, we organized three online seminars to cover each of the three topics one month before 736
the activity. Seminars were recorded and made available for review along the experience. 737

The hackathon was held during one weekend (Friday to Sunday), during which groups had to 738
design and train a ML algorithm to detect SWRs. To standardize the different algorithms for future 739
comparison, they were given Python functions to load the data, compute a performance score, and 740
write results in a common format. Data sets were available from a public research-oriented 741
repository at Figshare (https://figshare.com/authors/Liset_M_de_la_Prida/402282). Participants 742
were given a training set to train their algorithms, and a test set to run validation tests. Data 743
consisted on raw 8-channel LFP signals from the hippocampal CA1 region, recorded with high-744
density probes, which was used before for similar purposes (Navas-Olive et al. 2022). SWR were 745
manually tagged to be used as ground truth (training set: 1794 events, two sessions from two mice; 746
test set: 1275 events; two sessions from two animals). Since participants had two days to design 747
and train solutions, groups were allowed to interact with us to ask for technical questions and 748
clarification. 749

We monitored participant’s engagement throughout the hackathon using short questionnaires. This 750
allowed us to check their motivation and other emotional states (i.e., frustration, interest, etc…). 751
Some people dropped out along the days of the hackathon (Fig.S1D). We found many participants 752
felt confused and frustrated with the challenge, and this correlated with their performance, as a 753
posterior analysis suggested (Fig.S1E). 754

Datasets and ground truth 755

Participants of the hackathon were provided with an annotated dataset consisting of raw LFP 756
signals (8-channels) sampled at 30,000 Hz. SWR events were manually tagged by an expert who 757
for each event identified their start and end. The start of the SWR was defined near the first ripple 758
of the sharp-wave onset. The end of the event was defined at the latest ripple or when sharp-wave 759
resumed. The training set consisted of two recording sessions from 2 mice (Navas-Olive et al., 760
2022). They contained 1794 manually tagged SWRs. The test set consisted of two recording 761
sessions from another 2 mice and contained 1275 SWR events. 762

For posterior analysis of the results of the hackathon, we used a validation dataset consisting on 763
the 2 test sessions mentioned before plus another 19 sessions for a total of 21 sessions from 8 764
different mice. They all contained a total of 7423 manually tagged SWR. 765

The ground truth, i.e. the analysis windows containing a SWR event, was generated for all 766
sessions with the help of a Matlab 2019b tool that considered the window size. 767

ML models specifications 768

Five architectures were selected out of the 18 solutions submitted to the hackathon: XGBoost, 769
SVM, LSTM, 2D-CNN and 1D-CNN. For the purpose of fair comparisons, they were retrained and 770
tested using homogenized pre-processing steps and data management strategies (see below). 771

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

20

We used Python 3.9.13 with libraries Numpy 1.19.5, Pickle 4.0 and H5Py 3.1.0. To build the 772
different neural networks, we used the Tensorflow 2.5.3 library, with Keras 2.5.0 as the application-773
programming interface. XGBoost 1.6.1 was used to train and test the boosted decision trees 774
classifiers. Scikit-learn 1.1.2 and Imbalanced-learn 0.9.1 were used to train support vector machine 775
classifiers. Analysis and training of the models were conducted on a personal computer (i7-11800H 776
Intel processor with 16 GB RAM and Windows 10). 777

Data preparation 778

For subsequent training and analysis of the architectures selected from the hackathon, all data was 779
pre-processed. From each recording session two matrices were extracted, X, with the raw LFP 780
data, shaped (# of timestamps, # of channels) and Y, the ground truth generated from the expert 781
tagging (# of timestamps). A timestamp of Y is 1 if a SWR event is present. 782

Values for matrix X were subsampled at 1250 Hz, taking into consideration that SWRs are events 783
that have frequencies in the range of 150 to 250 Hz. Before retraining the algorithms, data was z-784
scored with the mean and standard deviation of the whole session. 785

Training, validation, and test split 786

For retraining the architectures, the same training dataset provided in the hackathon was used (2 787
sessions from 2 mice; 1794 SWR events). For initial testing, these two sessions were split 788
according to a70/30 train/validation design. To evaluate the generalization capabilities of the 789
models when presented with unseen data, we used several validation sessions, which provide the 790
necessary animal-to-animal, as well as within animal (sessions) variability. Validation sessions 791
included the 2 test dataset provided in the hackathon and 19 additional sessions (21 sessions from 792
8 mice, 7423 SWR events) 793

For retraining, the two training sessions were concatenated and divided into 60 seconds epochs. 794
Each epoch was assigned randomly to the train or validation set, following the desired split 795
proportion. The data was reshaped to be compatible with the required input dimensionality of each 796
architecture (see below). In order to evaluate model performance, two different datasets were used: 797
the test set described above (used for an initial screening of the 50-best models for each 798
architecture), and the validation set (used for generalization purposes). 799

Identification of SWR events in the data was implemented using analysis windows of different sizes. 800
To identify SWR events detected by the ML models, we set a probability threshold to identify 801
windows with positive and negative predictions. GT was annotated in the different analysis 802
windows of each session. Accordingly, predictions were classified in four categories: True Positive 803
(TP), when the prediction was positive and the GT window did contain a SWR event; False 804
Positive (FP), when the prediction was positive in a window that did not contain any SWR; False 805
Negative (FN), when the prediction was negative in a window with a SWR; and True Negative (TN) 806
when the prediction was negative and the window did not contain any SWR event. 807

If a positive prediction had a match with any window containing a SWR it was considered a TP, or it 808
was classified as FP otherwise. All true events that did not have any matching positive prediction 809
were considered FN. Negative predictions with no matching true events windows were TN. 810

With predicted and true events classified into those four categories, there are three measures than 811
can be used to evaluate the performance of the model. Precision (P), which was computed as the 812
total number of TPs divided by TPs and FPs, represents the percentage of predictions that were 813
correct. 814

��������� 	
�

� � ��

Recall (R), which was calculated as TPs divided by TPs and FNs, represents that percentage of 815
true events that were correctly predicted. 816

����� 	
�

� � ��

Finally, the F1-score, calculated as the harmonic mean of Precision and Recall, represents the 817
network performance, penalizing imbalanced models. 818

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

21

�1 	 2 � ���������� �
������
��������� �
�����

To ease subsequent evaluation of ML models for SWR analysis we provide open-access to codes 819
for retraining strategies: https://github.com/PridaLab/rippl-AI 820

Parameter fitting 821

Different combinations of parameters and hyper-parameters were tested for each architecture 822
during the training phase (1944 for XGBoost, 72 for SVM, 2160 for LSTM, 60 for 2D-CNN, 576 for 823
1D-CNN). 824

Two parameters were shared across all architectures: the number of channels and the number of 825
timestamps in the analysis window (referred as the window size). These parameters define the 826
dimensionality of the input data (# timesteps x # channels), i.e. the number of input features. 827

The number of channels to be used was set at 1, 3 or 8. When 1 channel was chosen, it was that 828
corresponding to the CA1 pyramidal layer channel, defined as the channel with most power in the 829
ripple bandwidth (150-250 Hz). The superficial, pyramidal, and deep channels were used as 3 830
channels. All the channels in the shank were used for the 8-channels input configuration. 831

The number of timestamps defines the window size. The tested values depended on each 832
architecture, and ranged between windows of 0.8 to 51.2 milliseconds. The rest of the parameters 833
were specific for each architecture (see below). 834

The F1-score metric for the training and test set was calculated to compare the performance of the 835
models, with the test F1 serving as a priori metric of the generalization of the models, allowing for a 836
selection of models without performing a complete validation. 837

For each model, a test-F1 array was calculated with different thresholds (generally, from 0.1 to 0.9 838
with 0.1 increments), and the highest value for each model was used for comparison among 839
models of the same architecture. As a result, the 50-best performing models were selected after 840
the initial retrained test. 841

Validation process 842

The aim of validation is to find the model that generalizes best to unseen data for each architecture. 843
With that in mind, defining a metric that takes this into account is not a straight-forward task. 844

To weigh each validation session (21) independently, a F1 array was calculated for each individual 845
session, resulting in matrix of 21 per number of threshold-values (#th). The mean of sessions gives 846
us a #th array that quantifies the performance/generalization of the model as a function of the 847
chosen threshold. The maximum value of this array will represent the best performance that could 848
be achieved with this model if the threshold is correctly selected. This single value is what will be 849
compared. Using this strategy, we narrowed down available models to the 10-best of each 850
architecture, before selecting the best model. 851

XGBoost 852

Based in the Gradient Boosting Decision Trees algorithm, this architecture trains a tree with a 853
subset of samples, and then calculates its output44. The misclassified samples are used to train a 854
new tree. The process is repeated until a predefined number of classifiers are trained. The final 855
model output is the weighted combination of individual outputs. 856

In the training process, we worked with quantitative features (LFP values per channels) and a 857
threshold value for a specific feature was considered in each training step. If this division correctly 858
classifies some samples of the subset, two new nodes were generated in the next tree level, where 859
the operation was repeated until the maximum tree depth was achieved, and a new tree with the 860
misclassified samples is generated. The input is one dimensional (# of channels x # of timesteps) 861
and produces a single output. 862

Specific parameters of XGBOOST are Maximum depth, the maximum levels for each tree, may 863
lead to overfitting. Learning rate, which controls the influence of each individual model in the 864
ensemble of trees. Gamma is the minimum loss reduction required to make a further partition on a 865
leaf node, with larger values leading to conservative models. Parameter λ contributes to the 866

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

22

regularization, with larger values preventing overfitting. Scale is used in imbalanced problems, the 867
larger the more penalized false negatives are during training. 868

Trained models had a number of trainable parameters ranging from 1500 to 17900. 869

SVM 870

Support Vector Machine is a classical classifier that searches for a hyperplane in the input 871
dimensionality that maximizes the separation between different classes. This is only possible in 872
lineal separation problems, so some misclassifications are allowed in real tasks. Usually, SVM 873
performs a transformation on the original data using a kernel (linear or otherwise) that increases 874
the data dimensionality but facilitates classification. 875

During training, the parameters that define the separation hyperplane are updated until the 876
maximum number of iterations is achieved, or the rate of change in the parameters go below a 877
threshold. The input is one-dimensional (# of channels x # of timesteps) and produces a single 878
output. 879

Specific parameters of SVM are the kernel type. Using nonlinear kernels resulted in an explosive 880
growth in training and predicting times, due to the enormous number of training data points. Only 881
the linear kernel produced manageable times. The under-sample proportion rules out negative 882
samples (windows without ripple) until the desired balance is achieved: 1 indicates the same 883
number of positives and negatives. 884

Trained models had a number of trainable parameters ranging from 1 to 480. 885

LSTM 886

Recurrent Neural Networks (RNNs) are a subtype of NNs especially suited to work with temporal 887
series of data, extracting the “hidden” relations and tendencies between non-contiguous instants. 888
Long Short-Term Memory (LSTMs) are RNNs with modifications that prevent some associated 889
problems46. 890

During training three sets of weights and biases are updated in each LSTM unit, associated with 891
different “gates” (Forget, input and output). To prevent overfitting, two layers of dropout (DP) and 892
batch normalization (batchNorm) were inserted between LSTM layers. DP randomly prevents 893
some outputs to propagate to the next layer. BatchNorm normalizes the output of the previous 894
layer. The final layer is a dense layer that outputs the event probability. The input is two-895
dimensional (# of timesteps, # of channels) and produces a probability for each timestep. After 896
each window the internal weights are reset. 897

Specific LSTM parameters: bidirectional if the model process the windows forwards and backwards 898
simultaneously; # of layers is the number of LSTM layers; # of units the number of LSTM units in 899
each layer, and # of epochs, which is the number of times the training data is used to perform 900
training. 901

Trained models had a number of trainable parameters ranging from 156 to 52851. 902

2D-CNN 903

Convolutional Neural Networks use convolutional layers consisting of kernels (spatial filters) to 904
extract the relevant features of an image49. Successive layers use this as inputs to compute 905
general features of the image. This 2D-CNN moves the kernels along the two axes, temporal 906
(timesteps) and spatial (channels). The first half of the architecture includes MaxPooling layers that 907
reduce the dimensionality and prevent overfitting. A batchNorm layer follows every convolutional 908
layer. Finally, a dense layer produces the event probability of the window. 909

During training, the weights and biases of every kernel are updated to minimize the loss function, 910
with was taken as the binary cross entropy: 911

����� 	
�1
� ��� · ���������� � �1 � ��� · ����1 � ������

�

���

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

23

N is the number of windows in the training set, yi is the label of the i window and p(yi) is the 912
probability of ripple that the model predicts. The input is # of timesteps and # of channels; and 913
produces a single probability for each window. 914

The 2D-CNN was tested with a fixed number of layers and kernel dimension. The kernel factor 915
parameter determined the number of kernels in this structure: 32xkf (2x2), 16xkf (2x2), 8xkf (3x2), 916
16xkf (4x1), 16xkf (6x1) and 8xkf (8x1). In parenthesis the size of the kernels in each layer. 917

Trained models had a number of trainable parameters ranging from 1713 to 24513. 918

1D-CNN 919

This model is also a convolutional neural network, but the kernels only move along the temporal 920
axis while processing spatial information. The number of layers and the kernel size was fixed. The 921
tested models had 7 sets of 1D convolutional layer, batchNorm and LeakyRelu layer, followed up 922
by a dense sigmoid activation unit. This model is similar to our previous CNN solution31. 923

During training, the weights and biases of the layers were also updated with the objective of 924
minimizing the binary cross entropy. The input is # of timesteps and # of channels, and produces a 925
single probability for each window. 926

The specific parameters for 1D-CNN included the kernel factor, which defined the number of 927
kernels in each conv layer. The size and stride for each layer was equal and fixed. The size of the 928
kernels in the first layer was defined as the length of the input window divided by 8. Structure: 4xkf 929
(# timesteps//8 x # timesteps//8), 2xkf (1x1), 8xkf (2x2), 4x1 (1x1), 16xkf (2x2), 8xkf (1x1) and 930
32xkf (2x2). Parameters also include # of epochs, as the number of times the training data is used 931
to perform training, and # of training batch samples, which is the number of windows that are 932
processed before parameter updating. 933

Trained models had a number of trainable parameters ranging from 342 to 4253. 934

Characterization of SWR features 935

SWR properties (ripple frequency and power) were computed using a 100 ms window around the 936
center of the event, measured at the pyramidal channel of the raw LFP. Preferred frequency was 937
computed first by calculating the power spectrum of the 100 ms interval using the enlarged 938
bandpass filter 70 and 400 Hz, and then looking for the frequency of the maximum power. In order 939
to account for the exponential power decay in higher frequencies, we subtracted a fitted 940
exponential curve (‘fitnlm’ from MATLAB toolbox) before looking for the preferred frequency. To 941
estimate the ripple power, the spectral contribution was computed as the sum of the power values 942
for all frequencies lower than 100 Hz normalized by the sum of all power values for all frequencies 943
(of note, no subtraction was applied to this power spectrum). 944

Dimensionality reduction using UMAP 945

To classify SWR, we used topological approaches14. The UMAP version 0.5.1 (https://umap-946
learn.readthedocs.io/en/latest/) in Python 3.8.10 Anaconda was used, which is known to properly 947
preserve local and global distances while embedding data in a lower dimensional space. In all cas-948
es, we used default values for reconstruction parameters. Algorithms were initialized randomly. 949
UMAP provided robust results independent on initialization. 950

Prediction and retraining of non-human primate data-set 951

To study the generalization capabilities of the different architectures, we used data from a freely 952
moving macaque targeting similar CA1, as completed in our mouse data (methods are described in 953
reference52). Recordings were obtained with a 64-ch linear polymer probe (custom ‘deep array 954
probe’, Diagnostic Biochips) that recorded across the CA1 layers of the anterior hippocampus 955
(Fig.6A) where layers were identifiable relative to the main pyramidal layer, which contains the 956
greatest unit activity and SWP power. LFP signals were sampled at 30 kHz using a Freelynx 957
wireless acquisition system (Neuralynx, Inc). Data corresponds to periods of immobility for a 958
duration of almost 2 hours and 40 minutes, predominantly comprised of sleep in overnight housing. 959
LFP intervals presenting a high level of noise across all channels was not considered for analysis. 960

Similar to the procedures used in mice, SWR beginning and ending times were manually tagged 961
(ground truth). First, the best model of each architecture, already trained with the mouse data, was 962

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

24

used to predict the output of the primate data with no retraining. For this purpose, we used 963
recordings of different channels around the CA1 pyramidal channel, and matched to meet the 964
laminar organization of the dorsal mouse hippocampus. Specifically, we used a CA1 radiatum 965
channel, 720 µm from the pyramidal layer, three channels in the pyramidal layer, at +90µm, +0µm 966
and -90µm from the pyramidal channel, and a stratum oriens channel 720µm from the pyramidal 967
channel. The pyramidal channel was defined at the site with the maximal ripple power. We 968
complemented these 5 recordings with 3 more interpolated signals, making a total of 8 input 969
channels [oriens, interpolated, pyramidal, pyramidal, pyramidal, interpolated, interpolated, radiatum] 970
using a linear interpolation script available at Github: https://github.com/PridaLab/rippl-971
AI/blob/main/aux_fcn.py. The applied pre-processing was the same as with the mice data: 972
subsampling to 1250Hz and z-score normalization. 973

With the aim of studying the effect of retraining with completely different data, we retrained the 974
models. Data was split in three sets (50% training, 20% test, 30% validation), and used to retrain 975
and validate the models. For re-training, we reset all trainable parameters (internal weights) but 976
kept all architectural hyper-parameters fixed (input number of channels, input window length, 977
number of layers, etc…) as with the mouse data, making the re-training process much faster than 978
the original training that required a deep hyper-parametric search (per model re-train: 2min for 979
XGBoost, 10-30min for SVM, 3-20min for LSTM, 1-10 min for 2D-CNN and 1-15 min for 1D-CNN). 980

Code and data availability 981

Data and codes used in this study are available. The training and test set data are available at 982
https://figshare.com/authors/Liset_M_de_la_Prida/402282 and listed independently as follows: 983

M de la Prida, Liset (2021): Amigo2_2019-07-11_11-57-07. figshare. Dataset. 984
https://doi.org/10.6084/m9.figshare.16847521.v2 985
M de la Prida, Liset (2021): Som2_2019-07-24_12-01-49. figshare. Dataset. 986
https://doi.org/10.6084/m9.figshare.16856137.v2 987
M de la Prida, Liset (2021): Dlx1_2021-02-12_12-46-54. figshare. Dataset. 988
https://doi.org/10.6084/m9.figshare.14959449.v4 989
M de la Prida, Liset (2021): Thy7_2020-11-11_16-05-00. figshare. Dataset. 990
https://doi.org/10.6084/m9.figshare.14960085.v1 991
 992
Codes for some of the best trained models of all architectures are available in an open-source 993
repository https://github.com/PridaLab/rippl-AI and documented in open-source notebooks for 994
model retraining https://github.com/PridaLab/rippl-AI/blob/main/examples_retraining.ipynb and for 995
SWR detection https://github.com/PridaLab/rippl-AI/blob/main/examples_detection.ipynb 996
 997
Acknowledgements 998

This work was supported by the Fundación La Caixa (LCF/PR/HR21/52410030) to LMP and by the 999
Whitehall Foundation and BRAIN Initiative NINDS (R01NS127128) to KLH. We thank the Spanish 1000
Society of Neuroscience (SENC) and the Universidad Autónoma de Madrid Doctorate for partially 1001
supporting the hackathon. ANO was supported by PhD fellowships from the Spanish Ministry of 1002
Education (FPU17/03268). AR was supported by a JAE-Intro Fellowship of the AI-HUB CSIC 1003
program (JAE Intro AI HUB21) and by the CSIC Interdisciplinary Thematic Platform Neuro-Aging 1004
(PTI+Neuro-Aging). We thank all participants of the hackathon. Thanks to Rodrigo Amaducci, 1005
Enrique R Sebastian, Daniel García-Rincón and Adrián Gollerizo for co-organizing the hackathon. 1006

 1007

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.547382doi: bioRxiv preprint

https://doi.org/10.1101/2023.07.02.547382
http://creativecommons.org/licenses/by-nd/4.0/

