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Abstract  14 

The study of sharp-wave ripples (SWRs) has advanced our understanding of memory function, and 15 
their alteration in neurological conditions such as epilepsy and Alzheimer’s disease is considered a 16 
biomarker of dysfunction. SWRs exhibit diverse waveforms and properties that cannot be fully 17 
characterized by spectral methods alone. Here, we describe a toolbox of machine learning (ML) 18 
models for automatic detection and analysis of SWRs. The ML architectures, which resulted from a 19 
crowdsourced hackathon, are able to capture a wealth of SWR features recorded in the dorsal 20 
hippocampus of mice. When applied to data from the macaque hippocampus, these models were 21 
able to generalize detection and revealed shared SWR properties across species. We hereby 22 
provide a user-friendly open-source toolbox for model use and extension, which can help to 23 
accelerate and standardize SWR research, lowering the threshold for its adoption in biomedical 24 
applications. 25 
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2 

Introduction 32 

The study of brain rhythms has bolstered our understanding of the neural basis of cognition. 33 
Because these signals emerge from the coordinated activity of multiple neurons, they can be used 34 
as biomarkers of the underlying cognitive process1. For example, hippocampal sharp-wave ripples 35 
(SWRs) represent the most synchronous pattern in the mammalian brain, and are widely 36 
considered to contribute to the consolidation of memories2. SWRs consist of brief high-frequency 37 
oscillations or ‘ripples’ (100-250Hz), which can be detected around the hippocampal CA1 cell layer 38 
during rest or sleep. An avalanche of excitatory inputs from the CA3 region, typically visible as a 39 
slower sharp-wave component, triggers ripples locally in CA13,4. Within the ripple event, neural 40 
firing patterns that occurred during exploratory behavior are reactivated outside of the experience5,6, 41 
leading the SWR to be used as an index of consolidation-associated reactivation or replay7–10.   42 

Although SWRs can be detected across an array of recording methods, subfield locations, and 43 
species2,11 their underlying mechanisms and consequent local field potential (LFP) features are 44 
understood almost exclusively from measurements in rat and mouse dorsal hippocampal CA1. 45 
Even within this region, SWRs exhibit a large diversity of waveforms that presumably reflect the 46 
myriad combinations of reactivating ensembles12–14. Using spectral methods their characteristics 47 
are shown to vary along the long (septotemporal) CA1 axis within animals15 and most notably with 48 
phylogenetic distance across species e.g. when measured in the human versus non-human 49 
primates11,16,17. Furthermore, in diseases affecting hippocampal function, such as in Temporal Lobe 50 
Epilepsy, pathological forms of ripples have been reported 18–21, as well as along aging 22,23. 51 
However, spectral properties alone are suboptimal to separate these events from other types of 52 
faster oscillations 24–26.  53 

To address this challenge, many researchers have developed feature-based strategies for 54 
detecting LFP oscillations using machine learning (ML) tools16,27–32. These novel strategies have 55 
accelerated our understanding the underlying mechanisms of SWRs, and the improvement of 56 
closed-loop interventions beyond those using spectral features alone31,33. Yet these methods have 57 
been focused on a single detection method optimized for a single target application, typically either 58 
in mouse dorsal CA1 or within lab-specific approaches to detection in brains of humans with 59 
epilepsy. As LFP recordings are increasingly common in the clinic, the need to scale analysis from 60 
small laboratory animals to the human brain is pressing10,34–39. Developing these new tools will 61 
provide the community with straightforward methods to identify SWRs from pathological 62 
oscillations across the range of recording technologies, sampled regions, and background 63 
pathologies. Therefore, there is a broad demand for a consolidated toolbox of ML methods for LFP 64 
feature analysis that can be easily applied across species, to aid in understanding of brain function, 65 
but also advance biomedical applications. 66 

Here, we develop and analyze a set of ML architectures applied to the problem of SWR 67 
identification, and compiled in an open toolbox: https://github.com/PridaLab/rippl-AI. To favor an 68 
unbiased screening of potential ML solutions, we ran a hackathon with people from very disparate 69 
fields with the mission of detecting SWR using algorithms in a supervised manner. Using 70 
community-based solutions in neuroscience is gaining traction due to their ability to foster 71 
interdisciplinary and diverse perspectives, and to promote collaboration and data sharing40–43. We 72 
selected the most promising architectures from the hackathon and standardized them for fair 73 
comparisons. We show how the different ML models could bias SWR detection and identify 74 
conditions for their optimal performance and stability in the mouose hippocampus (Mus musculus). 75 
We then extend the analysis to SWRs recorded in the macaque hippocampus (Macaca mulatta), to 76 
demonstrate the generalizability of SWRs detection methods to the primate order. This proof of 77 
principle will foster the development of feature-based detection algorithms for future applications to 78 
a range of models and approaches, including the human brain.  79 

 80 

Results 81 

Community-based proposal of ML models of SWR  82 

To create a diversity of ML supervised models of SWRs, we organized a hackathon that promoted 83 
unbiased community-based solutions from scientists unfamiliar with neuroscience research, and 84 
SWRs in particular (see Methods). The hackathon challenge was to propose a ML model that 85 
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successfully identifies SWR in a dataset of high-density LFP recordings from the CA1 dorsal 86 
hippocampus of mice, used before for similar purposes31. Preparatory courses introduced 87 
participants into the main topics required for the challenge (Fig.1A). To standardize the different ML 88 
models, they were given access to Python functions for loading the data, to evaluate model 89 
performance, and to write results in a common format. Annotated data consisted of raw LFP 90 
signals (8-channels) sampled at 30 kHz, and containing SWR events manually tagged by an expert 91 
(training set: 1794 events, two sessions from 2 mice; test set: 1275 events; two sessions from 2 92 
mice; Fig.1B).  93 

 94 

95 
Figure 1: Unbiased community-based proposals of ML models of SWR. A, Organization of the 96 
hackathon. A preparatory phase (Prep) established the basic grounds of the challenge in terms of minimal 97 
knowledge about SWR, Python programming and Machine Learning (ML) models. It also looked to 98 
standardize scripts and data management. The second phase consisted on the hackathon, which lasted over 99 
53h during three days, with participants having access to the annotated training dataset and some Python 100 
scripts. During the last evaluation phase, a new test set was released to participants 3 hours before the end 101 
of the hackathon. Solutions were ranked using the F1-score (see methods). B, Example of the training data 102 
consisting on 8 channels of raw LFP (black) sampled at 30 kHz, with the manually tagged ground truth (GT), 103 
corresponding to SWR events. C, Results from the hackathon. Solutions were ranked by the F1-score. F1 104 
represents the harmonic mean between Precision (percentage of good detections) and Recall (percentage of 105 
detected GT events). Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), Recurrent 106 
Neural Networks (RNN) with/without Long-Short Term Memory (LSTM); Random Forest decision trees (Rand 107 
Forest), Extreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), k-Nearest Neighbors (kNN).108 
Chosen solutions are marked with arrowheads. Darker arrows point to the group that got the highest score of 109 
each particular architecture; light arrows point repeated architectures. D, Schematic representation of the 110 
SWR detection strategy and the 5 ML models used in this work. 111 
 112 
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Participants submitted eighteen different solutions (Fig.1C). The most used architecture was the 114 
Extreme Gradient Boosting (XGBoost; 4 proposals), a decision tree-based algorithm very popular 115 
for its balance between flexibility, accuracy and speed44 (Fig.1C). Some other popular architectures 116 
were one and two-dimensional Convolutional Neural Networks (1D-CNN, 2D-CNN; 3 and 3 117 
solutions, respectively), Deep Neural Networks (DNN, 3 solutions)45, and Recurrent Neural 118 
Networks (RNN; 2 solutions)45 (Fig.1C). RNN were presented in both their standard feed-forward 119 
version, and as the Long-Short Term Memory (LSTM) version that includes feedback connections, 120 
more suited for processing time series data46.  121 
 122 
Although all these architectures are neural networks typically used for pattern recognition, the way 123 
they process and learn from data is remarkably different. For example, whereas CNNs are based 124 
on kernels specialized in spotting particular spatially contiguous features of the input, LSTMs use 125 
memory cells that look for time-dependent relationships in the data. Two other algorithms were 126 
also submitted: a Support Vector Machine (SVM; 1 solution; Fig.1C) and a clustering-based 127 
solution based on dimensionality reduction by Principal Component Analysis (PCA), followed by k-128 
Nearest Neighbors (kNN) clustering (1 solution; Fig.1C). From the 18 solutions submitted, 5 were 129 
not functional and could not be scored (Fig.1C, bottom). Analysis of the hackathon experience in 130 
relationship to the submitted solutions are summarized in Fig.S1 (see methods for details). 131 

132 
Figure S1. Information about the hackathon. A, A hackathon was organized to seek for community-based 133 
solutions to the SWR challenge from people unfamiliar to SWR neurophysiology. Among the 116 participants, 134 
there were undergraduate students (45%), Master students (38%), PhD students (15%), and industry 135 
workers (3%). B, There was a general lack of neuroscience knowledge, although most participants declared 136 
a high-level performance in Python. Most groups integrated people with programming abilities and basic ML 137 
knowledge. C, Participant age (left), gender (middle; 71% male, 29% female participants) and involvement in 138 
research (right; 21% already in research; 56% interested in doing basic research; 23% not motivated for 139 
basic research activities). D, Self-reported participation rate during the three days of the hackathon. E,140 
Correlation between the performance metric of the proposed solution and emotional states of participants as 141 
quantified from their responses to surveys recorded during the hackathon (Spearman rank-order correlation *,142 
p<0.05; **, p<0.01). Only performance of functional solutions were used. See Methods for details.  143 
 144 
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5 

We sought to identify the more promising architectures for a subsequent in depth analysis. 146 
Performance of submitted ML models was measured using the F1-score (see next section). The 147 
best performances were achieved by the 2D-CNN, one of the XGBoost models, and the SVM 148 
algorithm. Since 1D-CNNs and RNNs were submitted by several groups, and given their previously 149 
successful application to SWR detection28,31, we decided to include them as well, resulting in five 150 
different machine learning architectures (Fig.1C; dark arrowheads). 151 

The goal of the ML models is to identify the presence of a SWR (or part of it) in a given analysis 152 
window (Fig.1D, left). The selected ML architectures covered a range of processing strategies 153 
(Fig.1D, right). XGBoost is a very popular ML algorithm that uses many decision trees in a parallel 154 
fashion, making it one of the fastest algorithms47. SVM regression lays within the statistical learning 155 
framework, and its objective is to find a new space where samples from different categories (SWRs 156 
vs no-SWRs) are maximally separated, making it one of the most robust classification methods48. 157 
LSTMs are especially suited for regression and classification of temporal series like in natural 158 
language processing, using a memory-based strategy to extract relationships between non-159 
continuous time points46. CNNs represent a very common approach for many detection and 160 
classification tasks applied to different data modalities (1D for signals, 2D for images and 3D for 161 
video or volumetric reconstructions), and can approach human performance on many tasks49. 162 
While 2D-CNNs process input data by considering adjacency on both dimensions (spatial and 163 
temporal, in our case), the 1D-CNN solution treats each channel independently and only considers 164 
time adjacency, making them two distinct processing algorithms. 165 
 166 
This community-based ML architecture bank that was produced by participants who were 167 
unfamiliar with SWR studies can be used to evaluate the problem of SWR automatic detection in 168 
experimental contexts. We next focused on standardizing processing and retraining the different 169 
models.  170 
 171 
 172 
Standardization and retraining of selected algorithms 173 

After careful examination of the submitted solutions, we noticed that data pre-processing and 174 
training strategies were very different between groups. Data characteristics, like the sampling 175 
frequency or the number of channels used for detection can influence operation. To standardize 176 
analysis, we chose to down sample to 1250 Hz, and normalize input data using z-scores, which 177 
account for differences in mean values and standard deviation across experimental sessions.  178 

We then retrained the submitted ML architectures using the same training set of the hackathon. We 179 
randomly divided the dataset into a training set (70%), and a test set (30%) to evaluate their 180 
performance in unseen data prior to a more thorough validation (Fig.2A). We explored a wide 181 
range of hyper-parameters for each architecture, which included the number of LFP channels (1, 3 182 
or 8), the size of the analysis window (from 6.4 up to 50 ms) and model-specific parameters like 183 
“maximum tree depth” for XGBoost, “bidirectionality” for LSTM or “kernel factor” for CNNs (Fig.2A). 184 
A trained ML architecture set with a particular combination of its hyper-parameters gives rise to a 185 
particular “trained model” (Fig.2A). Because each architecture had different numbers of hyper-186 
parameters, we ended up with different numbers of trained models for each architecture (1944 for 187 
XGBoost, 72 for SVM, 2160 for LSTM, 60 for 2D-CNN, and 576 for 1D-CNN). We then used the 188 
test set to choose the 50-best models from each architecture, and further tested their performance 189 
using a new validation dataset (7586 SWR events; 21 sessions from 8 mice), previously used for 190 
the 1D-CNN model31 (Fig.2A, right).   191 
 192 
The goal of training is to make the model output as similar as possible to the ground truth (GT). 193 
Because model outputs are continuous numbers between 0 and 1 representing the probability of 194 
the presence of the event in the window of analysis, choosing the detection threshold can affect 195 
performance (Fig.2B). Lower thresholds would result in more detections (Fig.2B, light-gray 196 
discontinuous threshold line), normally implying a larger number of both True and False Positives, 197 
while higher thresholds are more conservative at the expenses of False Negatives (Fig.2B, dark-198 
gray threshold line). An ideal model would perform well regardless the threshold, but in practice 199 
selecting the threshold that optimizes the True Positive-False Positive trade-off is unavoidable but 200 
crucial for experiments. A performance score that takes into account this trade-off is the F1-score, 201 
computed as the harmonic mean between Precision (percentage of good detections) and Recall 202 
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(percentage of detected GT events) (Fig.2C). F1 values of 1.0 would reflect a perfect match 203 
between detections and GT, whereas 0.0 reflects a perfect mismatch. Note this was the same 204 
score used to rank models in the hackathon. 205 
 206 
After training all architectures by optimizing F1-scores over the test set, we assessed 207 
generalization and performance using the validation dataset. We inspected what parametric 208 
combinations gave rise to optimal ML models, and found a remarkable variety of distributions 209 
(Fig.S2A). All architectures showed a great deal of variability, with almost all available parameter 210 
combinations covered. However, some parameters showed biases that depended on the ML 211 
architectures, pointing to the necessary requirements for a good performance. For example, all of212 
the 50-best XGBoost models used 8-channels, and in general, more than 1-channel was used 213 
across successful architectures (Fig.S2A). Furthermore, different architectures had distinct ranges 214 
of parameter values. XGBoost models required longer time windows (25 ms), whereas most SVM 215 
models employed shorter windows (<3.2 ms). LSTM, 2D-CNN and 1D-CNNs with variable window 216 
sizes all showed very strong performance for >12.8 ms. Finally, LSTM models used both uni- and 217 
bi-directional input flow, whereas all of the best models resorted to bidirectionality, suggesting that 218 
there should be SWR information also coded in the period preceding an event50.  219 
 220 
A plug-and-play toolbox to use any of the best 5 models of each architecture for SWR detection is 221 
available: https://github.com/PridaLab/rippl-AI. 222 
 223 

224 
  225 
Figure 2: Training design and performance of ML models. A, Training and selection criteria scheme. The 226 
training dataset used in the hackathon was z-scored and down-sampled to 1250Hz. Training data were227 
shuffled and distributed into train and test subsets (70%-30% respectively). Each architecture was trained to 228 
optimize F1 of the test set using several parameters. The 50 best models were tested over a new validation 229 
data set (7586 events; 21 sessions from 8 animals), generating an F1 vs threshold curve per model/ 230 
architecture. Among these 50, the model with highest mean F1 was selected for between-models 231 
comparison (right panel). B, LFP example of the validation set and the corresponding model outputs per 232 
window of analysis. Note different duration of true events. Setting a threshold allows defining the windows 233 
containing detected events. Colored ticks represent detections by the different models. Two different 234 
thresholds (dark and light gray) can influence what events are detected. Note how detections marked with 235 
arrows are dismissed when the threshold increases. Since SWRs constitute about 1-4% of the total 236 
recording duration, performance is computed using positive detections; that is windows without GT or 237 
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detected events are not computed for performance. C, Schematic illustration of Precision (percentage of 238 
good detections), Recall (percentage of ground truth events that have been detected) and F1-score239 
(harmonic mean between Precision and Recall).  240 
 241 
 242 

243 
Figure S2: Definition of parameter space in the different ML architectures. A, Results from the different 244 
architectures in the training dataset: XGBOOST, SVM, LSTM, 2D-CNN and 1D-CNN. Tables indicate the 245 
different hyper-parameters used to train each architecture. The resulting 10-best models are color-coded by 246 
their F1-score in the validation dataset. The remaining 40-best models are shown in light gray. B, Evolution 247 
of accuracy along training epochs for the ML models shown in A. 248 

 249 
 250 
Influence of the temporal and spatial sampling in training performance 251 

Next, we sought to evaluate the relationship between model performance, parameters and LFP 252 
input characteristics. Given the relevance of the temporal and spatial LFP sampling in the definition 253 
of SWRs31, we started evaluating how the size of the analyzed window and the number of 254 
recording channels influenced performance. In order to have as much data as possible, we used 255 
F1-scores of all the trained models over the test set. 256 

We found that XGBoost and LSTM were very stable, with performances changing very little for any 257 
combination of window size and the number of channels used, suggesting that these architectures 258 
can capture SWR features that are relatively invariant across temporal/spatial windows in the input 259 
data (Fig.3A,B). Interestingly, the training parameter that most influenced these two architectures 260 
was the number of LFP channels, with 3 and 8 channels providing better performances (Fig.3A).  261 

Spatial information was also important for the SVM model, which scored poorly using a single 262 
versus several channels (Fig.3A; magenta). As mentioned above, temporal resolution was also 263 
critical for SVM, which required smaller time windows of <3.2 ms to succeed in detecting SWR 264 
(Fig.3B). For analysis windows >6.4 ms (i.e. the temporal scale of one 150Hz-ripple oscillation) 265 
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performance dropped significantly, indicating that a single SWR cycle and its particular waveform 266 
across channels are optimal input information for the SVM architecture to detect events. This effect 267 
could be due to the low number of trainable parameters used for SVM (ranging from 1 to 100; see 268 
methods), which requires less but more informative data to achieve good performances. 269 

Figure 3: Influence of number of channels and analysis window on training performance. A, Final test 270 
F1-score of all trained models depending on the number of input channels: one (pyramidal channel; see 271 
methods), three (pyramidal channel and extreme channels), or eight (all channels of the probe).  Kruskal-272 
Wallis tests with repeated measures for every architecture: XGBOOST, Chi2(2)=1282.2, p<0.0001; SVM, 273 
Chi2(2)=33.1, p<0.0001; LSTM, Chi2(2)=964.4, p<0.0001; 2D-CNN, not significant; 1D-CNN, Chi2(2)=14.6, 274 
p=0.0007. Post hoc tests *, p<0.05; **, p<0.01, ***, p<0.001. B, Same as panel A, but depending on the time 275 
window used for analysis. Kruskal-Wallis tests with repeated measures for every architecture: XGBOOST, 276 
Chi2(2)=369.5, p<0.0001; SVM, Chi2(7)=48.8, p<0.0001; LSTM, Chi2(5)=48.0, p<0.0001; 2D-CNN, 277 
Chi2(4)=16.5, p=0.0024; 1D-CNN, Chi2(3)=126.5, p<0.0001. Post hoc tests *, p<0.05; **, p<0.01, ***, 278 
p<0.001.  279 

 280 
 281 

Finally, both the 2D- and 1D-CNN models had similar performance for any number of channels, 282 
although there was also a trend for higher spatial sampling (Fig.3B, yellow and acqua). 283 
Interestingly, both CNN models presented a large F1 dispersion because their performance was 284 
very dependent on the window size (Fig.3B). The 2D-CNN model exhibited maximal F1-score for 285 
32ms, while most 1D-CNN models best scored for 25 ms (Fig.3B). This may be related to the286 
number of training parameters: the more parameters, the more complex tasks these algorithms 287 
can solve, provided the amount of training data is representative enough of the expected variance. 288 
This supports accurate detection in longer LFP windows. Examination of the remaining parameters 289 
suggested additional differences across architectures (Fig.S3A-E). Interestingly, evaluating their 290 
impact on F1-scores confirmed the effect of channels and window size on model behavior 291 
(Fig.S3F). For CNN models, the batch size (1D-CNN) and the number of kernels (2D-CNN) were 292 
also critical. 293 
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294 
Figure S3: Influence of architecture-specific training parameters on performance. A-E, F1-scores from 295 
the test set for all models of each architecture. All statistical tests were Kruskal Wallis (KW) with repeated 296 
measures. A, XGBoost training parameters: maximum tree depth (KW: Chi2(3)=1321.6, p<0.0001), learning 297 
rate (KW: Chi2(2)=1109.4.6, p<0.0001), gamma (KW not significant), lambda regularization (KW: 298 
Chi2(2)=67.8, p<0.0001) and scale (KW: Chi2(2)=111.6, p<0.0001). Post hoc tests *, p<0.05; **, p<0.01, ***, 299 
p<0.001. B, SVM training parameters: under-sampling percentage (KW not significant). Higher % of 300 
undersampling means training the model with higher representativity of GT data.  C, LSTM training 301 
parameters: bidirectionality (KW: Chi2(1)=320.1, p<0.0001), number of layers KW: Chi2(3)=602.4, p<0.0001),302 
number of units per layer (KW: Chi2(9)=543.8, p<0.0001) and training epochs (KW: Chi2(2)=836.1.6, 303 
p<0.0001). D, 2D-CNN training parameters: number of kernels scaling factor (KW: Chi2(3)=16.0, p=0.0011), 304 
number of epochs and batch size (KW not significant). E, 1D-CNN training parameters: number of kernels 305 
scaling factor (KW not significant), number of training epochs (KW not significant), and batch size (KW: 306 
Chi2(2)=196.9, p<0.0001). F, F1-score variability as a function of all training parameters. F1 variability was 307 
computed as the difference between the maximum and minimum mean F1. 308 
 309 
 310 

Comparison between optimized models  311 

The analysis above provided insights on how input characteristics and processing parameters can 312 
influence detection performance in different ML models. Understanding how each architecture 313 
learns to identify ripple-like events can not only can aid the development of new tools, but unveil 314 
what are the key LFP features used for detection. We thus evaluated conditions for their best 315 
performance. 316 

For fair comparison between architectures, we selected the 10-best models from the validation set. 317 
Remarkably, our previously published 1D-CNN model31 was among the 10-best 1D-CNN, 318 
outperforming other configurations. Plotting F1-scores of all models across a range of thresholds 319 
allowed visualization of their performance stability as a function of the probability threshold (Fig.4A).320 
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We analyzed their performance along a range of characteristics (performance, robustness, and 321 
threshold dependency) to better inform their selection depending on research applications. Five of 322 
the 10-best trained models of all architectures are available at https://github.com/PridaLab/rippl-323 
AI/blob/main/optimized_models/  324 

The consistency of F1-threshold curves depended on the model architectures (Fig.4A). Most 325 
models reached their maximal F1-score at relatively low threshold values of 0.3-0.4 and remained 326 
stable until a probability of around 0.5-0.7. Such a behavior indicates robust performance, since 327 
even low probability (i.e., relatively uncertain) output predictions overlapped with the ground truth. 328 
This property is very useful for online experimental applications, when choosing different 329 
thresholds is not manageable, making detection more robust. Interestingly, we found that XGBoost 330 
models exhibited good performance at two threshold ranges (0.2-0.4 and 0.6-0.8), depending on 331 
how trained models penalized False negative predictions. Similarly, for both CNN architectures, we 332 
found several models operating sharply at low thresholds, while others exhibited a relatively stable 333 
operation in the 0.4-0.6 range especially for 1D-CNN models. We confirmed the variability of 334 
different models within a given architecture by looking at their Precision vs Recall curves for the 335 
entire threshold range (Fig.S4A). This variability suggests that even when arising from the same 336 
architecture, algorithmic processes and detection strategies by which the different models were 337 
detecting SWR events could differ. This may provide a range of models for different applications.  338 

339 
Figure 4: Comparison between best performing ML models. A, F1 against threshold from the 10-best 340 
models of each architecture as evaluated in the validation set. Each line represents the performance of one 341 
trained model, colored by its maximal F1 (mean from all sessions is plotted in dark color). Data reported as 342 
mean±95% confidence interval for validation sessions. Arrows indicate the best model of each architecture. 343 
B, F1-scores for the best model of panel A. Thresholds used are: 0.4 for XGBoost, 0.5 for SVM, 0.4 for 344 
LSTM, 0.1 for CNN2D, 0.5 for CNN1D. Each dot represents a session of the validation set (n=21 sessions; 8 345 
mice). In gray, the F1-score for a consensus detector. Kruskal-Wallis, Chi2(5)=26.9, p<0.0001; post hoc tests 346 
*, p<0.05; **, p<0.01, ***, p<0.001. C, Stability index for the best model of each architecture (left), and the 347 
stability index vs the F1 (right). Kruskal-Wallis, Chi2(4)=10.5, p=0.03; post hoc tests. D, Similarity between 348 
predicted events of different architectures. Models are the same as in panels B-C. To measure the similarity, 349 
the mean F1 across validation sessions have been computed, using detected events in the y-axis as 350 
detections, and detected events in the x-axis as ground truth. Note the similarity between LSTM and 1D-351 
CNN (white *), and that by XGBoost against SVM, LSTM and 1D-CNN (white +).  352 
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Next, we selected the model that reached the highest F1 value from each architecture (Fig.4A, 355 
best models, arrowheads), and compared their scores using all validation sessions (Fig.4B). We 356 
found that the LSTM and 1D-CNN best models outperformed other architectures, with mean F1-357 
scores over 0.6 (as a reference, the inter-expert F1-score in our lab is ∼0.731. Precision-Recall 358 
curves from these two models clearly stood out of the other solutions (Fig.S4B). Importantly, a 359 
consensus prediction based on the 5-best models did not perform better than individual 360 
architectures alone (Fig.4B; gray).  361 
 362 
Given the importance of consistent threshold performance for practical applications, we quantified 363 
the robustness of F1-threshold curves for the best models using a stability index in the validation 364 
dataset (see methods). Models with a stability index of 1.0 provide at least 90% of its maximal 365 
performance for any threshold value, a property especially suitable for experimental applications. 366 
While the best 2D-CNN model exhibited stability in some validation sessions, the best LSTM and 367 
especially the best 1D-CNN best models exhibited more consistent behavior (Fig.4C, left; Fig.S4C).368 
We confirmed this result by plotting the stability index versus F1, where both the best LSTM and 369 
1D-CNN best models clearly segregated (Fig.4C, right; arrowhead). 370 

 371 
Figure S4: Precision-Recall curves of optimized models. A, Precision (P) vs Recall (R) curves for the 10-372 
best models of each architecture. Each dot represents P-R values for a particular threshold. Each line 373 
represents the performance of one trained model, colored by its maximal F1 (mean of all sessions is plotted 374 
in dark color; sessions are light colored). B, P-R curves for the best model of each architecture (all 375 
thresholds). Thick lines represent mean values. Thin lines curves are individual validation sessions. C, F1-376 
score as a function of the threshold. Data reported as mean±95% confidence interval for validation sessions. 377 
D, Similarity between the events predicted by the best model (maximum F1) of each architecture. Models 378 
shown are the ones with maximum F1. To measure the similarity, we computed the mean Precision (right) 379 
and Recall (left) across validation sessions have been computed, and used detected SWR events of models 380 
in the y-axis as detections, and detected events of models in the x-axis as ground truth. 381 
 382 
 383 
Finally, to evaluate whether the different models were targeting similar or different subsets of SWR 384 
events, we compared how similar their detections were. To quantify this similarity, we computed the 385 
F1 between both groups of detections, using one of them as the ground truth (Fig.4D). Interestingly,386 
the 1D-CNN and LSTM showed a high level of similarity, in line with their consistent and accurate 387 
behavior (Fig.4D, white *). XGBoost scored a high similarity with all other architectures except for 388 
the 2D-CNN (Fig.4D, white +). Possibly, this reflects the fact that very few of the XGBoost 389 
detections were also predicted also by 2D-CNN, leading to a very low Precision (Fig.S4D). In 390 
general, high similarities did not seem to be caused by a particularly high Precision or Recall 391 
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(model A detects so few events that all coincide with detections of model B), but by a good balance 392 
between both (events of model A and B highly overlap) (Fig.S4D). 393 
 394 
 395 
 396 
Effect of different ML models on the features of detected SWRs  397 

Results above suggest that different models may be relying on different strategies for recognizing 398 
SWRs. We thus wondered whether models could be biased towards SWRs with different features399 
(e.g. frequency, amplitude, etc…), and whether these biases could also be reflected over different 400 
ranges of output probabilities.  401 

In order to evaluate these issues, we resorted to a low-dimensional analysis of SWRs which allows 402 
for their unbiased topological characterization14. In this strategy, SWR events are considered points 403 
in an N-dimensional space, where each dimension X (dimX) represents the LFP value sampled at 404 
a given timestamp X (Fig.5A). In our case, as events were GT ripples of 50 ms sampled at 1250Hz 405 
(i.e. 63 timestamps), the original space was 63 dimensions. Plotting all SWR events will result in a 406 
point cloud, with events sharing similar LFP features lying close to each other, while those of 407 
different characteristics distribute separately (Fig.5A). To ease visualization, the SWRs were408 
embedded in a low-dimensional representation using Uniform Manifold Approximation and 409 
Projection (UMAP)14,51.  410 

411 
Figure 5. Effect of ML models and thresholds on the type of detected SWR. A, Low-dimensional 412 
analysis of SWR features14. GT ripples are represented into a high-dimensional space by mapping each 413 
timestamp to a particular dimension. Since the sampling rate is 1250Hz, and windows around SWRs were 414 
cut to 50ms, there are 63 timestamps per event, and so the original space has 63 dimensions. The SWR 415 
cloud is embedded in a low-dimensional space using UMAP.  B, UMAP embedding projected into the two 416 
first axes. Each dot represents a  GT ripple, and its color reflects its frequency (left) and power (right). Note 417 
how ripples in the cloud are distributed according to frequency and power, meaning that in the original space 418 
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ripples with similar features are close together. C, Colored dots superimposed over gray GT data represent 419 
the top 1% of detected events for every given architecture, i.e., True Positive events with an output SWR 420 
probability above 99% of the maximum probability for that given model. Note that different distributions of 421 
events in the cloud reflect biases of ML model used for detection. D, Frequency of True Positive SWR 422 
detected by each architecture. Each dot represents the mean frequency of detected ripples of one validation 423 
session (21 sessions from 8 animals). Kruskal-Wallis tests for every architecture: XGBOOST, not significant; 424 
SVM, Chi2(5)=11.1, p=0.049; LSTM, Chi2(5)=29.9, p<0.0001; 2D-CNN, Chi2(5)=13.8, p=0.017; 1D-CNN, not 425 
significant. E, Spectral power of True Positive events detected by each architecture. Kruskal-Wallis tests for 426 
every architecture: XGBOOST, SVM, 2D-CNN and 1D-CNN are not significant; LSTM, Chi2(5)=14.0, 427 
p=0.016. Post hoc tests *, p<0.05; **, p<0.01, ***, p<0.001.  428 
 429 
 430 

First, we analyzed how ripple frequency and power were distributed in the UMAP embedding by 431 
coloring each dot (i.e. each SWR) based on their frequency (Fig.5B, left) and power (Fig.5B, right). 432 
As expected from our previous work14, these features followed different distributions, segregating 433 
high-frequencies towards the bottom of the cloud and high-power events radially out (Fig.5B). We 434 
then inspected events detected by the best model of each architecture by plotting the top 1% 435 
detections, defined as True Positive events for which the model output probability was >99% of its 436 
maximum probability (Fig.5C). Interestingly, each model showed different distributions of preferred 437 
SWRs. For example, XGBoost was biased towards a subset of high-power and fast SWR events 438 
(Fig.5C, green arrowhead), whereas the SVM model exhibited a more heterogenous distrinution. In 439 
turn, LSTM and both CNNs assigned higher probabilities to events that had a good frequency-440 
power balance (Fig.5C, orange, yellow and blue arrowheads). Note how these models have more 441 
colored events, consistent with their higher stability indices reported above (Fig.4C).  442 

To quantify detection biases in each ML model, we analyzed the frequency and power of their True 443 
Positive events and compared them against those in the GT. Consistent with the UMAP 444 
distributions, SWR frequency was highly dependent on the threshold for SVM, LSTM and 2D-CNN 445 
algorithms (Fig.5D). The case of LSTM was particularly striking with differences accumulating for 446 
all thresholds. Instead, for the SVM and 2D-CNN biases were significant only when thresholds 447 
differed ±0.2 from the optimal value (Fig.5D). As previously reported31, the 1D-CNN exhibited 448 
roughly consistent behavior with SWR features not statistically different from GT events. SWR 449 
power exhibited no major dependency on the threshold in any of the models but the LSTM, 450 
especially at higher detection thresholds (Fig.5E).  451 

Altogether, this analysis suggests that the different ML models can be exploited to detect a wide 452 
range of SWRs with different characteristics. 453 

 454 
Using the toolbox to identifying SWRs in non-human primates 455 
 456 
A major motivation of our study is to develop methods which can be generalizable for a wider 457 
range of detection contexts, including a greater range of species and biomedical applications. Thus, 458 
we applied our ML models to LFP recordings from the hippocampus of the macaque, which shares 459 
a high level of genetic, morphological and physiological characteristics with that of its fellow 460 
primate, the human, while enabling precise localization of signals roughly comparable to those 461 
used for the algorithm development. To accomplish this, we recorded hippocampal LFP signals 462 
from a freely moving macaque using a multichannel linear probe52 (Fig.6A). Unlike the original 463 
high-density probes (20 µm), recordings were obtained every 90/60 µm and spanned CA1 layers 464 
(Fig.6A). As in mice, SWRs were manually identified (4133 events) to generate the annotated 465 
ground truth (Fig.6B). Consistent with the literature16,17, macaque SWRs had lower frequencies and 466 
higher power as compared to mouse ripples (Fig.6C).  467 
 468 
We applied the best model of each architecture trained in head-fixed mice to macaque recordings, 469 
and evaluated their performance. For fair comparison, we flipped laminar LFP signals upside down 470 
and sampled the channel combination that best matched the characteristic mouse LFP profile (see 471 
Methods and layer orientation in Fig.6A). Strikingly, 4/5 models reached a maximum F1 of ~0.5 472 
(Fig.6D), close to their maximal performance on mice data (~0.6). SVM, 1D-CNN and LSTM 473 
exhibited the best performance, as compared to XGBoost and 2D-CNN (Fig.6D). Importantly, the 474 
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fact that both LSTM and 1D-CNN have relatively good generalization capability, suggests that they 475 
successfully capture shared features of SWRs from mice and macaques.  476 
 477 

 478 
 479 

480 
Figure 6. Extending sharp-wave ripple detection to non-human primates. A, Linear multichannel probes 481 
were used to obtain LFP recordings from the anterior hippocampus of a freely moving monkey. B, SWR 482 
events were manually tagged (4133 events) as in mouse data. C, Significant differences between SWR 483 
recorded in mice and monkey. Kruskal-Wallis Chi2=1649, p<0.0001 for frequency; Kruskal-Wallis Chi2=407, 484 
p<0.0001 for power. Posthoc, ***, p<0.001. Data from the GT in both cases. D. The best model of each 485 
architecture trained in mouse data was applied to detect SWRs on the macaque data. Input data consisted 486 
of 5 LFP channels of SO, SP and SR, and 3 interpolated channels (see methods for details). We evaluated 487 
all models by computing F1-score against the ground truth (GT). Note relatively good results from non-488 
retrained ML models. E, Results of model re-training using macaque data. Data were split into a training and 489 
test dataset (50% and 20% respectively), used to train the models; and a validation set (30%), used to 490 
compute the F1 (left panel). F, F1-scores for the maximal performance of each model before and after re-491 
training. Kruskal-Wallis test, Chi2(2)=8.06, p=0.018. Post hoc tests *, p<0.05. 492 
 493 
 494 
 495 
We next chose to re-train the 5 models with the macaque dataset, using 50% for training and 20% 496 
for testing. The remaining 30% was used for validation to compute the final F1. For re-training, we 497 
reset all trainable parameters (internal weights) but kept all architectural hyper-parameters fixed 498 
(number of input number of channels, input window length, number of layers, etc…). Performances 499 
improved after retraining for 4/5 models, reaching a F1 increase of +0.3 for 2D-CNN (Fig.6E). The 500 
best model was LSTM, followed by 1D-CNN and XGBoost. SVM was the only model that did not 501 
improve after retraining, but exhibited a shift towards larger thresholds. Furthermore, performance 502 
of macaque SWR detection after re-training reached the mouse level (Fig.6E), suggesting that 503 
these models identified similar key features in both species, and could readily be trained to similar 504 
levels of accuracy across mice and monkeys. A user-friendly open python notebook to re-train any 505 
of the 5 models and use it for event detection is available at https://github.com/PridaLab/rippl-506 
AI/blob/main/examples_retraining.ipynb  507 
 508 
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Discussion 511 
 512 
Here, we provide a pool of models for automatic SWR detection based on different ML 513 
architectures. These include some of the most used ML solutions, such as XGBoost, SVM, 1D- 514 
and 2D-CNN and LSTM. The models, which resulted from unbiased community-based proposals, 515 
are able to capture a wealth of SWR features recorded in the dorsal hippocampus of head-fixed 516 
mice. When applied to LFP recordings from a freely moving macaque, these models were able to 517 
generalize detection.   518 
 519 
The need for detecting and classifying high-frequency oscillations such as SWR has accelerated 520 
over recent years for advanced biomedical applications28,33,35,41,53. Identification of these events can 521 
help to delineate normal from pathological epileptogenic territories18,54,55, and to develop closed-522 
loop intervention strategies for boosting memory function33,35. However, spectral-based methods 523 
have revealed suboptimal and the community is actively seeking for novel feature-based strategies. 524 
Recently, solutions based in ML methods have started to emerge25,28,31,54. Using these tools will 525 
drive advances not only in online detection of SWRs, but also their unbiased categorization for 526 
better mechanistic understanding11,13,31,56,57, including their functional ties to visuospatial and 527 
episodic memory10,11,16,34,38,39.   528 
 529 
Amongst the 5 ML models examined here we found the LSTM and 1D-CNN to provide the best 530 
performance and reliability using rodent data. The other models exhibited roughly similar behavior 531 
depending on the input parameter selection (recording channels and analysis windows). While in 532 
general, we found that all of them performed better with high-density multi-channel recordings (8 533 
channels), some of them (e.g. 2D-CNN) exhibited similar results while operating over data sampled 534 
with 1 to 3 channels. This suggests they may be able to identify characteristic features with 535 
reduced spatial information, which could facilitate applications to human recordings19,37.  536 

Detection of SWR candidates with ML models is based on using a probability threshold. We found 537 
that the different models exhibited a degree of sensitivity to threshold selection, with LSTM, 538 
XGBoost and 1D-CNN providing a wider range of operational stability. This suggests there is a 539 
larger range of thresholds in these models which provide relatively similar performance. Instead, 540 
SVM and the 2-CNN better operate in a very narrow threshold range. This is very important for 541 
online applications, when threshold selection can affect experimental results in real time25.  542 

The different ML models are biased towards SWRs with slightly different properties, probably 543 
reflecting their internal representations of SWR characteristic LFP features31. During training, each 544 
model learns to identify what specific LFP features made ripples distinguishable from background 545 
LFP signals, so that during SWR detection, the presence of those features raises their output 546 
probability. The fact that the properties of detected SWR depend on the probability threshold for 547 
SVM and 2D-CNN suggests that frequency and relative power are some of the LFP features these 548 
models identified during training. On the contrary, XGBoost, LSTM and 1D-CNN models, which 549 
showed less bias, may be capturing other LFP features such as the spatial profile. This is 550 
consistent with results from the analysis of the influence of spatial sampling in training performance 551 
in these ML models.  552 

When applied to data from the macaque anterior hippocampus, we found that models trained with 553 
LFP signals from the dorsal hippocampus of mice can perform relatively well, especially 554 
considering established differences in frequency and in LFP shape in monkey and human10,16,17. 555 
After re-training, their operation improved significantly, reaching the inter-experts’ performance 556 
levels at 0.731. This demonstrates the strong capability of the ML models to generalize and 557 
suggests the existence of shared features across species. This is of particular importance, 558 
because many human applications may not have the exact spatial localization or the same 559 
electrode types, in some cases even within studies, and so any effective ML applications will need 560 
a high degree of generalizability. It also demonstrates the proof of principle for applying to a wider 561 
range of measurements, including other animal models and ripple-adjacent pathologies such as 562 
MTL seizures54. 563 
 564 
More testing along these lines will identify the extent of generalizability across different 565 
permutations of species, location, electrode sampling and type, to find the limits of these ML 566 
models. To enable such developments, we made several of the 10-best trained models and our 567 
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coding strategies for detection and retraining openly available to the research community at 568 
https://github.com/PridaLab/rippl-AI. They can be tested through open-source notebooks that are 569 
ready to use, with enough examples to illustrate their operation capability. Although the notebooks 570 
provide easily readable code, they may not be optimal for further code development. That is why 571 
the core functions are written as separate Python modules. Users can test these models for SWR 572 
detection by loading their own data and defining the channels. The ripple_AI repository has a wide 573 
variety of SWR detection tools that include optional supervised detection curation, and a graphical 574 
user interface for a quick visual exploration of detected events depending on the threshold chosen, 575 
as well as the option of retraining a model with the user’s own data.  576 
 577 
This collection of resources joins to the many other community-based approaches for model 578 
benchmarking30,41,o53,58. Crowdsourced solutions are becoming a tool to advance solutions of 579 
particularly difficult problems which require knowledge integration40,43.  This provides the field with 580 
a set of platforms for detecting events from diverse datasets using traditional and state-of-the-art 581 
algorithms (e.g., our own ripple-AI toolbox, and https://www.sharpwaveripples.org/). Our toolbox 582 
goes beyond SWR detection, easing development of personalized ML models to detect other 583 
electrophysiological events of interest32. This may be critical in experimental and/or clinical cases, 584 
where other detection criteria, i.e. F-values, than those maximizing performance may be more 585 
important. For instance, different experiments may call for avoiding either type I or type II errors, 586 
and hence the balance between Precision and Recall. Such a versatility of our toolbox may be 587 
further exploited to accelerate our understanding of hippocampal function and to support the 588 
development of biomedical applications.  589 
 590 
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Methods 719 

The hackathon 720 

In order to explore a wide variety of ML solutions to the problem of SWR detection, we organized a 721 
hackathon (https://thebraincodegames.github.io/index_en.html). We specifically targeted people 722 
unfamiliar with SWR studies, who could provide unbiased solutions to the challenge. A secondary 723 
goal of the hackathon was to promote their interest and engagement at the interface between 724 
Neuroscience and Artificial Intelligence especially for future young scientists. The event was held in 725 
Madrid in October 2021, using remote web-platforms. Some of us (ANO) coordinated the event. 726 
Consent to participate and to share relevant personal data was obtained prior to the event. All 727 
participants were informed on the goal of the hackathon and agreed that their solutions were 728 
subject to subsequent investigation and modification.  729 

The hackathon comprised 36 teams of 2 to 5 people (71% males, 29% female), for 116 participants 730 
in total. They represent 45% of Undergraduate students, 38% Master students, 15% PhD students 731 
and 3% non-academic workers (Fig.S1A). On average, they were young in their professional 732 
career with 77% of participants being research-oriented (Fig.S1A). Previous to the hackathon, we 733 
monitored the participants’ self-declared knowledge level on Neuroscience, Python programming 734 
and ML in general using a survey (Fig.S1B). To provide a homogenous floor to address the 735 
challenge, we organized three online seminars to cover each of the three topics one month before 736 
the activity. Seminars were recorded and made available for review along the experience. 737 

The hackathon was held during one weekend (Friday to Sunday), during which groups had to 738 
design and train a ML algorithm to detect SWRs. To standardize the different algorithms for future 739 
comparison, they were given Python functions to load the data, compute a performance score, and 740 
write results in a common format. Data sets were available from a public research-oriented 741 
repository at Figshare (https://figshare.com/authors/Liset_M_de_la_Prida/402282). Participants 742 
were given a training set to train their algorithms, and a test set to run validation tests. Data 743 
consisted on raw 8-channel LFP signals from the hippocampal CA1 region, recorded with high-744 
density probes, which was used before for similar purposes (Navas-Olive et al. 2022). SWR were 745 
manually tagged to be used as ground truth (training set: 1794 events, two sessions from two mice; 746 
test set: 1275 events; two sessions from two animals). Since participants had two days to design 747 
and train solutions, groups were allowed to interact with us to ask for technical questions and 748 
clarification.  749 

We monitored participant’s engagement throughout the hackathon using short questionnaires. This 750 
allowed us to check their motivation and other emotional states (i.e., frustration, interest, etc…). 751 
Some people dropped out along the days of the hackathon (Fig.S1D). We found many participants 752 
felt confused and frustrated with the challenge, and this correlated with their performance, as a 753 
posterior analysis suggested (Fig.S1E). 754 

Datasets and ground truth 755 

Participants of the hackathon were provided with an annotated dataset consisting of raw LFP 756 
signals (8-channels) sampled at 30,000 Hz. SWR events were manually tagged by an expert who 757 
for each event identified their start and end. The start of the SWR was defined near the first ripple 758 
of the sharp-wave onset. The end of the event was defined at the latest ripple or when sharp-wave 759 
resumed. The training set consisted of two recording sessions from 2 mice (Navas-Olive et al., 760 
2022). They contained 1794 manually tagged SWRs. The test set consisted of two recording 761 
sessions from another 2 mice and contained 1275 SWR events. 762 

For posterior analysis of the results of the hackathon, we used a validation dataset consisting on 763 
the 2 test sessions mentioned before plus another 19 sessions for a total of 21 sessions from 8 764 
different mice. They all contained a total of 7423 manually tagged SWR.  765 

The ground truth, i.e. the analysis windows containing a SWR event, was generated for all 766 
sessions with the help of a Matlab 2019b tool that considered the window size.  767 

ML models specifications 768 

Five architectures were selected out of the 18 solutions submitted to the hackathon: XGBoost, 769 
SVM, LSTM, 2D-CNN and 1D-CNN.  For the purpose of fair comparisons, they were retrained and 770 
tested using homogenized pre-processing steps and data management strategies (see below). 771 
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We used Python 3.9.13 with libraries Numpy 1.19.5, Pickle 4.0 and H5Py 3.1.0. To build the 772 
different neural networks, we used the Tensorflow 2.5.3 library, with Keras 2.5.0 as the application-773 
programming interface. XGBoost 1.6.1 was used to train and test the boosted decision trees 774 
classifiers. Scikit-learn 1.1.2 and Imbalanced-learn 0.9.1 were used to train support vector machine 775 
classifiers. Analysis and training of the models were conducted on a personal computer (i7-11800H 776 
Intel processor with 16 GB RAM and Windows 10). 777 

Data preparation 778 

For subsequent training and analysis of the architectures selected from the hackathon, all data was 779 
pre-processed. From each recording session two matrices were extracted, X, with the raw LFP 780 
data, shaped (# of timestamps, # of channels) and Y, the ground truth generated from the expert 781 
tagging (# of timestamps). A timestamp of Y is 1 if a SWR event is present. 782 

Values for matrix X were subsampled at 1250 Hz, taking into consideration that SWRs are events 783 
that have frequencies in the range of 150 to 250 Hz. Before retraining the algorithms, data was z-784 
scored with the mean and standard deviation of the whole session. 785 

Training, validation, and test split 786 

For retraining the architectures, the same training dataset provided in the hackathon was used (2 787 
sessions from 2 mice; 1794 SWR events). For initial testing, these two sessions were split 788 
according to a70/30 train/validation design. To evaluate the generalization capabilities of the 789 
models when presented with unseen data, we used several validation sessions, which provide the 790 
necessary animal-to-animal, as well as within animal (sessions) variability. Validation sessions 791 
included the 2 test dataset provided in the hackathon and 19 additional sessions (21 sessions from 792 
8 mice, 7423 SWR events) 793 

For retraining, the two training sessions were concatenated and divided into 60 seconds epochs. 794 
Each epoch was assigned randomly to the train or validation set, following the desired split 795 
proportion. The data was reshaped to be compatible with the required input dimensionality of each 796 
architecture (see below). In order to evaluate model performance, two different datasets were used: 797 
the test set described above (used for an initial screening of the 50-best models for each 798 
architecture), and the validation set (used for generalization purposes). 799 

Identification of SWR events in the data was implemented using analysis windows of different sizes. 800 
To identify SWR events detected by the ML models, we set a probability threshold to identify 801 
windows with positive and negative predictions. GT was annotated in the different analysis 802 
windows of each session. Accordingly, predictions were classified in four categories: True Positive 803 
(TP), when the prediction was positive and the GT window did contain a SWR event; False 804 
Positive (FP), when the prediction was positive in a window that did not contain any SWR; False 805 
Negative (FN), when the prediction was negative in a window with a SWR; and True Negative (TN) 806 
when the prediction was negative and the window did not contain any SWR event. 807 

If a positive prediction had a match with any window containing a SWR it was considered a TP, or it 808 
was classified as FP otherwise. All true events that did not have any matching positive prediction 809 
were considered FN. Negative predictions with no matching true events windows were TN. 810 

With predicted and true events classified into those four categories, there are three measures than 811 
can be used to evaluate the performance of the model. Precision (P), which was computed as the 812 
total number of TPs divided by TPs and FPs, represents the percentage of predictions that were 813 
correct. 814 

��������� 	 
�

� � �� 

Recall (R), which was calculated as TPs divided by TPs and FNs, represents that percentage of 815 
true events that were correctly predicted. 816 


����� 	 
�

� � �� 

Finally, the F1-score, calculated as the harmonic mean of Precision and Recall, represents the 817 
network performance, penalizing imbalanced models. 818 
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To ease subsequent evaluation of ML models for SWR analysis we provide open-access to codes 819 
for retraining strategies: https://github.com/PridaLab/rippl-AI  820 

Parameter fitting  821 

Different combinations of parameters and hyper-parameters were tested for each architecture 822 
during the training phase (1944 for XGBoost, 72 for SVM, 2160 for LSTM, 60 for 2D-CNN, 576 for 823 
1D-CNN). 824 

Two parameters were shared across all architectures: the number of channels and the number of 825 
timestamps in the analysis window (referred as the window size). These parameters define the 826 
dimensionality of the input data (# timesteps x # channels), i.e. the number of input features. 827 

The number of channels to be used was set at 1, 3 or 8. When 1 channel was chosen, it was that 828 
corresponding to the CA1 pyramidal layer channel, defined as the channel with most power in the 829 
ripple bandwidth (150-250 Hz). The superficial, pyramidal, and deep channels were used as 3 830 
channels. All the channels in the shank were used for the 8-channels input configuration. 831 

The number of timestamps defines the window size. The tested values depended on each 832 
architecture, and ranged between windows of 0.8 to 51.2 milliseconds. The rest of the parameters 833 
were specific for each architecture (see below). 834 

The F1-score metric for the training and test set was calculated to compare the performance of the 835 
models, with the test F1 serving as a priori metric of the generalization of the models, allowing for a 836 
selection of models without performing a complete validation.  837 

For each model, a test-F1 array was calculated with different thresholds (generally, from 0.1 to 0.9 838 
with 0.1 increments), and the highest value for each model was used for comparison among 839 
models of the same architecture. As a result, the 50-best performing models were selected after 840 
the initial retrained test. 841 

Validation process 842 

The aim of validation is to find the model that generalizes best to unseen data for each architecture. 843 
With that in mind, defining a metric that takes this into account is not a straight-forward task. 844 

To weigh each validation session (21) independently, a F1 array was calculated for each individual 845 
session, resulting in matrix of 21 per number of threshold-values (#th). The mean of sessions gives 846 
us a #th array that quantifies the performance/generalization of the model as a function of the 847 
chosen threshold. The maximum value of this array will represent the best performance that could 848 
be achieved with this model if the threshold is correctly selected. This single value is what will be 849 
compared. Using this strategy, we narrowed down available models to the 10-best of each 850 
architecture, before selecting the best model. 851 

XGBoost 852 

Based in the Gradient Boosting Decision Trees algorithm, this architecture trains a tree with a 853 
subset of samples, and then calculates its output44. The misclassified samples are used to train a 854 
new tree. The process is repeated until a predefined number of classifiers are trained. The final 855 
model output is the weighted combination of individual outputs.  856 

In the training process, we worked with quantitative features (LFP values per channels) and a 857 
threshold value for a specific feature was considered in each training step. If this division correctly 858 
classifies some samples of the subset, two new nodes were generated in the next tree level, where 859 
the operation was repeated until the maximum tree depth was achieved, and a new tree with the 860 
misclassified samples is generated. The input is one dimensional (# of channels x # of timesteps) 861 
and produces a single output.   862 

Specific parameters of XGBOOST are Maximum depth, the maximum levels for each tree, may 863 
lead to overfitting. Learning rate, which controls the influence of each individual model in the 864 
ensemble of trees. Gamma is the minimum loss reduction required to make a further partition on a 865 
leaf node, with larger values leading to conservative models. Parameter λ contributes to the 866 
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regularization, with larger values preventing overfitting. Scale is used in imbalanced problems, the 867 
larger the more penalized false negatives are during training. 868 

Trained models had a number of trainable parameters ranging from 1500 to 17900. 869 

SVM 870 

Support Vector Machine is a classical classifier that searches for a hyperplane in the input 871 
dimensionality that maximizes the separation between different classes. This is only possible in 872 
lineal separation problems, so some misclassifications are allowed in real tasks. Usually, SVM 873 
performs a transformation on the original data using a kernel (linear or otherwise) that increases 874 
the data dimensionality but facilitates classification. 875 

During training, the parameters that define the separation hyperplane are updated until the 876 
maximum number of iterations is achieved, or the rate of change in the parameters go below a 877 
threshold. The input is one-dimensional (# of channels x # of timesteps) and produces a single 878 
output. 879 

Specific parameters of SVM are the kernel type. Using nonlinear kernels resulted in an explosive 880 
growth in training and predicting times, due to the enormous number of training data points. Only 881 
the linear kernel produced manageable times. The under-sample proportion rules out negative 882 
samples (windows without ripple) until the desired balance is achieved: 1 indicates the same 883 
number of positives and negatives.  884 

Trained models had a number of trainable parameters ranging from 1 to 480. 885 

LSTM 886 

Recurrent Neural Networks (RNNs) are a subtype of NNs especially suited to work with temporal 887 
series of data, extracting the “hidden” relations and tendencies between non-contiguous instants. 888 
Long Short-Term Memory (LSTMs) are RNNs with modifications that prevent some associated 889 
problems46.  890 

During training three sets of weights and biases are updated in each LSTM unit, associated with 891 
different “gates” (Forget, input and output). To prevent overfitting, two layers of dropout (DP) and 892 
batch normalization (batchNorm) were inserted between LSTM layers. DP randomly prevents 893 
some outputs to propagate to the next layer. BatchNorm normalizes the output of the previous 894 
layer. The final layer is a dense layer that outputs the event probability.  The input is two-895 
dimensional (# of timesteps, # of channels) and produces a probability for each timestep. After 896 
each window the internal weights are reset. 897 

Specific LSTM parameters: bidirectional if the model process the windows forwards and backwards 898 
simultaneously; # of layers is the number of LSTM layers; # of units the number of LSTM units in 899 
each layer, and # of epochs, which is the number of times the training data is used to perform 900 
training.  901 

Trained models had a number of trainable parameters ranging from 156 to 52851. 902 

2D-CNN 903 

Convolutional Neural Networks use convolutional layers consisting of kernels (spatial filters) to 904 
extract the relevant features of an image49. Successive layers use this as inputs to compute 905 
general features of the image. This 2D-CNN moves the kernels along the two axes, temporal 906 
(timesteps) and spatial (channels). The first half of the architecture includes MaxPooling layers that 907 
reduce the dimensionality and prevent overfitting. A batchNorm layer follows every convolutional 908 
layer. Finally, a dense layer produces the event probability of the window. 909 

During training, the weights and biases of every kernel are updated to minimize the loss function, 910 
with was taken as the binary cross entropy: 911 
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N is the number of windows in the training set, yi is the label of the i window and p(yi) is the 912 
probability of ripple that the model predicts. The input is # of timesteps and # of channels; and 913 
produces a single probability for each window. 914 

The 2D-CNN was tested with a fixed number of layers and kernel dimension. The kernel factor 915 
parameter determined the number of kernels in this structure: 32xkf (2x2), 16xkf (2x2), 8xkf (3x2), 916 
16xkf (4x1), 16xkf (6x1) and 8xkf (8x1). In parenthesis the size of the kernels in each layer. 917 

Trained models had a number of trainable parameters ranging from 1713 to 24513. 918 

1D-CNN 919 

This model is also a convolutional neural network, but the kernels only move along the temporal 920 
axis while processing spatial information. The number of layers and the kernel size was fixed. The 921 
tested models had 7 sets of 1D convolutional layer, batchNorm and LeakyRelu layer, followed up 922 
by a dense sigmoid activation unit. This model is similar to our previous CNN solution31. 923 

During training, the weights and biases of the layers were also updated with the objective of 924 
minimizing the binary cross entropy. The input is # of timesteps and # of channels, and produces a 925 
single probability for each window. 926 

The specific parameters for 1D-CNN included the kernel factor, which defined the number of 927 
kernels in each conv layer. The size and stride for each layer was equal and fixed. The size of the 928 
kernels in the first layer was defined as the length of the input window divided by 8. Structure: 4xkf 929 
(# timesteps//8 x # timesteps//8), 2xkf (1x1), 8xkf (2x2), 4x1 (1x1), 16xkf (2x2), 8xkf (1x1) and 930 
32xkf (2x2). Parameters also include # of epochs, as the number of times the training data is used 931 
to perform training, and # of training batch samples, which is the number of windows that are 932 
processed before parameter updating.  933 

Trained models had a number of trainable parameters ranging from 342 to 4253. 934 

Characterization of SWR features 935 

SWR properties (ripple frequency and power) were computed using a 100 ms window around the 936 
center of the event, measured at the pyramidal channel of the raw LFP. Preferred frequency was 937 
computed first by calculating the power spectrum of the 100 ms interval using the enlarged 938 
bandpass filter 70 and 400 Hz, and then looking for the frequency of the maximum power. In order 939 
to account for the exponential power decay in higher frequencies, we subtracted a fitted 940 
exponential curve (‘fitnlm’ from MATLAB toolbox) before looking for the preferred frequency. To 941 
estimate the ripple power, the spectral contribution was computed as the sum of the power values 942 
for all frequencies lower than 100 Hz normalized by the sum of all power values for all frequencies 943 
(of note, no subtraction was applied to this power spectrum).  944 

Dimensionality reduction using UMAP 945 

To classify SWR, we used topological approaches14. The UMAP version 0.5.1 (https://umap-946 
learn.readthedocs.io/en/latest/) in Python 3.8.10 Anaconda was used, which is known to properly 947 
preserve local and global distances while embedding data in a lower dimensional space. In all cas-948 
es, we used default values for reconstruction parameters. Algorithms were initialized randomly. 949 
UMAP provided robust results independent on initialization.  950 

Prediction and retraining of non-human primate data-set 951 

To study the generalization capabilities of the different architectures, we used data from a freely 952 
moving macaque targeting similar CA1, as completed in our mouse data (methods are described in 953 
reference52). Recordings were obtained with a 64-ch linear polymer probe (custom ‘deep array 954 
probe’, Diagnostic Biochips) that recorded across the CA1 layers of the anterior hippocampus 955 
(Fig.6A) where layers were identifiable relative to the main pyramidal layer, which contains the 956 
greatest unit activity and SWP power. LFP signals were sampled at 30 kHz using a Freelynx 957 
wireless acquisition system (Neuralynx, Inc). Data corresponds to periods of immobility for a 958 
duration of almost 2 hours and 40 minutes, predominantly comprised of sleep in overnight housing. 959 
LFP intervals presenting a high level of noise across all channels was not considered for analysis. 960 

Similar to the procedures used in mice, SWR beginning and ending times were manually tagged 961 
(ground truth). First, the best model of each architecture, already trained with the mouse data, was 962 
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used to predict the output of the primate data with no retraining. For this purpose, we used 963 
recordings of different channels around the CA1 pyramidal channel, and matched to meet the 964 
laminar organization of the dorsal mouse hippocampus. Specifically, we used a CA1 radiatum 965 
channel, 720 µm from the pyramidal layer, three channels in the pyramidal layer, at +90µm, +0µm 966 
and -90µm from the pyramidal channel, and a stratum oriens channel 720µm from the pyramidal 967 
channel. The pyramidal channel was defined at the site with the maximal ripple power. We 968 
complemented these 5 recordings with 3 more interpolated signals, making a total of 8 input 969 
channels [oriens, interpolated, pyramidal, pyramidal, pyramidal, interpolated, interpolated, radiatum] 970 
using a linear interpolation script available at Github: https://github.com/PridaLab/rippl-971 
AI/blob/main/aux_fcn.py. The applied pre-processing was the same as with the mice data: 972 
subsampling to 1250Hz and z-score normalization.  973 

With the aim of studying the effect of retraining with completely different data, we retrained the 974 
models. Data was split in three sets (50% training, 20% test, 30% validation), and used to retrain 975 
and validate the models. For re-training, we reset all trainable parameters (internal weights) but 976 
kept all architectural hyper-parameters fixed (input number of channels, input window length, 977 
number of layers, etc…) as with the mouse data, making the re-training process much faster than 978 
the original training that required a deep hyper-parametric search (per model re-train: 2min for 979 
XGBoost, 10-30min for SVM, 3-20min for LSTM, 1-10 min for 2D-CNN and 1-15 min for 1D-CNN). 980 

Code and data availability 981 

Data and codes used in this study are available. The training and test set data are available at  982 
https://figshare.com/authors/Liset_M_de_la_Prida/402282 and listed independently as follows: 983 

M de la Prida, Liset (2021): Amigo2_2019-07-11_11-57-07. figshare. Dataset. 984 
https://doi.org/10.6084/m9.figshare.16847521.v2 985 
M de la Prida, Liset (2021): Som2_2019-07-24_12-01-49. figshare. Dataset. 986 
https://doi.org/10.6084/m9.figshare.16856137.v2 987 
M de la Prida, Liset (2021): Dlx1_2021-02-12_12-46-54. figshare. Dataset. 988 
https://doi.org/10.6084/m9.figshare.14959449.v4 989 
M de la Prida, Liset (2021): Thy7_2020-11-11_16-05-00. figshare. Dataset. 990 
https://doi.org/10.6084/m9.figshare.14960085.v1 991 
 992 
Codes for some of the best trained models of all architectures are available in an open-source 993 
repository https://github.com/PridaLab/rippl-AI  and documented in open-source notebooks for 994 
model retraining https://github.com/PridaLab/rippl-AI/blob/main/examples_retraining.ipynb and for 995 
SWR detection https://github.com/PridaLab/rippl-AI/blob/main/examples_detection.ipynb  996 
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