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A B S T R A C T   

Objective: COPD is the most common chronic respiratory disease with complex environmental and 
genetic etiologies. It was reported that EPAS1 might participate in the occurrence and develop-
ment of respiratory diseases. However, the association between EPAS1 and COPD was unclear. 
Methods: First, a case-control study enrolling 1130 COPD patients and 1115 healthy controls in 
Guangzhou was conducted to clarify the association between EPAS1 polymorphisms and COPD 
susceptibility. Secondly, a prevalence study recruited 882 participants in Gansu to verify the 
effect of positive polymorphisms on lung function. Finally, the 10-year absolute risk considering 
environmental factors and genetic variations was calculated by the method of Gail and Bruzzi. 
Results: EPAS1 rs13419896 AA genotype reduced COPD risk in southern Chinese (AA vs. GG: 
adjusted OR = 0.689, 95% CI = 0.498–0.955; AA vs. GG/GA: adjusted OR = 0.701, 95% CI =
0.511–0.962). Further, the rs13419896 A allele was significantly associated with higher pre- 
FEV1/pre-FVC in both the Guangzhou and Gansu populations (P < 0.05). Smoking status, coal 
as fuels, education level, and rs13419896 G > A were finally retained to develop a relative risk 
model for males. Smoking status, biomass as fuels, and rs13419896 G > A were retained in the 
female model. The population-attributable risk of the male or female model was 0.457 
(0.283–0.632) and 0.421 (0.227–0.616), respectively. 
Conclusions: This study first revealed that EPAS1 rs13419896 G > A decreased COPD suscepti-
bility and could be a genetic marker to predict the 10-year absolute risk for COPD.  
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1. Introduction 

Chronic obstructive pulmonary disease (COPD), characterized by persistent respiratory symptoms and irreversible airflow re-
striction, is the most common chronic respiratory disease [1]. The prevalence of COPD is 10.3% in the world, which raises to 13.7% 
among Chinese older than 40 [2,3]. It is difficult to diagnose early COPD because of its hidden development. With COPD progress, 
moderate or severe airflow restriction will seriously affect the quality of life and even cause death [4]. Recently, some studies showed 
that COPD and lung cancer shared similar etiologies, suggesting that COPD might be a driver of lung cancer [5]. As one of the primary 
outcomes of COPD, lung cancer has the highest incidence and mortality in Chinese cancers [6]. Therefore, clarifying the etiologies of 
COPD is of great significance for jointly preventing and treating COPD and lung cancer, which will dramatically reduce the Chinese 
disease burden. 

As we all know, COPD is regulated by genetic and environmental factors, and smoking is the most important environmental risk 
factor [1,3]. Notedly, COPD only occurs in 10%–20% of long-term smokers and even in some non-smokers, indicating an indispensable 
role of genetic factors in the occurrence and development of COPD [7]. Single nucleotide polymorphism (SNP), the third-generation 
genetic marker, is a powerful tool for detecting the genetic etiology of diseases [8]. Although more and more COPD-related genetic loci 
have been discovered by genome-wide association studies (GWAS) and candidate gene studies, the genetic etiology of COPD remains 
largely unknown [9]. 

Endothelial PAS domain protein 1 (EPAS1), also known as hypoxia-induced factor-2α (HIF-2α), codes a vital subunit of hypoxia- 
induced factor 2 (HIF-2) and expresses in lung and other organs involved in oxygen metabolism [10,11]. When hypoxia happens, 
accumulated HIF-2α persistently stimulates the HIF pathway to promote the transcription of downstream genes that involve eryth-
ropoiesis, iron homeostasis, metabolism, inflammation, vascularization, and tumorigenesis [12,13]. Some researchers have reported 
that EPAS1 is abnormally expressed in COPD and may regulate several COPD-related genes, raising a hypothesis that EPAS1 would take 
part in the occurrence and development of COPD [14,15]. However, those hypotheses need to be further verified. 

Therefore, we conducted a multicenter case-control study enrolling 1130 COPD patients and 1115 healthy controls in Guangzhou 
to explore the association between EPAS1 polymorphisms (rs13419896 G > A, rs59901247 A > C, rs6756667 G > A) and COPD 
susceptibility in southern Chinese. Furthermore, we performed a prevalence study in Gansu and collected 882 participants with 
complete records of pulmonary function examination to verify the effect of positive polymorphisms on lung function. Finally, 10-year 
absolute risks for the southern Chinese with different individual relative risks were calculated and demonstrated in tables. 

2. Materials and methods 

2.1. Study population 

We totally collected 1130 COPD patients and 1115 healthy controls in the case-control study. They were Southern Chinese who 
visited the Songshan Lake Central Hospital of Dongguan, the Dongguan Binwan Central Hospital, and the Shenzhen Longhua District 
Central Hospital from 2015 to 2019 (Table S1). 

In 2019, 882 participants from four regions in Gansu were enrolled by multi-stage cluster random sampling to conduct a prevalence 
study (Chengxian County of Longnan City, Dunhuang City, Zhengning County of Qingyang City, and Zhuoni County of Gannan Tibetan 
Autonomous Prefecture) (Table S2). 

Questionnaires were utilized to collect information about demographic characteristics and environmental exposures. We also asked 
them to donate 5 ml of peripheral blood for genotyping. The questionnaire details were described in our previous article [16]. 

The trained staff utilized electronic medical records of the above institutions from 2016 to 2020 to carry out a clinical cohort study 
and acquire the incidence of COPD. The details were summarized in Table S3. 

Our study has obtained participants’ informed consent and approbated by the institutional review boards of Guangzhou Medical 
University and the Gansu University of Chinese Medicine. 

2.2. Diagnostic criterion for COPD and lung function examination 

We diagnosed COPD referring to the Global Initiative for Chronic Obstructive Lung Disease 2019 [17]. Briefly, participants were 
diagnosed with COPD if they had respiratory symptoms in daily life (coughing, expectoration, dyspnea, wheezing) and the ratio of 
forced expiratory volume in 1 s (FEV1) to forced vital capacity (FVC) was less than 70% after inhaling 400 μg salbutamol for half an 
hour. Following the instructions, lung function was examined by the EasyOne Spirometer (NDD Medizintechnik AG, Switzerland). 

2.3. Polymorphism selection and genotyping 

EPAS1 rs13419896 G > A, rs59901247 A > C, and rs6756667 G > A were screened from the dbSNP database (http://www.ncbi. 
nlm.nih.gov/SNP) based on the following criteria: SNPs were limited in the region between 2000bp upstream and downstream of 
EPAS1; the minor allele frequencies (MAFs) in the Chinese population were more than 0.05; the linkage disequilibrium of the selected 
SNPs was low (LD, R2＜0.8); they were potential functional variations or tag SNPs [18,19]. As reported by previous studies, 
Rs13419896 G > A and rs6756667 G > A were located in the transcription factor binding regions and might change the expression of 
EPAS1; Rs59901247 A > C was an nsSNP that might cause amino acid substitution [20,21]. LD between three SNPs was exhibited in 
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Fig. S1. 
DNA was extracted from peripheral blood by the DNA Blood Mini Kit (Qiagen, Valencia, CA, USA). ABI7500 System (Applied 

Biosystems, Foster City, CA, USA) was used to analyze the result of TaqMan real-time polymerase chain reaction (PCR). The infor-
mation on primers and probes was shown in Table S4. To ensure the reliability and accuracy of genotyping, we not only set up positive 
and negative controls on each plate but also randomly selected 10% samples for repetition. 

2.4. Statistical analysis 

The χ2 test was used to compare the differences in the frequency distributions of demographic characteristics between cases and 
controls. The goodness-of-fit χ2 test was applied to assess the Hardy-Weinberg equilibrium (HWE) of the selected polymorphisms in 
controls. To adjust the confounding factors, we adopted a multivariate logistic regression model to evaluate the association between 
EPAS1 polymorphisms and COPD susceptibility, as well as the multiplicative interaction of environmental factors and positive 
polymorphism. The homogeneity of the ORs between different strata was appraised by the Breslow-Day test. The effect of genotypes on 
lung function was detected by the Kruskal-Wallis test. Furthermore, the false-positive report probabilities (FPRP) of positive findings 
were calculated by setting the prior probability as 0.1 and the plausible OR as 0.67 [22,23]. 

The 10-year absolute risk was calculated in the method developed by Gail and Bruzzi (Appendix) [24–27]. Specifically, the 
incidence of COPD and the mortality without COPD were obtained from the clinical cohort study and the 2014–2015 Annual Report on 
the Cause of Death Surveillance in Guangzhou (Table S3) [28]. Based on the case-control study in Guangzhou, the backward stepwise 
logistic regression model was used to screen risk factors and estimate relative risks. Adjusted population-attributable risks were 
produced by IRAP 2.2.0 (Version 2.2.0; National Cancer Institute, Rockville, MD, USA). 

Most statistical analyses were performed by SPSS 26.0 (Version 26.0, IBM Corporation, Armonk, NY, USA). All tests were two- 
sided. Results were considered statistically significant only when P-values were less than 0.05. 

3. Results 

3.1. Association between EPAS1 polymorphisms and COPD susceptibility 

As shown in Table 1, the frequency distribution of genotypes in controls obeyed HWE (P > 0.05). EPAS1 rs13419896 AA genotype 
was associated with decreased COPD susceptibility (AA vs. GG: adjusted OR = 0.689, 95%CI = 0.498–0.955; and AA vs. GG/GA: 
adjusted OR = 0.701, 95%CI = 0.511–0.962). Unfortunately, we could not observe that rs59901247 A > C and rs6756667 G > A 
modified COPD susceptibility. 

3.2. Stratification analysis 

As shown in Table 2, compared with EPAS1 rs13419896 GG/GA genotypes, the protective effect of the AA genotype was still 
significant in the strata of age>60 years, female, low education level, non-smokers, and avoiding biomass as fuels (P < 0.05). 

Table 1 
Frequency distributions of EPAS1 polymorphisms and their associations with COPD susceptibility.  

Models Genotypes Case (n = 1130) n (%) Control (n = 1115) n (%) Adjusted OR (95% CI)a Pa AIC 

rs13419896 G > A (HWE = 0.603)  
GG 587 (51.9) 550 (49.3) 1.000 (ref.)    
GA 469 (41.5) 461 (41.3) 0.963 (0.808–1.149) 0.679  

Codominant AA 74 (6.5) 104 (9.3) 0.689(0.498–0.955) 0.025 3030.394 
Additive GG vs. GA vs. AA   0.887 (0.777–1.013) 0.077 3032.349 
Dominant GA + AA vs. GG 543 (48.1) 565 (50.7) 0.917 (0.772–1.081) 0.294 3034.373 
Recessive AA vs. GG + GA 74 (6.5) 104 (9.3) 0.701(0.511–0.962) 0.028 3030.565 
rs59901247 A > C (HWE = 0.760)  

AA 895 (79.2) 878 (78.7) 1.000 (ref.)    
AC 217 (19.2) 224 (20.1) 0.986 (0.797–1.219) 0.895  

Codominant CC 18 (1.6) 13 (1.2) 1.403 (0.674–2.920) 0.365 3034.609 
Additive AA vs. AC vs. CC   1.031 (0.854–1.244) 0.754 3035.376 
Dominant AC + CC vs. AA 235 (20.8) 237 (21.3) 1.009 (0.820–1.241) 0.935 3035.467 
Recessive CC vs. AA + AC 18 (1.6) 13 (1.2) 1.407 (0.677–2.925) 0.360 3034.626 
rs6756667 G > A (HWE = 0.552)  

GG 878 (77.7) 846 (75.9) 1.000 (ref.)    
GA 236 (20.9) 253 (22.7) 0.901 (0.734–1.105) 0.318  

Codominant AA 16 (1.4) 16 (1.4) 1.029 (0.505–2.099) 0.936 3034.455 
Additive GG vs. GA vs. AA   0.926 (0.772–1.111) 0.410 3034.794 
Dominant GA + AA vs. GG 252 (22.3) 269 (24.1) 0.908 (0.744–1.109) 0.345 3034.583 
Recessive AA vs. GG + GA 16 (1.4) 16 (1.4) 1.053 (0.517–2.144) 0.886 3035.454 

OR, odds ratio; CI, confidence interval; HWE, Hardy-Weinberg equilibrium; AIC, Akaike Information Criterion. 
a ORs were adjusted for gender, age, smoking status, education level, coal or biomass as fuels by the logistic regression model. 
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Furthermore, the homogeneity test did not discover any heterogeneity between the ORs from different strata (P > 0.05). Also, no 
remarkable interaction between environmental factors and EPAS1 rs13419896 G > A was identified (P > 0.05). 

3.3. Effect of EPAS1 rs13419896 G > A on lung function in the Guangzhou and Gansu population 

We further explored the effect of EPAS1 rs13419896 G > A on lung function in the Guangzhou population. A total of 1656 par-
ticipants with eligible lung function estimation were successfully genotyped. The number of participants with GG, GA, and AA ge-
notypes was 826, 700, and 130, respectively. Although there were no statistical differences in pre-FEV1 and pre-FVC among different 
genotypes (P > 0.05), the A allele was significantly associated with higher pre-FEV1/pre-FVC (Fig. 1C). This result was verified in the 
Gansu population (Fig. 2C). 

3.4. Relative risks and population-attributable risks 

The backward stepwise logistic regression model retained smoking status, biomass as fuels, education level, and rs13419896 G > A 
to construct the male model; smoking status, biomass as fuels, and rs13419896 G > A were retained for the female model (Table 3). The 
population-attributable risks of the male and female models were 0.457 (0.283–0.632) and 0.421 (0.227–0.616). 

3.5. The 10-year absolute risk for COPD among southern Chinese 

Combining rs13419896 G > A with the environmental factors, we calculated the 10-year absolute risk for the southern people with 
different individual relative risks (Appendix) [24–27]. For example, a 40 years old woman who smokes, uses biomass as fuels, and 
carries rs13419896 AA genotype has an individual relative risk of 4.527 (r = 1.800 × 2.515 × 1). Her probability of developing COPD 
is about 0.149 at 50 years old (Table 4). 

4. Discussion 

This study revealed that compared with EPAS1 rs13419896 GG/GA genotype, the AA genotype significantly reduced COPD risk in 
southern Chinese. The protective effect of the AA genotype remained remarkable in the strata of age>60 years, females, low education 
level, non-smokers, and avoiding biomass as fuels. Moreover, the A allele was associated with a higher pre-FEV1/pre-FVC in the 
Guangzhou and Gansu population. Therefore, we calculated the 10-year absolute risks for COPD by combining the rs13419896 G > A 
with environmental factors. For the first time, this study investigated the association between EPAS1 polymorphisms and COPD 
susceptibility and estimated the absolute 10-year risk for COPD. 

EPAS1, located at 2p16-21, encodes a protein named HIF-2α that dimerizes with HIF-1β to form HIF-2 [10]. The degradation of 
HIF-2α depends on the ubiquitination mediated by the von Hippel-Lindau protein (pVHL). When hypoxia happens, the hydroxylation 
of HIF-2α is attenuated, thus hindering the binding of HIF-2α to pVHL. Accumulated HIF-2α continually activates the HIF pathway, 
which may affect the expression of downstream genes involving various physiological and biochemical processes [29]. Using the Lung 

Table 2 
Stratification analysis of the association between EPAS1 rs13419896 G > A and COPD susceptibility.  

Variables Case (n = 1130) Control (n = 1115) AA vs. GG + GA Phomo
b Pinter

c 

GG n (%) GA n (%) AA n (%) GG n (%) GA n (%) AA n (%) OR (95% CI)a 

Age group (years) 
≤60 223 (47.8) 208 (44.5) 36 (7.7) 246 (49.0) 208 (41.4) 48 (9.6) 0.794 (0.494–1.278) 0.399 0.232 
>60 364 (54.9) 261 (39.4) 38 (5.7) 304 (49.6) 253 (41.3) 56 (9.1) 0.556(0.356–0.869) 

Gender 
Male 352 (50.0) 300 (42.6) 52 (7.4) 360 (50.2) 294 (41.0) 63 (8.8) 0.853 (0.572–1.271) 0.097 0.121 
Female 235 (55.2) 169 (39.7) 22 (5.2) 190 (47.7) 167 (42.0) 41 (10.3) 0.425(0.244–0.740) 

Education level 
Middle school or below 458 (53.8) 344 (40.4) 49 (5.8) 368 (48.8) 313 (41.5) 73 (9.7) 0.561(0.383–0.823) 0.073 0.067 
High school or above 129 (46.2) 125 (44.8) 25 (9.0) 182 (50.4) 148 (41.0) 31 (8.6) 1.063 (0.603–1.876) 

Smoking status 
No 302 (53.6) 230 (40.9) 31 (5.5) 321 (49.3) 266 (40.9) 64 (9.8) 0.543(0.346–0.852) 0.130 0.208 
Yes 285 (50.3) 239 (42.2) 43 (7.6) 229 (49.4) 195 (42.0) 40 (8.6) 0.873 (0.549–1.388) 

Coal as fuels 
No 504 (51.4) 407 (41.5) 70 (7.1) 508 (49.5) 422 (41.1) 97 (9.4) 0.738 (0.534–1.022) 0.197 0.260 
Yes 83 (55.7) 62 (41.6) 4 (2.7) 42 (47.7) 39 (44.3) 7 (8.0) 0.291 (0.074–1.143) 

Biomass as fuels 
No 487 (51.8) 393 (41.8) 61 (6.5) 489 (48.6) 421 (41.8) 96 (9.5) 0.673(0.480–0.944) 0.480 0.511 
Yes 100 (52.9) 76 (40.2) 13 (6.9) 61 (56.0) 40 (36.7) 8 (7.3) 1.143 (0.434–3.012) 

OR, odds ratio; CI, confidence interval. 
a ORs were adjusted for age, gender, education level, smoking status, coal or biomass as fuels by the logistic regression model. 
b P-value of the Breslow-Day homogeneity test for the ORs between strata. 
c P-value of test for the multiplicative interaction between EPAS1 rs13419896 genotypes and the factors. 
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Genomics Research Consortium (LTRC), Yoo et al. recently observed a decrease in EPAS1 expression due to elevated methylation in 
COPD patients. At the same time, a similar effect was repeated in tobacco-treated mice. In addition, the motif enrichment analysis 
found that some downstream genes of EPAS1 overlapped with multiple COPD-related genes, such as VEGF, AP-1, C/EBPβ, XPB-1, and 
Mir-145 [14]. It was reported that these genes play critical roles in lung development, chronic inflammation, fibrosis, airway 
remodeling, and lung function degenerating [10,30–34]. A study with a small sample size (55 cases and 25 controls) also found 
increased expression of EPAS1 in COPD [15]. The previous studies indicated that EPAS1 might participate in the occurrence and 
development of COPD. However, the hypothesis has not reached a consistent conclusion. 

Therefore, we conducted this study to elucidate the association between EPAS1 polymorphisms and COPD susceptibility. As re-
ported by previous studies, rs13419896 G > A and rs6756667 G > A were located in the transcription factor binding regions and could 
change the expression of EPAS1; rs59901247 A > C was an nsSNP that could cause amino acid substitution [20,21]. Initially, EPAS1 
attracted widespread attention for its important role in Tibetans’ adaptation to hypoxia [35,36]. Subsequently, several studies reported 
that EPAS1 polymorphisms modified the susceptibility to multiple acute altitude sicknesses when Han Chinese rapidly entered the 
plateau [20,37–40]. For example, the rs6756667 A allele reduced the risk of acute high-altitude headache and acute appetite loss [38, 
40], while the rs13419896 A allele made Han Chinese susceptible to acute cardiorespiratory fitness impairment [37]. As the research 
continues to deepen, researchers also observed that the rs13419896 A allele is a risk factor for premature retinopathy, lung cancer, 
hepatitis B, and liver cirrhosis [21,41–43]. Exiting evidence suggested that EPAS1 polymorphisms could indicate susceptibility to 
disorders, but their biological functions were quite heterogeneous in different ethnic and diseases. 

Fig. 1. The effect of the EPAS1 rs13419896 G > A on pulmonary function in the Guangzhou population was estimated by the Kruskal-Wallis test. 
(A) Pre-forced expiratory volume in 1s (pre-FEV1) [GG, GA, AA: 1.98 L (1.55, 2.52), 1.99 L (1.55, 2.488), 2.12 L (1.79, 2.56); P = 0.06]; (B) Pre- 
forced vital capacity ratio (pre-FVC) [GG, GA, AA: 2.61 L (2.06, 3.34), 2.66 L (2.13, 3.27), 2.72 L (2.26, 3.46); P = 0.145]; (C) Pre-FEV1/FVC [GG, 
GA, AA: 76.23% (67.86, 82.45), 76.27% (67.73, 83.00), 79.56% (71.39, 85.72); P = 0.024]. 

Fig. 2. The effect of the EPAS1 rs13419896 G > A on pulmonary function in the Gansu population was estimated by the Kruskal-Wallis test. (A) Pre- 
forced expiratory volume in 1s (pre-FEV1) [GG, GA, AA: 2.42 L (2.06, 2.89), 2.42 L (2.04, 2.89), 2.52 L (2.10, 3.01); P = 0.510]; (B) Pre-forced vital 
capacity ratio (pre-FVC) [GG, GA, AA: 3.28 L (2.84, 3.93), 3.25 L (2.80, 3.86), 3.28 L (2.81, 3.97); P = 0.972]; (C) Pre-FEV1/FVC [GG, GA, AA: 
73.72% (68.98, 78.29), 74.87% (68.57, 79.08), 76.00% (70.87, 80.00); P = 0.038]. 
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The current study suggested that the rs13419896 A allele was associated with decreased COPD susceptibility and better lung 
function. Some studies have explored how rs13419896 G > A regulated the expression of EPAS1 [21,44]. Li et al. observed that the 
rs13419896 AA genotype carrier had the lowest expression of EPAS1 than those with the GA or GG genotypes. However, the expression 
of EPAS1 changed more dramatically when the former rapidly entered high-altitude areas [44]. Putra et al. reported that the 
rs13419896 A allele enhanced the expression of EPAS1 in lung cancer and was associated with a poor prognosis [21]. Interestingly, in 
disagreement with Yoo et al. Putra et al. suggested that AP-1, C/EBPβ, and C-MYC could regulate the expression of EPAS1 by binding to 
the region where the rs13419896 G > A located, raising a possibility that there might be bidirectional regulation between EPAS1 and 
COPD-related genes [14,21]. Although the regulatory mechanism is not clear, we reasonably speculated that rs13419896 G > A 
affected the affability of transcription factors to EPAS1, thus changing the expression of EPAS1. In this way, rs13419896 G > A might 
participate in the development of COPD by the HIF signaling pathway [21,43]. 

The incidence of COPD and the mortality without COPD were different between males and females [28,45]. Thus, the 10-year 
absolute risk model was conducted by gender. However, coal as fuels and education level, the vital factors of COPD, did not 
remain in the female models, which might attribute to the lessened sample size after stratification [1,3]. In addition, the absence of 
coal as fuels might be partly interpreted by the correlation with biomass as fuels [24]. The population-attributable risks were 0.457 
(0.283–0.632) for the male model and 0.421 (0.227–0.616) for the female model, indicating that more factors should be considered in 
models to capture much of COPD risk [46]. We also tried to remove the positive SNP from the male or female models for sensitive 
analysis. As shown in Fig. S2, the prediction accuracy declined to some degree after removing rs13419896 G > A, indicating an 
important contribution of rs13419896 G > A to the models. 

However, there were some other limitations in this study. 1. As a hospital-based retrospective study, selection and recall biases 
were inevitable. 2. The sample size was considerably large. We had 0.8 power to detect variations with ORs>1.5. But most poly-
morphisms were low-risk (ORs<1.5), which needed a larger sample size to improve the detection efficiency and decrease the false- 
positive report probability, especially in the stratification analysis (Table S5) [47]. 3. We should have performed more experiments 
to clarify the function of EPAS1. 4. Our findings and models needed external validation in the other population. 

5. Conclusion 

EPAS1 rs13419896 G > A significantly reduced COPD susceptibility in southern Chinese. The A allele was associated with better 
lung function. Combined with environmental factors, EPAS1 rs13419896 G > A could be a genetic marker to predict the 10-year 
absolute risk for COPD. 
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Table 3 
Estimated relative risks based on a case-control study.  

Factors RR (95% CI)a 

Male 
Smoking status  
No 1.000 (ref.) 
Yes 1.905 (1.506–2.410) 
Coal as fuels  
No 1.000 (ref.) 
Yes 1.903 (1.330–2.722) 
Education level  
High school or above 1.000 (ref.) 
Middle school or below 1.641 (1.282–2.100) 
rs13419896  
AA 1.000 (ref.) 
GG＋GA 1.172 (0.786–1.747) 
Population-attributable risk 0.457 (0.283–0.632) 
Female 
Smoking status  
No 1.000 (ref.) 
Yes 1.800 (1.018–3.182) 
Biomass as fuels  
No 1.000 (ref.) 
Yes 2.515 (1.624–3.896) 
rs13419896  
AA 1.000 (ref.) 
GG＋GA 2.329 (1.340–4.047) 
Population-attributable risk 0.421 (0.227–0.616) 

RR, relative risk. 
a Backward logistic regression, adjusting for age. 
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Table 4 
The 10-year absolute risk for COPD in southern China.  

Initial Age (years) r (individual relative risk) 

male female 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 

40–49 0.000 0.074 0.143 0.207 0.265 0.320 0.370 0.417 0.000 0.077 0.149 0.214 0.275 0.331 0.382 0.430 
50–59 0.000 0.145 0.268 0.374 0.464 0.540 0.605 0.661 0.000 0.140 0.261 0.364 0.453 0.529 0.595 0.651 
60–69 0.000 0.255 0.442 0.581 0.682 0.758 0.813 0.855 0.000 0.224 0.397 0.531 0.634 0.714 0.776 0.823  
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Appendix 

The backward stepwise logistic regression model was used to screen risk factors and estimated the RR of each variate. Individual 
relative risk (r) was calculated by formula 1. Population-attributable risk (PAR) could be obtained by IRAP 2.2.0. h1 was calculated by 
formula 2, where IR was the incidence of COPD. Formula 3 was used to predict the 10-year absolute risk (AR), where h2 was the 
mortality without COPD and a was the initial age. 

r=Πn
i=1ri (1)  

h1 = IR (1 − PAR) (2)   

P(a, r) = {h1 r/(h1 r + h2)[1-exp{-10(h1 r + h2)}]                                                                                                                           (3)  

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2023.e20226. 
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