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Pervasive allelic variation at both gene and single nucleotide level (SNV) between individuals 
is commonly associated with complex traits in humans and animals. Allele-specific 
expression (ASE) analysis, using RNA-Seq, can provide a detailed annotation of allelic 
imbalance and infer the existence of cis-acting transcriptional regulation. However, variant 
detection in RNA-Seq data is compromised by biased mapping of reads to the reference 
DNA sequence. In this manuscript, we describe an unbiased standardized computational 
pipeline for allele-specific expression analysis using RNA-Seq data, which we have 
adapted and developed using tools available under open license. The analysis pipeline 
we present is designed to minimize reference bias while providing accurate profiling of 
allele-specific expression across tissues and cell types. Using this methodology, we were 
able to profile pervasive allelic imbalance across tissues and cell types, at both the gene 
and SNV level, in Texel×Scottish Blackface sheep, using the sheep gene expression 
atlas data set. ASE profiles were pervasive in each sheep and across all tissue types 
investigated. However, ASE profiles shared across tissues were limited, and instead, they 
tended to be highly tissue-specific. These tissue-specific ASE profiles may underlie the 
expression of economically important traits and could be utilized as weighted SNVs, for 
example, to improve the accuracy of genomic selection in breeding programs for sheep. 
An additional benefit of the pipeline is that it does not require parental genotypes and can 
therefore be applied to other RNA-Seq data sets for livestock, including those available 
on the Functional Annotation of Animal Genomes (FAANG) data portal. This study is the 
first global characterization of moderate to extreme ASE in tissues and cell types from 
sheep. We have applied a robust methodology for ASE profiling to provide both a novel 
analysis of the multi-dimensional sheep gene expression atlas data set and a foundation 
for identifying the regulatory and expressed elements of the genome that are driving 
complex traits in livestock.
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INTRODUCTION

Allele-specific expression (ASE) is the imbalance of allelic 
expression between parental (diploid) copies at the same locus 
(Barlow and Bartolomei, 2014). It is most commonly associated 
with cis-acting regulatory variation that may mediate parent-of-
origin, sex- or tissue-specific transcription of one allele relative to 
the other (Renfree et al., 2009; Hasin-Brumshtein et al., 2014). In 
a single individual, where there are informative sequence variants 
(i.e., heterozygote loci) that distinguish the products of two 
alleles, ASE can be detected by RNA sequencing (Chamberlain 
et al., 2015; GTEx Consortium et al., 2017; Cao et al., 2019; 
Guillocheau et al., 2019). The ratio of allelic read counts obtained 
from RNA-Seq data sets can be used as a reliable proxy for ASE 
[i.e., ASEratio = CountsAllele1/(CountsAllele1 + CountsAllele2)] 
(Edsgärd et al., 2016).

Large and complex RNA-Seq data sets give rise to unique 
and interesting computational challenges, in particular the 
elimination of reference mapping bias in ASE analysis of 
diploid genomes. RNA-Seq data are commonly mapped 
against reference genomes which are typically “flat,” with each 
position represented only by the reference (most abundant) 
allele. As such, reads containing heterozygous loci are 
more likely to be erroneously mapped (Degner et al., 2009; 
Stevenson et al., 2013; Hodgkinson et al., 2016). This can 
lead to high false-positive ASE locus discovery rates (Degner 
et al., 2009). Although development of de novo transcript 
assemblers (Zerbino and Birney, 2008), usage of personalized 
reference genomes (Rozowsky et al., 2011; Smith et al., 2013), 
variant-aware aligners (Xin et al., 2013; Hach et al., 2014), and 
mapping-free quantification e.g., Kallisto (Bray et al., 2016) 
have resolved some of these issues, reference allele mapping 
bias remains a considerable challenge in ASE studies. In 
the absence of “trios” of animals or reference population 
phased haplotype information, which are rare for livestock, 
correction of mapping bias via synthetic reads with either 
N masking or alternative mapping bias correction at the 
heterozygote sites, has proven a robust alternative for ASE 
discovery (Degner et  al., 2009; Mayba et al., 2014; van de 
Geijn et al., 2015; Miao et  al., 2018). In 2015, Van de Geijn 
et al. benchmarked the WASP software mapping correction 
strategy against N-masked reads and personal genome 
mapping. WASP showed consistent correct mapping of reads 
with multiple alleles and lower false discovery rates (FDR) 
in comparison to the other two methods (van de Geijn et al., 
2015). The analysis pipeline we present in this manuscript is 
based on WASP’s methodology and is designed to minimize 
reference bias while providing accurate profiling of allele-
specific expression in large and complex RNA-Seq data sets.

We have developed an ASE analysis pipeline using the 
combination of software available under open license, WASP 
(reference mapping bias removal) (van de Geijn et al., 2015), 
GATK (ASEReadCounter) (McKenna et al., 2010; Van der 
Auwera et al., 2013), and GeneiASE (Liptak-Stouffer aggregative 
ASE gene model) (Edsgärd et al., 2016). The GeneiASE model 
is capable of testing ASE at the gene level using two approaches: 
i) static ASE, which measures allelic imbalance within a gene 

(i.e., when ASE variants are located within the boundaries of the 
gene); and ii) individual condition-dependent ASE (ICD), which 
measures inducible ASE in a gene under an environmental pressure 
between two timepoints (i.e., in stimulated or unstimulated 
immune cells).

In addition to ASE at the gene level, we can also measure 
significant ASE at the single-nucleotide level (SNV). ASE has been 
shown to be enriched within expression quantitative trait loci 
(eQTL) regions (Montgomery et al., 2010); therefore, identifying 
ASE variants can be useful for understanding the transcriptomic 
control of complex traits in livestock. Complex trait mapping of 
ASE loci has been associated with phenotypes, such as resistance to 
Marek’s disease in chicken (Meydan et al., 2011) and pigmentation 
patterns in sheep (García-Gámez et al., 2011).

Understanding ASE is also important because cross-breeding 
now underlies most livestock production systems. Knowledge 
of ASE may provide insights into the molecular basis of the 
complex phenomenon of hybrid vigor, as emphasized by recent 
studies on two Chinese goat breeds and their F1 hybrids (Cao 
et al., 2019) and in F1 crosses of two highly inbred chicken lines 
(Zhuo et al., 2017). In this study, we measure ASE in crossbred 
sheep. Sheep are an economically important livestock species in 
many countries across the globe and particularly in emerging 
economies. The identification of prevalent ASE in populations 
or breeds, especially in economically relevant phenotypes and 
tissues could be used to improve genomic prediction in sheep 
breeding programs, such as those that have been established in 
Australia and New Zealand (Daetwyler et al., 2010).

Using the methodology we describe, for mapping bias 
correction and robust positive ASE discovery, we were able to 
profile pervasive allelic imbalance across tissues and cell types, 
at both the gene and SNV level, in Texel×Scottish Blackface 
sheep. We analyzed a subset of total RNA-Seq libraries from liver, 
spleen, ileum, thymus, and bone marrow-derived macrophages 
(BMDM) (±) lipopolysaccharide (LPS) from six individual adult 
crossbred sheep to produce a detailed picture of allelic imbalance 
in immune-related tissues and cell types. We chose to focus this 
analysis on immune-related tissues in part because of the depth 
of available sequence in those tissues, and in part because they 
contain abundant immune cell populations. The diversity of 
cell populations is reflected in the transcriptional complexity 
of immune tissues and cell types in the sheep gene expression 
atlas data set (Clark et al., 2017; Bush et al., 2019). As such, this 
subset of tissues gave us a transcriptionally rich data set in which 
to measure ASE. We also included BMDMs stimulated and 
unstimulated with LPS to mimic infection with Gram-negative 
bacteria to test whether ASE changed in response to stimulation 
with LPS in these cells. By measuring ASE in these tissues and 
cell types from sheep we were able to: i) provide insight into 
how pervasive ASE is across tissues at the gene and SNV level, 
ii) generate tissue-specific ASE profiles, iii) investigate sex-
specific patterns of ASE, and iv) determine the extent to which 
ASE changes in response to stimulation with LPS in an immune 
cell type. This novel analysis of the multi-dimensional sheep 
gene expression atlas data set provides a foundation for further 
analysis of the regulatory and expressed elements of the genome 
that are driving complex traits in sheep.
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METHODS

Sample Preparation and RNA Extraction
Data from three male and three female Texel×Scottish 
Blackface (T×BF) sheep from the sheep gene expression atlas 
project (Clark et al., 2017) were used in this study. The data set 
including: one cell type (BMDMs (±) LPS treatment) and four 
tissues (thymus, spleen, liver and ileum). Tissue collection, 
storage, and RNA extraction are described in Clark et al. (2017). 
BMDMs were cultured in vitro for 7 days in the presence of 
macrophage colony-stimulating factor (CSF1 (104 U/ml)) and 
unstimulated (0 h −LPS) and stimulated (7 h +100 ng/ml LPS) 
samples of BMDMs were obtained as previously described 
(Clark et al., 2017). A total of two samples (one thymus and one 
spleen) did not pass the RNA quality control (RNA integrity 
number (Mueller et al., 2004); RINe >7) and were not included 
in the sheep gene expression atlas. Library preparation was 
performed by Edinburgh Genomics (Edinburgh Genomics, 
Edinburgh, UK). All total RNA Illumina TruSeq libraries (125 
bp paired end) were sequenced at a depth of > 100 million reads 
per sample.

Reference Mapping Bias Removal
BAM files from RNA-Seq data were previously produced by 
mapping fastq files to the Oar v3.1 top level DNA fasta track, 
using HISAT2 (default mismatch penalty MX = 6 MN = 2) as 
previously described (Clark et al., 2017). Detailed settings and 
parameters for all the tools used to generate the BAM files can 
be found at FAANG (2018). These BAM files were used to locate 
reads with heterozygote loci using WASP’s find_intersecting.
py script (van de Geijn et al., 2015). The intersection of reads 
and heterozygote loci in all samples were based on the Ensembl 
v92 variant call format (VCF) track (Ensembl v92: ovis_aries_
incl_consequences.vcf.gz). Briefly, the Ensembl VCF file was 
filtered for bi-allelic variants within exonic regions, 5k up or 
downstream of exonic regions (5′ or 3′ UTRs) and intronic 
regions of all transcripts within the Oar3.1 sheep assembly 
(exclusion of indels and intergenic variants). These variants 
were used in WASP’s find_intersecting.py script to extract 
reads mapped to coordinates containing variants for each gene. 
As a result, reads aligned to exonic, 5′ or 3′ UTRs and intronic 
regions were separated into reads intersecting heterozygote loci 
and reads that did not intersect heterozygote loci. Synthetic 
copies of reads intersecting heterozygote loci were created with 
the alternate allele flipped to the remaining options of A, T, C, 
or G [up to 6 loci/read(2n) max 64 combinations of synthetic 
reads] using parameters defined in WASP (van de Geijn et al., 
2015). This was followed by remapping of the synthetic reads 
using HISAT2 (default mismatch penalty MX = 6 MN = 2) 
(Li and Durbin, 2009; Kim et al., 2015) and eliminating the 
original reads (and their synthetic copies) which mapped to 
a different coordinate in any of its synthetic copies (WASP’s 
filter_reads.py) (van de Geijn et al., 2015). After merging the 
retained reads with that did not intersect heterozygote loci, 
a final BAM file was produced for ASE read counting step 
(WASP’s remove_dup.py).

Allelic Read Counts and Depth Filtration
Allele-specific read counting was carried out using the 
ASEReadCounter module of GATK v3.8 with parameters 
-mmq 50 and -mbq 25 (McKenna et al., 2010). Multiple pre-
processing steps were performed prior to GeneiASE input as 
instructed by Edsgärd et al. (2016), which included preparing 
per chromosome indices, merging the variant set with 
corresponding gene coordinates, and bi-allelic expression 
filtering. Loci with < 10 reads mapped were excluded, as were 
loci with < 3 reads, or < 1% of the total reads, mapped to both 
the reference and alternative allele. This form of filtration will 
eliminate loci exhibiting mono-allelic expression (MAE) as 
previously described (Degner et al., 2009; Stevenson et al., 2013; 
Mayba et al., 2014). Producing evidence of MAE using total 
RNA-Seq data sets produced by Illumina short read sequences 
without parent of origin genotypes or imprinting information 
has been a controversial issue (DeVeale et al., 2012). Our 
data set did not include the trios of animals or personalized 
genomes that would be necessary to resolve MAE. As such, 
we decided to exclude MAE altogether for our analysis using 
stringent bi-allelic filtration criteria. Similar bi-allelic filtration 
criteria have been previously used routinely in ASE studies 
(Mayba et al., 2014; Chen et al., 2016a; Edsgärd et  al., 2016; 
GTEx Consortium et al., 2017; Raghupathy et al., 2018; Cao 
et al., 2019; Guillocheau et al., 2019; Gutierrez-Arcelus et al., 
2019). The workflow of the analysis pipeline for ASE analysis is 
detailed in Figure 1.

Experimental Design for Defining Allele-
Specific Expression
ASE was defined according to the following three categories:

i) Static ASE: which is inherent allelic imbalance (AI) in 
each gene calculated by ASE at all heterozygote loci 
(i.e., ASE = Counts RefAllele/(Counts RefAllele + Counts 
AltAllele)) within the boundaries of the gene. The effect 
size of ASE at gene level was produced by aggregation 
of the ASE effect size at SNVs within the gene 
boundaries (the Liptak-Stouffer method, applied by 
the GeneiASE aggregative model). A null distribution 
of ASE effect size for genes in each transcriptome was 
produced by random sub-sampling (n = 1 × 105) from 
a pool of genes having min 2 and max 100 loci within 
their boundaries. The ASE effect size of each gene 
(aggregated using Liptak-Stouffer) was then tested 
against the null distribution of the same SNV number, 
via a modified bi-nomial test (2×1 table). Distribution 
of p values was examined for uniformity prior to FDR 
correction (Supplementary Figures S1, S2, and S3) 
(Benjamini and Hochberg, 1995; Pounds and Cheng, 
2006; Barton et al., 2013).

ii) Individual condition-dependent ASE (ICD-ASE): in 
which the same ASE effect size was calculated for each 
gene in the treated versus the untreated timepoints of 
the same sample (i.e., BMDM ± LPS). The log2ratio 
(ASEtreated/ASEuntreated) was used in a beta-binomial test 
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(2×2 table) similar to the static mode. The details of this 
aggregative model have been previously described in 
the GeneiASE publication (Edsgärd et al., 2016).

iii) Condition-dependent ASE at SNV level: in which a 
contingency table was produced for read counts (ref 
and alt) for every SNV, present both in treated and 
untreated conditions (BMDM ± LPS) (2×2 table) and 
a Fisher’s exact test performed followed by p value 
multiple testing correction (Benjamini and Hochberg, 
1995). The p values from loci showing ASE and shared 
by the six adult sheep (ID and coordinate) were unified, 
using the Stouffer method (Dewey, 2016; Dewey, 2019) 
and presented as FDR for each locus.

Static ASE was calculated in both tissues and BMDMs (each 
timepoint was considered separately for BMDMs). Condition-
dependent ASE analysis was carried out only in BMDMs ± LPS 
both at gene (ICD-ASE) and SNV (Fisher’s exact) level to study 
LPS-inducible ASE.

Statistical Analysis and 
Thresholds Applied
The extraction, transformation and loading of the all data sets 
and subsequent statistical analysis was carried out in R version 
3.4 or higher unless stated otherwise (R Core Team, 2017). 
System query language join statements (Wickham et al., 2019) 
were used to compare lists of ASE genes or SNVs between 
samples. Raw p values resulting from all three types of ASE 

analysis were corrected for multiple testing via Benjamini-
Hochberg FDR calculations (Benjamini and Hochberg, 1995). 
The passing threshold of significance in all analyses was 
considered to be FDR < 0.1 (10%) except for the Fisher’s exact 
test association study. Genes showing ASE in multiple tissues 
were considered those for which four or more of the six sheep 
had significant ASE.

RESULTS

Estimation of Heterozygous Sites Across 
All Individuals
To determine the level of heterozygosity present in the 
RNA-Seq data we first assessed the number of bi-allelic 
heterozygote sites per individual for each of the six sheep 
(range = 5,673,703–6,438,497) detailed in Figure 2. Individual 
variation was observed in the SNVs per gene in each sheep 
(Figures 2A, C). However, there was no significant difference 
in the total number of bi-allelic SNVs captured in the RNA-
Seq data across all six individuals or between the male and 
female sheep included in the study (Figure 2B). The bi-allelic 
SNVs captured in the RNA-Seq data set were annotated using 
the Ensembl v.92 (Zerbino et al., 2018) reference VCF track. 
The distribution of SNVs per gene in the Ensembl track is 
tail-inflated in comparison to the RNA-Seq data Figure 2A. 
This issue could be due to erroneous assignment of SNVs in 
hypervariable and repetitive regions, multi-allelic SNVs or 

FIGURE 1 | A flowchart of the allele-specific expression analysis pipeline applied to the sheep gene expression atlas data set and optimized for WASP and 
GeneiASE programs. The remapping was carried out using HISAT2 (Kim et al., 2015) in combination with SAMtools (Li et al., 2009). The Genome Analysis Toolkit v 
3.8 was used for the ASE read counting section.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Unbiased Ovine Allele-Specific ExpressionSalavati et al.

5 September 2019 | Volume 10 | Article 863Frontiers in Genetics | www.frontiersin.org

simply that there are variants in the Ensembl track that are 
not expressed (transcribed). The distribution of SNVs for each 
individual is shown in Figure 2C.

Reference Mapping Bias Elimination and 
Quality Control
We used the WASP ref bias removal script to successfully minimize 
ref allele mapping bias in the RNA-Seq samples. The mapping bias 
was assessed by global distribution of the allelic ratio, i.e., refcounts/
altcounts + refcounts in each RNA-Seq sample, as shown in Figure 3 
(WASP metrics are included in Supplementary Figures S10, S11, 
and S12). The ASE discovery rate at the SNV level, on average, 
constituted 5.8% of the heterozygote loci that passed the minimum 
filtration criteria in each individual (0.1% of the total expressed). 
This portion of the transcriptomic variants belonged to an average 
of 103 genes in each tissue transcriptome (approx. 1%) or 300 in 
each individual (Supplementary Figures S5 and S6). As shown in 
Supplementary Figure S6, expression level varies across tissues 
but does not affect the distribution of ASE SNVs.

Genes Exhibiting Tissue-Specific and 
Pervasive ASE Signatures
We used the static mode of GeneiASE to investigate pervasive 
and tissue-specific ASE profiles across all of the available 
samples. Static ASE represents inherent allelic imbalance 
(AI) in each gene calculated by ASE at all heterozygote 
loci. The number of genes showing significant static ASE in 
immune-related tissues across the six sheep are summarized 
in Table  1. On average, approximately 0.5% of the genes in 
each tissue-specific transcriptome showed significant ASE 
(approx. 1% of the filtered set of genes). Pervasive ASE genes 
were investigated by applying the minimum 67% shared rule 
(i.e., an ASE gene was considered “shared” when it exhibited 
ASE in a minimum of four of six sheep). A list of ASE genes 
with significant allelic imbalance (AI) in all tissues, when 
the effect size was averaged across six sheep, was compiled 
(Figure 4A) (Static ASE measured by GeneiASE’s Liptak-
Stouffer method). Six genes exhibited pervasive ASE across 
tissues (i.e., they were shared across all four tissues). In 
the order of allelic imbalance effect size they were NAA50 

FIGURE 2 | Distribution of biallelic SNVs expressed per gene in each of the six T×BF sheep. The total number of SNVs was averaged across thymus, liver, ileum, 
and spleen for every animal. Over 5×107 SNVs were gathered using Ensembl v.92 VCF track. The total number of SNVs per genes is averaged across four tissue 
RNA-Seq in each animal (~5.9 × 106). (A) Histogram of SNVs per gene counts in the reference track (Ensembl in grey) and six sheep in red (females) and blue 
(males) overlaid. (B). The overall numbers of genes and SNVs detected in each animal (averaged over four tissues). (C) Individual histograms from section A with 
females in red and males in blue.
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(N(alpha)-acetyltransferase 50, NatE catalytic subunit) 
with highest ASE effect size in spleen, UBB (ubiquitin   B) 
in thymus, HBP1 (HMG-box transcription factor 1), 

and ENSOARG00000016510 both in spleen, C1orf105 
(chromosome 1 open reading frame 105) in ileum and MTIF2 
(mitochondrial translational initiation factor 2) in thymus.

FIGURE 3 | The histogram of a global reference allelic ratio at every locus in the tissues. The distribution of ref allelic ratio showed a balanced profile without any 
0 or 1 inflation which is observed in the presence of reference mapping bias. The allelic ratio above 0.51 is shown in blue and below 0.49 in red while balanced 
bi-allelic expression (0.49–0.51) is colored in gray. Ref.dp, read counts for reference allele; Alt.dp, read counts for alternate allele. The y axis is square root scaled. 
As discussed in the text SNP that display MAE are not present in any of the samples analyzed, indicating there was no inflation in either 0 or 1 allelic ratio.

TABLE 1 | Total number of genes with significant static ASE in proportion to genes containing informative SNVs (filtered). Total expressed: Average number of genes 
being expressed in all 4 tissues. Total filtered: Average number of genes (containing heterozygote loci) passing read bi-allelic filtration criteria in 4 tissues. Tissue break-
down has been presented as count (%ASE/filtered).

Sheep Thymus Spleen Liver Ileum Total filtered Total expressed 

Female 1 - 136 (1.31%) 153 (1.47%) 92 (0.88%) 10,379 21,150
Female 2 136 (1.28%) 70 (0.66%) 116 (1.09%) 70 (0.66%) 10,572 21,420
Female 3 151 (1.22%) 75 (0.60%) 105 (0.85%) 140 (1.13%) 12,326 21,689
 Avg. 143 (1.25%) 94 (0.85%) 125 (1.13%) 101 (0.89%) 11,092 21,419
Male 1 95 (0.92%) - 157 (1.52%) 86 (0.83%) 10,282 21,361
Male 2 125 (0.99%) 54 (0.43%) 86 (0.68%) 80 (0.63%) 12,514 21,822
Male 3 106 (1.01%) 71 (0.67%) 110 (1.04%) 82 (0.78%) 10,480 21,545
 Avg. 109 (0.97%) 62 (0.55%) 118 (1.08%) 83 (0.74%) 11,092 21,576
Total avg. 126 (1.13%) 78 (0.70%) 121 (1.09%) 92 (0.82%) 11,092 21,497
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Sets of genes with tissue-specific ASE profiles were also 
captured (Figures 4B–E). Thymus had the highest number of 
tissue-specific ASE genes (n = 15) followed by liver (n = 12), spleen 
(n = 5), and ileum (n = 4) (Figures 4B–E). Among the thymus gene 
set was CD244, which included 30 heterozygote loci with allelic 
imbalance, one of which was rs406633825. This missense allele 
(Chr1:110308273 C > A; pVal123Phe MAF = 0.3, SIFT score = 0 
deleterious) has previously been reported in the Texel population 
characterized by the International Sheep Genome Consortium 
(ISGC) (Kijas et al., 2012). The CD244 protein molecule, a non-
MHC (major histocompatibility complex)-mediated marker 
expressed by NK cells and multiple subsets of CD8+ T cells is 
known for both pro-inflammatory and inhibitory effects on 
lymphocytes (McNerney et al., 2005; Georgoudaki et al., 2015). 
CD244 exons 2 to 5 are highly conserved in vertebrates and in 
mouse a trypanosome infection model indicated differential 
expression was correlated with multiple-copy number variants 
nearby (Goodhead et al., 2010).The liver-specific ASE profile 
included genes involved in amino acid metabolism, cytochrome 
oxidase pathways and fibrinogen: FGA (fibrinogen alpha 
chain), ENSOARG00000003175 (taurochenodeoxycholic 
6 alpha-hydroxylase-like), ENSOARG00000001568 (novel 
gene, complement C4-A-like), CYP3A24 (cytochrome P450 
CYP3A24), and CA3 (carbonic anhydrase 3). Allelic imbalance 

in spleen was present in CACYBP (calcyclin binding protein), 
DAPK2 (death-associated protein kinase 2), and a novel gene 
GIMAP8-like (ENSOARG00000001131). The ASE in GIMAP8 
has been previously reported in cattle with a strong paternal 
parent-of-origin expression pattern (Chamberlain et al., 2015). 
The proteins derived from the GIMAP/IAN gene family, are 
involved in survival, selection, and homeostasis of lymphocytes 
(Nitta and Takahama, 2007).

Two genes of functional interest showed evidence of strong 
tissue-specific ASE in the spleen: SNAP23 and MYLK. SNAP23 
protein is a key molecule in vesicle transport machinery of the 
cell and has been reported to be expressed in sheep spleen. 
SNAP23 or Synaptosome-Associated Protein 23 is part of the 
protein complex involved in class 1 MHC-mediated antigen 
processing and presentation and in neutrophil degranulation 
(Fabregat et al., 2018). SNAP23 gene is also vital to lymphocyte 
development (both B and T) in vitro (Wong et al., 1997; Kaul 
et al., 2015). The myosin light chain kinase (MYLK) expression 
in the splenic trabeculae’s smooth muscle has been demonstrated 
previously (Jiang et al., 2014; Clark et al., 2017). Overall, 199 
heterozygote bi-allelic loci were present within the MYLK gene. 
The variant rs400678033 (Chr1:186347056G > A;.pAla1014Val), 
a missense SNV in exon 17 of 33 exons in MYLK, showed 
consistent allelic imbalance in all spleen samples.

FIGURE 4 | Genes exhibiting static ASE shared across tissues from all six sheep. The x axis represents the mean allelic imbalance (averaged static ASE across 
sheep in each tissue). (A) Genes shared by four tissues with significant (false discovery rate [FDR], < 0.1) static ASE. (B) ASE genes private to Ileum. (C) Private to 
liver. (D) Private to spleen. (E) Private to thymus
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In summary, analysis of ASE across immune-related tissues 
revealed there were a small number of ASE genes that were 
shared across tissues. ASE signatures instead tended to be tissue-
specific, within the sub-set of tissues investigated in this study.

Individual-Specific ASE Signatures
To investigate whether ASE profiles were either shared across all 
six sheep or private to individual sheep, we used intersectionality 
(Figure 5). Each tissue was investigated separately. A number of 
private (to each individual) ASE genes were detected for each 
tissue, ranging from: 31–123 in ileum (Figure 5A), 24–80 in liver 
(Figure 5B), 21–83 in spleen (Figure 5C), and 31–66 in thymus 
(Figure 5D). Some of the shared sets of ASE genes in these tissues 
were specific to either male or female sheep, these sex-specific ASE 
signatures are described in Figure 5. In ileum, no sex-specific set 
was observed (Figure 5A). In contrast to ileum, the ASE profile 
for liver included a single gene with female only membership, 
ENSOARG00000017409 (novel gene; 93% orthology with bovine 
dicarbonyl and l-xylulose reductase [DCXR]) (Figure 5B). In the 
spleen, all female sheep shared significant ASE in PMS1 (PMS1 
homolog 1, mismatch repair system component), ANKRD10 
(ankyrin repeat domain 10) and ENSOARG00000006103 which 
was not present in any of the spleen profiles of male sheep 
(Figure 5C). In the thymus, there were two sex-specific sets: 16 
genes showing ASE only in females and five genes only in males. 
The female-specific thymus gene set included: ARPP21 (cAMP 
regulated phosphoprotein 21), CDKL3 (cyclin-dependent kinase-
like 3), CEP19 (centrosomal protein 19), ENSOARG00000000710 
(novel gene), ENSOARG00000001163 (novel gene), 
ENSOARG00000008981 (novel gene; t-lymphocyte surface 
antigen Ly-9-like), ENSOARG00000006215, ENA000000008981, 
ENSOARG00000009129, ENSOARG00000011375 (blood 
vessel epicardial substance [BVES]), ENSOARG00000015755, 
ENSOARG00000020354 (novel gene; 53% orthology with 
bovine monoacylglycerol acyltransferase [MOGAT1]), 
ENSOARG00000025005, ENSOARG00000026030 (novel gene), 
GPM6A (glycoprotein M6A), RAG1 (recombination activating 
1), STX8 (syntaxin 8). The male-specific thymus set was 
comprised of ENSOARG00000007267 (novel gene; t-cell surface 
glycoprotein CD1a-like), ENSOARG00000016841 (novel gene; 
98% orthology with bovine ATP synthase membrane subunit G 
[ATP5MG]), ENSOARG00000007603, SNX25 (sorting nexin 25) 
and LDHA (L-lactate dehydrogenase A chain) Figure 5D.

In summary, very few ASE genes were shared across all sheep, 
and the majority of ASE profiles were private to each sheep. Sex-
specific ASE signatures were also detected, but due to the small 
sample size (n = 3) in both cases, these should be interpreted 
with caution.

ASE in Stimulated and Unstimulated 
BMDMs (0 h vs 7 h +LPS)
We examined inducible ASE after 7 h of exposure to LPS in 
BMDMs using the ICD mode of GeneiASE (Edsgärd et al., 2016). 
A comparison of LPS-inducible ICD-ASE genes and the genes 
with background static ASE at 0 and 7 h timepoints, was also 

performed. We first assessed whether differences between 0 and 
7 h could be observed using analysis of static ASE. Individual-
specific ASE profiles and a limited number of shared ASE genes 
were also observed in BMDMs. The total number of genes with 
static ASE in the BMDMs is shown in Table 2.

Shared static ASE across both timepoints and independent of 
LPS induction was only observed in five genes. These genes have 
a macrophage associated function and include ITGB2 (Yee and 
Hamerman, 2013), SAA3 (ENSOARG00000009963) (Larson et al., 
2003; Deguchi et al., 2013), CD200R1 (ENSOARG00000019357) 
(Ocaña-Guzman et al., 2018), DCTN5 (ENSOARG00000017281) 
(Habermann et al., 2001), and MTIF2 (also seen in the tissue 
analysis above) (Overman et al., 2003).

The ICD-ASE in BMDMs ± LPS captured fewer ASE genes with 
significant LPS-inducible ASE between the two timepoints than 
the static analysis of ASE. Moreover, there were large differences in 
the number of LPS-inducible ASE genes in each individual sheep, 
indicating significant individual-specific variation in response 
to LPS stimulation. BMDM cultured from female 2 showed no 
LPS-inducible response in comparison to male 3 which was a 
hyper responder with significant inducible ICD-ASE in 28 genes 
(including 634 informative SNVs total). A detailed breakdown of 
SNVs, aggregated within each gene, with significant ICD ASE has 
been summarized in Figure 6.

In summary, the ICD-ASE mode of GeneiASE’s model was not 
capable of capturing a complete picture of differential ASE in the 
BMDM experiment. Static ASE was present in both timepoints; 
however, there were no inducible ASE genes that were shared 
across all six sheep. The highly diverse ASE profile of BMDMs 
was very individual-specific, similar to patterns observed in 
tissues (Supplementary Table S1). These individual-specific 
differences could be due to individual variation in the innate 
immune response or experimental variation introduced during 
primary cell culture or stimulation with LPS.

Condition-Dependent ASE at the SNV 
Level in BMDMs
To further investigate allelic imbalance at the SNV level without 
the aggregative gene model of GeneiASE, Fisher’s exact test 
was used. The filtered read counts for bi-allelic SNVs shared 
by all six sheep BMDMs were selected (n = 646 sites). Allelic 
read counts of each SNV were tested using Fisher’s exact test 
between 0 h and 7 h (2 × 2 table). Overall, the six sheep shared 
646 SNVs with identical allelic genotypes in both timepoints 
of the BMDM RNA-Seq data set. These SNVs were tested for 
association with LPS treatment and only four SNVs showed a 
strong association (FDR < 1 × 10−8) and 12 SNVs had an FDR 
between 1 × 10−2 and 1 × 10−8 (Figure 7). The highest F-statistic 
was at rs430667535 Chr17 Pos:50485358T > C, a synonymous 
variant in ubiquitin C (UBC), a polyubiquitin precursor, and 
also an intronic variant T > C or A > G in pro-apoptotic BRI3 
binding protein (BRI3BP). This variant was shown to have 
a minor allele frequency (MAF) of 0.25 in Texel sheep based 
on the ISCG annotation [ISGC – Ensembl v.92] (Kijas et al., 
2012). The next highest peak was observed on Chr21 under 
SNVs within SAA3 gene boundaries (ENSOARG00000009963) 
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FIGURE 5 | Intersectionality analysis of genes expressing significant ASE across all six sheep. In each tissue from left to right, the set count of genes (dots 
connected by lines) illustrates the number of sheep sharing the gene. The private sets of genes are located at the far right of each graph (single dots with no line). 
The intersections are colored in to illustrate the size of the set of shared genes (red [common to all six sheep], green [shared by five or four sheep], yellow [only 
in females] and purple [only in males]). Detailed lists of genes with ASE shared by at least four sheep are presented above each graph for (A) ileum, (B) liver, (C) 
spleen, and (D) thymus. Two sex-specific sets of genes are highlighted: 16 genes showing ASE only in females (in yellow) and five genes only in males (in purple).
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at the following coordinates: highest FDR peak was observed 
at SNV rs412192652 (Pos:25826978A  > G missense variant 
[Asn145Asp], FDR = 2.3 × 10−15) surrounded by rs403064928 
(Pos:25826884C > A missense variant [Asp113Glu] in exon 4 
of SAA3 FDR = 3.6 × 10−7), rs426609498 (Pos:25826845A  > 
G synonymous, FDR = 5.5 × 10−7) and rs405439099 
(Pos:25826990G > C 3’UTR variant, MAF 0.4 in Texel sheep, 
FDR = 4.1 × 10−5). This region contains a strong LD block 
previously reported by the ISGC COMPOSITE population 
(Ensembl v.92) (Supplementary Figure S4), e.g., rs412192652 
and rs405439099 pairwise D’ statistics = 1. Two further peaks 
on Chr3 were observed for rs159926581 (Pos:214731375T  > 
C synonymous, FDR = 3.3 × 10−9) in ribosomal protein L3 
(ENSOARG00000016495) and rs159822214 (Pos:112164732G > 
A 3’UTR variant, FDR = 9.5 × 10−3) in oxysterol binding protein 
like 8 (OSBPL8). The last inducible ASE associated signal was 
on Chr16 rs420037698 (Pos:6887423G > A, FDR = 6.9 × 10−9) 
in ENSOARG00000004700, a known synonymous variant in the 
Texel population (MAF = 0.55). The SNVs and corresponding 
genes from Fisher’s exact test are summarized in Table 3.

The LPS-inducible ASE analysis, of SNVs, using Fisher’s exact 
test revealed a different picture not captured by the gene level 
analysis with the GeneiASE model that aggregates SNVs within 
each gene (Figure 6 vs Figure 7). The aggregative gene model 
did not capture any shared ASE genes in the ICD-ASE mode. 
Although the six sheep shared 646 SNVs and showed highly 
significant association with stimulation with the LPS (Fisher’s 
exact method), the aggregation of ASE effect size from SNV to 
gene level (ICD-ASE mode) only detected individual-specific sets 
of ASE genes in each sheep. This contradicted the results from 
Fisher’s exact test which detected four highly significant LPS-
inducible shared regions (FDR < 0.01, 16 SNVs) on chromosomes 
3, 16, 17, and 21. For example, the allelic imbalance in the SAA3 
genomic coordinates on chromosome 21 was not detectable in 
the ICD-ASE model but it was captured by the Fisher’s exact test 
in all individuals (Figure 7B chromosome 21).

Fisher’s exact analysis at SNV level revealed ASE in response to 
LPS in variants within CLDN1, ANXA3, BRI3BP, SAA3, and MSR1 
(Table 3). The anti-inflammatory macrophage marker CLDN1 (Van 
den Bossche et al., 2012) and acute-phase inflammation resolution 
marker ANXA3 (Yamanegi et al., 2018) have been previously 
reported with distinct macrophage functions. The macrophage 
scavenger receptor 1 (MSR1) has also been shown to be involved in 
lipid uptake and migration ability of macrophages (Shi et al., 2019). 
Three noncoding RNAs (RF00221 [snoRD43], RF00593 [snoU83B], 
and RF01151 [snoU82P] were among genes corresponding to ASE 
inducible SNVs. These three snoRNAs all overlap with the genomic 
coordinates of ribosomal protein L3 (ENSOARG00000016495/
RPL3). The RF00377 [snoU6-53] was also among the ASE-positive 
targets which overlaps the protein-coding gene CDS2 (CDP-
diacylglycerol synthase 2). Using total RNA-Seq (ribosomal RNA 

TABLE 2 | Total number of genes with significant static ASE in BMDMs ± LPS.

Sheep BMDM 0 h −LPS BMDM 7 h +LPS

Female 1 237 252
Female 2 192 233
Female 3 227 263
Female avg. 219 249
Male 1 205 193
Male 2 300 260
Male 3 260 261
Male avg. 255 238

FIGURE 6 | Intersection analysis of SNVs under genes with significant ICD-ASE in the BMDMs ± LPS. From left to right, the set number of genes (dots connected 
by lines) has been illustrated in order according to the number of sheep sharing the SNV. The private sets of SNVs are located at the far right of each graph (single 
dots with no line).
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depleted), which includes multiple RNA populations, to generate 
short read illumina data makes it difficult to pinpoint the origin of 
the ASE signal to a specific RNA population.

In summary, ASE profiles in BMDMs were highly individual-
specific at both gene and SNV level. Moreover, Fisher’s exact SNV 
level analysis discovered shared ASE SNVs where the aggregative 
gene model of ICD-ASE mode did not, indicating for condition-
dependent ASE analysis Fisher’s exact test is more accurate and 
robust at SNV level.

DISCUSSION

This study is the first to investigate global allele-specific 
expression across tissues from sheep using RNA-Seq data. We 
focused our analysis on immune-related tissues and cell types 
from six adult crossbred sheep (T×BF) from the sheep gene 
expression atlas. ASE profiles were highly individual-specific 
in the six sheep analyzed in this study. We were able to identify 
tissue-specific sets of ASE genes, as well as LPS-inducible sets in 

FIGURE 7 | Scatter plot of the adjusted p values from Fisher’s exact test (unified using Stouffer unification) in BMDMs comparing expression from different alleles 
at 0 vs 7 h at SNV level (LPS-inducible ASE). (A) The graph shows 646 loci exhibiting LPS-inducible allelic imbalance shared across all six sheep. (B) Four loci on 
chromosomes 3, 16, 17, and 21 with false discovery rate (FDR) < 1 × 10−8. FDR < 1 × 10−2 red line (n = 16 SNVs) and FDR < 1 × 10−8 blue line (n = 4 SNVs).

TABLE 3 | The variant IDs of LPS-inducible ASE SNVs (Fisher’s exact) and their respective genes. Data were obtained using Ensembl BioMart query builder. Highly 
significant SNVs are highlighted in bold [false discovery rate (FDR), < 1×10-8].

ID CHR POSITION GENE ID GENE NAME

rs418350332 1 195297663 ENSOARG00000020472 CLDN1
rs159822214 3 112164732 ENSOARG00000014876 OSBPL8
rs159926581 3 214731375 ENSOARG00000016495 –
rs159926581 3 214731375 ENSOARG00000022372 RF00221
rs159926581 3 214731375 ENSOARG00000024737 RF00593
rs159926581 3 214731375 ENSOARG00000025124 RF01151
rs159926581 3 214731375 ENSOARG00000025150 RF00593
rs193634916 4 53430934 ENSOARG00000001754 MDFIC
rs418697910 4 53430968 ENSOARG00000001754 MDFIC
rs162298949 6 92979793 ENSOARG00000018710 ANXA3
rs162298949 6 92979793 ENSOARG00000018710 ANXA3
rs160665956 9 76759747 ENSOARG00000001261 SPAG1
rs424104956 13 46654781 ENSOARG00000017292 CDS2
rs424104956 13 46654781 ENSOARG00000017292 CDS2
rs424104956 13 46654781 ENSOARG00000022618 RF00377
rs420037698 16 6887423 ENSOARG00000004700 –
rs430667535 17 50485358 ENSOARG00000017707 BRI3BP
rs430667535 17 50485358 ENSOARG00000018177 UBC
rs403064928 21 25826884 ENSOARG00000009963 SAA3
rs405439099 21 25826990 ENSOARG00000009963 SAA3
rs412192652 21 25826978 ENSOARG00000009963 SAA3
rs161531178 26 19663270 ENSOARG00000009626 MSR1

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Unbiased Ovine Allele-Specific ExpressionSalavati et al.

12 September 2019 | Volume 10 | Article 863Frontiers in Genetics | www.frontiersin.org

the BMDM experiment. Tissue-specific signatures of ASE have 
been previously reported in similar studies in mouse (Castel 
et al., 2015; Castel et al., 2016), goat (Cao et al., 2019) and cattle 
(Chamberlain et al., 2015).

Several steps were taken in the cattle study (Chamberlain 
et al., 2015) to mitigate the ref allele bias, assign parental origin 
using whole genome sequences and include MAE variants. The 
SNV filtration was based on the (Hayes and Daetwyler, 2019) 
1000 bull genomes project to confirm the heterozygote sites. In 
our pipeline, the Ensembl VCF track was used for that purpose. 
Chamberlain et al. (2015) use a 0.9 allele frequency cutoff (based 
on read counts) to define and include MAE, and as such have a 1 
and 0 inflated allelic ratios. In our pipeline, no allelic ratio cutoff 
is introduced for inclusion as it is difficult to distinguish between 
sequencing error and MAE. The minimum read (bi-allelic 
expression) filtration criteria was applied to exclude highly 
sequenced loci (Either count/Total >1%) or sequencing errors 
presenting as rare alleles (min either allele count ≥ 3) which 
consequentially excludes actual MAE as well as spurious allelic 
counts. Chamberlain et al. tested 5317 genes (14,495 SNVs) in 
spleen and detected 382 ASE genes (with min > 1 SNV per gene, 
similar to this study). Although direct comparison would not 
be appropriate (because we have excluded MAE variants in our 
analysis), our analysis of sheep spleen revealed ASE in 86 genes 
(averaged in five sheep) from 8272 filtered genes (averaged in 
five sheep). Similarly, in the thymus, the cattle study showed 182 
ASE genes from 986 informative genes (9781 SNVs), whereas 
from 7961 filtered genes in sheep thymus, 134 ASE genes were 
captured. The differences in the numbers of genes exhibiting 
ASE between the two studies are likely to be a consequence of 
the filtration criteria applied, the exclusion of MAE, and species-
specific differences between sheep and cow. Results from a more 
recent study in goat (Cao et al., 2019) more closely reflect our 
findings. They apply similar filtration criteria to our workflow 
and discovered 144 ASE genes in liver in comparison to 123 in 
our sheep liver sets (averaged across six sheep). Other recent 
studies, including those focusing on production relevant tissues, 
such as muscle (Guillocheau et al., 2019), have also applied 
similar stringency in filtration criteria. The filtering criteria we 
have used for this analysis is stringent and focused on detecting 
variants of moderate to extreme effects. Further analysis of the 
data set reducing these criteria might discover additional variants 
exhibiting ASE across individuals and tissues, but it would also 
increase the potential risk of false-positive discovery.

For this analysis, we have adapted an ASE analysis workflow 
with a primary focus on mapping bias removal prior to allele-
specific analysis of the transcriptome. The collection of scripts for 
WASP, used for this analysis, or modified versions of them have 
been utilized by others for mapping bias removal in reference-
guided genomic data sets, e.g., RNA-Seq (Mozaffari et al., 2018; 
Zhou et al., 2018), Chip-Seq (Pelikan et al., 2018), and for 
methylomic and epigenetic analysis (Richard Albert et al., 2018).

The ASE analysis pipeline we have adapted for sheep for this 
study is also adaptable to other species and tissue types with 
available RNA-Seq data sets. It could be applied, for example, to 
profile allele-specific expression in the RNA-Seq data sets from 
livestock species listed on the FAANG data portal (Andersson 

et al., 2015; Harrison et al., 2018). We used the Ensembl VCF 
track to capture information at heterozygote loci; however, 
the individual VCF file from each sheep could also be used in 
ASE analysis. The latter strategy might enable the capture of 
rare variants not included in the publicly available VCF tracks 
but would also raise the issue of normalization/standardization 
between VCF call sets. The usage of either of these methods 
will be limited to the number of loci shared by coordinate and 
bi-allelic genotype (i.e., pervasive ASE discovery). Other studies 
have compared variants at the RNA and DNA level from the 
same individual and then removed the DNA variants not present 
in the RNA-Seq data from the analysis (Guillocheau et al., 2019). 
We believe that the strength of the pipeline we present is that it 
does not require parental genotypes and can therefore be applied 
to other RNA-Seq data sets for livestock where this information 
is not available.

In our analysis we have not considered either parent-of-origin 
or breed-of-origin-specific effects in this analysis. For parent-
of-origin or breed-of-origin assignment of these ASE profiles, 
DNA level genotypes from the parents of the six sheep from the 
gene expression atlas (i.e., Texel sire and Scottish Blackface dam) 
would be required, and these are unfortunately not available. 
In this study, ASE expression profiles also might be affected by 
the direction of the cross (i.e., Texel sire × Scottish Blackface 
dam). To fully characterize parent-of-origin or breed-of-origin, 
reciprocal cross experiments would be required. Reciprocal cross 
studies in mouse (Huang et al., 2017), chicken (Zhuo et al., 2017), 
and crossbred cattle (Chen et al., 2016b) have shed light on the 
complexity of such pervasive ASE markers and parent-of-origin 
effects. Though potentially very interesting, these experiments 
are lengthy and costly to perform in sheep. Particularly, in this 
case, because the reciprocal cross (Scottish Blackface dam × Texel 
sire) is rarely used in the UK sheep industry and as a consequence 
has limited relevance to production.

Our approach also excludes mono-allelic expression. The 
minimum filtration criteria utilized in our workflow along with 
the reference mapping bias removal step ensures an unbiased 
ASE discovery in the transcriptome by excluding the ambiguity 
surrounding MAE variants. This form of analysis is based on the 
principle that absence of evidence (reads) for either allele of a 
heterozygote site does not directly amount to evidence of their 
absence, i.e., MAE. The pattern of ASE (ratio of Alt/Ref+Alt) is 
dependent on the bi-allelic expression of loci within the genomic 
coordinates of the gene or genomic element of interest. For an 
ASE effect to be captured by the GeneiASE model, the following 
criteria must be met: (i) biallelic expression of the locus; (ii) min 
depth criteria for each allele (min 3 reads, total 10 reads at that 
site and > 1% of total reads containing that allele); (iii) the allelic 
imbalance or departure from bi-allelic balanced expression being 
inducible by an environmental trigger (i.e., LPS in ICD ASE 
experiment with BMDM data). These stringent criteria secure 
robust transcriptome-wide ASE discovery while maximizing the 
usage of read counts from short read RNA-Seq data sets without 
considering mono-allelic sites. MAE patterns are impossible 
to differentiate from sequencing error or random nonsense-
mediated decay in total RNA-Seq, unless arbitrary cutoffs are 
introduced, such as ratio of allelic read counts > 0.9 (Chamberlain 
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et al., 2015) or > 0.7 (Cao et al., 2019). We decided to exclude 
MAE from this study using read count bi-allelic expression 
filtration because it is difficult to distinguish between sequencing 
error and MAE. We do appreciate that this form of filtration 
might lead to a reduced number of ASE genes discoveries overall 
and will exclude potentially imprinted loci altogether.

The tissues utilized for ASE analysis in this study (thymus, 
spleen, liver, and ileum) are highly influential on performance 
of the immune system. ASE profiles shared across tissues and 
cell types were limited and instead they tended to be highly 
specific. We identified tissue-specific ASE in several genes in 
the thymus, for example, those that are involved in the T cell–
mediated immune response, including CD47 and CD244. These 
tissue-specific and cell-type–specific ASE profiles may underlie 
the expression of economically important traits, such as disease 
resistance. Assessment of the connection between economically 
relevant phenotypes and tissue-specific ASE profiles could be 
useful for the improvement of genomics enabled sheep breeding 
programs, particularly those using specialized sire and dam 
lines (Georges et al., 2018). Loci exhibiting ASE have been 
associated with production traits including milk-fat percentage 
(Hayes et al., 2010; Suárez-Vega et al., 2017), trypanotolerance 
in small ruminants (Kadarmideen et al., 2011; Álvarez et al., 
2016), mastitis in goat (Ilie et al., 2018), Johne’s disease in cattle 
(Mallikarjunappa et al., 2018), and Marek’s disease in chicken 
(Maceachern et al., 2011; Meydan et al., 2011; Cheng et al., 
2015). Although there is no general consensus currently on 
the correlation of allelic expression haplotypes and phenotypes 
under selection in sheep, this form of ASE analysis could pave 
the way for functional validation at population level (e.g., breed 
or haplotype-specific aseQTL studies in a larger population of 
sheep). Examples of population level aseQTL, eQTL, and sQTL 
(QTLs associated with RNA splicing) already exist for cattle 
(Wang et al., 2018; Xiang et al., 2018). Knowledge of favorable 
ASE in critical genes involved in traits of interest could be used 
as a performance indicator or included as weighted SNVs in 
genomic prediction algorithms to enhance livestock breeding 
programs (Georges et al., 2018). Currently, the UK sheep 
industry is on the cusp of applying genomic prediction, but 
suitable genomics enabled breeding programs for sheep already 
exist in New Zealand and Australia (Daetwyler et al., 2010).

CONCLUSIONS

In this study, we characterize extreme to moderate allele-specific 
expression, at the gene and SNV level, in immune-related tissues 
and cells from six adult sheep (T×BF) from the sheep gene 
expression atlas data set. Reference mapping bias removal was an 
integral component of the analysis pipeline applied in this study. 
The correction of reference bias prior to obtaining the allelic read 
counts is a critical step toward true ASE discovery. The workflow 
developed as part of this manuscript provides an RNA-Seq-only–
dependent tool, without the need for individual DNA sequences. 
We note that the stringent filtering process applied would remove 
loci where the allelic imbalance was less extreme but might still 
be of biological significance.

This study is a novel analysis of an existing large-scale complex 
RNA-Seq data set from sheep. Using the pipeline, we have adapted 
for this analysis, we were able to identify ASE profiles that were 
pervasive in each sheep and specific to the tissues and cell types 
investigated. These tissue and cell type-specific ASE profiles 
may underlie the expression of economically important traits 
and could be used to identify variants that could be weighted 
in genomic prediction algorithms for the improvement of sheep 
breeding programs. In summary, we have adapted a robust 
methodology for ASE profiling, using the sheep gene expression 
atlas data set, and provided a foundation for identifying the 
regulatory and expressed elements of the genome that are driving 
complex traits in livestock.
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under accession numbers ERZ827944, ERZ827949, ERZ827951, 
ERZ827955, ERZ827972, ERZ827988, ERZ827995, ERZ827997, 
ERZ828001, ERZ828016, ERZ828019, ERZ828036, ERZ828044, 
ERZ828046, ERZ828050, ERZ828070, ERZ828073, ERZ828160, 
ERZ828167, ERZ828168, ERZ828172, ERZ828188, ERZ828192, 
ERZ828209, ERZ828215, ERZ828217, ERZ828221, ERZ828240, 
ERZ828244, ERZ828261, ERZ828268, ERZ828270, ERZ828274, 
ERZ828293, and ERZ828297. The Oar v3.1 reference FASTA and 
VCF file from Ensembl v92 were used throughout the pipeline. 
The ASE analysis pipeline (https://msalavat@bitbucket.org/
msalavat/asewrap_public.git) was wrapped using bash scripting 
on Edinburgh Compute and Data Facility computing resource 
Eddie Mark 3 (Edinburgh, 2018). All the raw ASE genes data 
produced by GeneiASE are included in Supplementary File 2 
(Supplementary_file2.zip). The comparison of ASE positive SNVs 
between imbalance towards the ref or alt alleles is detailed in 
Supplementary Figure S7. The clustering behavior of ASE profiles 
in BMDMs experiment were explored using Kmeans clustering and 
Principle Component Analysis (PCA) as shown in Supplementary 
Figure S8 and S9 respectively. All the supplementary material are 
available at (https://doi.org/10.6084/m9.figshare.8035799.v1).
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