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1            Introduction 

 The application of mathematics to explore the dynamics and 
control of viral infections has a long history, which predates 
its application in many other fi elds of biology, as well as the 
germ theory itself [ 1 ]. A particularly fruitful area for devel-
opment has been the dynamics of acute immunizing infec-
tions, with their relatively simple natural history and rich 
notifi cation time series [ 2 – 4 ]. The last three decades have 
seen a considerable upsurge in the use of mathematical and 
computational models to explore the dynamics and control 
of a wide range of viral infections. This phase arose initially 
from developments in ecological population dynamics [ 4 ]; 
it was then greatly accelerated, both by the explosion in 
computational power and by the emergence of human 
 immunodefi ciency virus (HIV) infection, severe acute respi-
ratory syndrome (SARS), and other potential pandemic 
threats [ 5 ]. 

 In this chapter, we review basic concepts in infection 
dynamics and control, via a synthesis of epidemic models and 
data. We begin with acute immunizing infections, focusing 
on measles as a case study of the impact of herd immunity 
and other determinants of epidemic dynamics. We then 
extend the discussion to dynamical modeling applications to 
a range of other acute and chronic viruses, with a variety of 

more complex life histories. After a brief discussion of mod-
els for the within-host dynamics of viruses, we conclude with 
suggestions for gaps in knowledge and future research needs.  

2     Dynamics of Acute Immunizing 
Infections 

2.1     Observed Epidemic Patterns 

 Acute immunizing infections typically generate recurrent 
epidemics in large communities. We illustrate these patterns 
with the best documented case – the dynamics of measles in 
large cities in England and Wales [ 2 ,  3 ]. Figure  5.1a  shows 
the time series of raw weekly notifi cations for measles in 
London from 1944 (shortly after measles cases became noti-
fi able) to 1994.

   These data indicate three fairly distinctive dynamical eras:
•    1944–1950: Principally annual epidemics.  
•   1950s–1960s: Regular, mainly biennial epidemic cycles, 

with intervening small annual peaks – incidence rates are 
markedly  seasonal  (Sect.  2.4 ).  

•   1970s onwards: The vaccine era brought declining inci-
dence, with increasing irregular, lower-amplitude epi-
demic cycles. By the end of the series shown in this fi gure, 
cases became very sporadic, with increasing levels of 
mis-notifi cation of clinically identifi ed cases [ 7 ].    
 As well as these fl uctuations in individual large cities, 

there are also rich dynamical patterns in the  spatial spread  of 
epidemics among large and small communities (Sect.  4 ). 
Regional and temporal demographic variations, especially in 
 birth rate , can also markedly infl uence dynamics (Sect.  2.4 ).  

2.2      Epidemic Dynamics: The SEIR Model 

 The striking epidemic patterns of acute immunizing infec-
tions are particularly well documented for widely notifi able 
infections such as measles. The process of explaining these 
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cycles, as well as that of addressing associated public health 
issues, has spawned an extensive analytical literature, span-
ning public health epidemiology, theoretical biology, and 
population dynamics [ 4 ,  5 ,  8 – 10 ]. The key conceptual tool 
has been a family of compartmental dynamical models, 
based on the SIR (susceptible-infected-recovered) paradigm 
[ 2 – 5 ,  11 ,  12 ]. As described below, the SIR family success-
fully captures many key features of the epidemiological 
dynamics and control of viral infections. 

 The basic SIR formulation embodies the dynamics of 
immunizing infections. Because viruses reproduce rapidly in 
the host, we ignore within-host kinetics in the simplest SIR 
models (but see Sect.  8 ); depending on model details, this leads 
to a compartmentalization of the host population between (as 

yet uninfected) susceptible individuals, infected, recovered, 
and other classes. An initial taxonomic split here is between the 
SIR model (which crudely assumes that all infected individuals 
can pass on infection) and the SEIR (susceptible, exposed, 
infected, recovered) model, which adds an “exposed” (infected 
but not yet infectious) class [ 4 ]. SIR and SEIR models have 
qualitatively very similar dynamics [ 13 ]; however, we describe 
the latter with its more realistic depiction of viral incubation. 
The basic SEIR model, illustrated in Fig.  5.1b , refl ects the fol-
lowing set of biological assumptions; we use measles as the 
classic acute exemplar here [ 14 ]. After a few months of mater-
nally derived passive immunity, infants enter the virus-naïve 
“susceptible” (S) class; susceptibles can then become infected 
by close contact with infectious individuals (generally via 
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  Fig. 5.1    ( a ) Observed spatiotemporal dynamics of measles in England 
and Wales, showing weekly aggregate time series of notifi cations for 
London. ( b ) Basic fl ows of individuals captured by the SEIR model. ( c ) 
Schematic time series of numbers of susceptible individuals, arising 
from fl ows in panel  b , and in particular following the introduction of 

one infectious individual into a wholly susceptible population; the 
effect of birth rate on susceptibility is ignored. ( d ) Corresponding 
dynamics for the proportion of the population susceptible (line marked 
“ S ”) and the proportion infected (line marked “ I ”) ( b ,  d : Taken from 
Fig. 2, Grenfell [ 6 ]. Figure found on p. 38)       
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respiratory aerosol for measles). Infection moves individuals 
into the “exposed” (E) class, where they incubate but do not 
transmit the infection for around a week; this leads to the infec-
tious (I) class, where virus is shed, again for approximately a 
week, after which individuals enter the recovered state (R). In 
the basic SEIR model, recovered individuals are assumed to be 
immune for life, both to clinical disease and to retransmitting 
the infection. However, subclinical infection (and hence boost-
ing of immunity [ 15 ,  16 ]) is in principle possible. The lifelong 
sterilizing immunity induced by such an infection also makes 
this an excellent potential vaccine candidate [ 4 ]. For the SEIR 
model, vaccination is at its simplest assumed to be delivered to 
a proportion  p  of infants at the end of the maternal immunity 
period (i.e., near the effective “birth” of susceptibles). For indi-
viduals who seroconvert, immunity is then often assumed to be 
lifelong, moving susceptibles into the recovered class 
(Fig.  5.1c ). There is also a considerable literature exploring 
more operationally realistic age distributions and immunogenic 
characteristics of vaccines in specifi c cases [ 5 ,  17 ].  

2.3        Herd Immunity and the Impact 
of Vaccination 

 We can lay bare much of the dynamical behavior of immunizing 
epidemics by considering the case of the “simple”  epidemic 
(Fig.  5.1c ,  d ), in which the outbreak occurs suffi ciently rapidly 
to ignore processes of host birth and death. The talismanic quan-
tity here is the basic reproduction number (or ratio) of infection, 
 R  0  [ 4 ,  5 ]. At its simplest,  R  0  is defi ned as the total number of 
secondary cases caused by an infectious individual when intro-
duced into a well-mixed fully susceptible population. To illus-
trate the ensuing dynamics, consider an epidemic of infection 
with  R  0  > 0. Since each case initially causes  R  0  secondary infec-
tions, the epidemic increases more or less exponentially over the 
fi rst few infectious generations (Fig.  5.1c ). However, these 
dynamics rapidly deplete the susceptible pool. This brings us to 
the other key parameter of epidemic spread: the  effective  repro-
duction number, defi ned as  R  = [ S / N ] R  0 . Here,  S / N  is the propor-
tion of susceptibles in the population and  R  is the realized value 
of  R  0  as the epidemic develops [ 4 ]. Since S declines over the 
course of the epidemic (Fig.  5.1c ), so does  R  (Fig.  5.1d ). 

 This progressive decline in secondary infection rates 
through the epidemic is a manifestation of the key epidemio-
logical process of  herd immunity  [ 18 ] – increasing natural 
immunity of the population that indirectly protects the remain-
ing susceptibles from infection. Eventually, the effective repro-
duction ratio declines through unity (Fig.  5.1c ) as population 
immunity increases; this corresponds to the herd immunity 
threshold, above which the epidemic will always decline, even 
if reintroduced to a closed population. This threshold is thus 
also a key aim of vaccination campaigns [ 4 ,  5 ]. Remembering 
that  R  = [ S / N ] R  0 , the associated susceptible proportion at the 

herd immunity threshold ( R  = 1) becomes  s  c  = 1/ R  0  (Fig.  5.1c ); 
thus, immunizing at a level above  p  c  = 1 −  s  c  = 1 − 1/ R  0  will elim-
inate local transmission. As described below, these calculations 
have been refi ned considerably to allow for heterogeneities in 
transmission with age, space, and other characteristics (Sects.  3 , 
 4 , and  5 ). Nonetheless, our simple expression for  p  c  is an 
extremely useful metaphor for epidemic control: (1) because of 
indirect protection, not everyone needs to be vaccinated to 
eliminate transmission (corresponding to  p  c  < 1) and (2) the 
effort required to increase this level of immunization increases 
with transmission rates. The latter point is made clear by a 
simple plot of  p  c  against  R  0  (Fig.  5.2 ); more transmissible 
immunizing infections such as measles are harder to control 
than less transmissible agents such as smallpox. However, this 
refers to “random” mass vaccination; more targeted strategies 
such as ring vaccination coupled to active surveillance can pro-
mote elimination even below  p  c , given (as with smallpox elimi-
nation [ 19 ]) the right biological characteristics and logistics. 
Partial immunity and other characteristics of the population can 
complicate the picture still further (see Sect.  5.2  below). 
Nonetheless, the metaphor that more transmissibility necessi-
tates a stronger vaccination effort remains.

2.4           Seasonal Transmission 
and Recurrent Epidemic Dynamics 

2.4.1     Observed Epidemic Patterns 
in Developed Countries 

 In the simplest analysis of an immunizing infection (Sect.  2.2 ), 
sustained cycles of infection will disappear, and the infected 
proportion in the population will settle to a constant level 
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  Fig. 5.2    The critical vaccination threshold ( p  c ) and its dependence on 
the basic reproduction number,  R  0 . In the region above the  blue line , 
vaccination succeeds in local elimination of infection. Even in the 
region below the line, however, vaccination can substantially reduce 
overall transmission       
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(Fig.  5.3a ). The question of what maintains the recurrent epi-
demics [ 9 ] generally observed for immunizing childhood 
infections (e.g., Fig.  5.1 ) drove researchers to seek the key 
aspect of biological realism missing from the simplest SEIR 
model. For measles in England and Wales, seasonal variation 
in transmission driven by increased contact rates of children 
when schools were in session rapidly emerged as a possible 
candidate [ 12 ,  21 ] and has since received considerable empir-
ical support [ 2 ,  3 ]. Stochastic fl uctuations in incidence could 
in principle also contribute to the maintenance of cycles [ 22 , 
 23 ]; however, for measles, the predominant driver is seasonal-
ity in transmission [ 2 ,  3 ]. Birth rate may modulate the period-
icity of recurrent cycles driven by seasonality through its role 
in determining the rate of susceptible replenishment [ 24 ]. For 
example, for most of the postwar pre-vaccination era in 
London, seasonality generated sustained cycles by resonating 

with the biennial epidemic tendency of measles dynamics. 
However, during the postwar baby boom, births achieved suf-
fi cient levels to shift measles dynamics into annual cycles 
(Fig.  5.4 ).

2.4.2         Epidemic Dynamics in Developing 
Countries 

 It was realized early that seasonality could also result in 
more complex dynamics, including chaotic fl uctuations, 
that is, very irregular dynamics with little long-term pre-
dictability. Contexts with both high and low birth rates 
(and both high and low transmission since birth rates 
and transmission act dynamically in very similar ways 
for immunizing infections [ 24 ]) can promote complex 
dynamics via coexisting attractors. Until recently, it was 
thought that chaotic measles dynamics were not likely to 
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  Fig. 5.3    ( a ) Simulated SEIR dynamics for measles with a birth rate, 
but in the absence of seasonal forcing of transmission rate; for full 
model specifi cation and parameters, see Grenfell    and Bolker [ 20 ]. ( b ) 
Same model, with sinusoidal forcing of the infection as shown (forcing 

amplitude set to 0.2; Grenfell and Bolker [ 20 ]). The green trajectory 
shows the joint dynamics of susceptible and infectious densities through 
time; area plots show the dynamics of infectious and susceptible indi-
viduals (Taken from Fig. 3 in above book chapter, found on p.39)       
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be observed [ 3 ,  25 ], since observed seasonality in trans-
mission was not strong enough to drive the associated vio-
lent epidemics. However, recent analyses of measles in 
Niger revealed very strong seasonality (driven by move-
ment in and out of cities linked to rainfall); this, com-
bined with high transmission rates and the highest birth 
rate in the world, results in irregular outbreaks consistent 

with expectations of chaos (Fig.  5.5 ). Erratic boom and 
bust outbreaks are expected to continue even as routine 
vaccination improves; and this suggests that high invest-
ment in reactive vaccination and surveillance is important, 
and pulsed vaccination approaches such as supplementary 
immunization activities could also play a helpful role in 
synchronizing dynamics [ 26 ].
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  Fig. 5.5    Time series dynamics of measles outbreaks from Niger. 
( a ) Mean number of reported measles cases per 10,000 nationwide 
in Niger from 1995 to 2004, and the mean monthly rainfall over the 
same time period ( blue ). Shaded regions give ±   2 standard 
deviations.  Black curve , mean monthly cases of measles in Niamey 
from 1986 to 2005.  Inset  monthly measles time series from 1995 to 
2004. ( b ) Weekly measles case reports from seven departments of 
Niger, 2001–2005.  Red asterisk  Niamey. Each department is an 
aggregate of 3–8 arrondissements. ( c ) Case reports per month for the 
city of Niamey from 1986 to 2005. The  box  indicates the time frame 
shown in ( b ).  Black dots  months with 0 reported cases (Taken from 
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3           Age Structure, Demography, 
and Serological Profi les 

 The mean age at which individuals become infected by 
immunizing viral infection is generally lower for infections 
with higher rates of transmission or  R  0  (defi ned above). 
Intuitively, this occurs because the faster an immunizing 
virus is spreading through a population, the younger the age 
at which individuals are likely to be exposed to it. Host 
demography modulates this relationship, and higher birth 
rate countries with an  R  0  equivalent to that in lower birth rate 
countries will tend to have a lower average age of infection 
[ 27 ]. Maternal immunity, or protection of children after birth 
by transfer of maternal antibodies, will also have an impact, 
increasing the average age of infection for children whose 
mothers have been exposed to infection. Since maternal anti-
bodies rarely persist for much more than a year, this effect 
will be greatest for infections with very low average ages of 

infection [ 4 ]. Beyond these broad descriptors, however, there 
is the added complication of possible relationships between 
age and probability of exposure to infection. Such relation-
ships may arise for a variety of reasons. For example, only 
individuals beyond a certain age may work in areas where 
the disease is transmitted, or the disease may be only sexu-
ally transmitted. As a result, the force of infection, or prob-
ability that a susceptible individual will be infected, will 
show a distinct relationship with age. 

 For directly transmitted infections, like measles, mumps, 
rubella, and infl uenza, the age profi le of the force of infec-
tion is determined by the rate at which individuals of differ-
ent ages interact. There are two approaches to estimating this 
variation. The fi rst is to use age profi les of seropositivity to 
infer the pattern of the force of infection and, from this, 
extrapolate to the pattern of contacts over age [ 28 – 31 ]. The 
link between these age profi les and the force of infection 
over age can be made since once an individual has been 
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infected, she/he can never be infected again. Therefore, to be 
immune at any age, the individual must have contracted the 
infection prior to that age. On a population level, cross- 
sectional seropositivity thus provides an indication of the 
total risk of infection for individuals up to a given age. 
(Longitudinal age-serological profi les can be even more 
powerful in quantifying epidemic risk [ 32 ]). 

 The age profi le of infection can be framed mathematically 
[ 33 ], and parameters describing contacts between individuals 
of different ages inferred [ 31 ]. The resulting estimated matrix 
of contacts over age is known as the Who-Acquires- Infection-
from-Whom or WAIFW matrix. Alternatively, patterns of 
contacts between individuals can be directly measured [ 34 ], 
for example, using diary studies (Fig.  5.6 ); and by combining 
this with the age profi le of infection within the population, the 
force of infection over age can be inferred [ 35 ].

   The infection dynamics themselves may also infl uence the 
relationship between age and force of infection. If outbreaks 
are separated by long intervals during which little exposure 
occurs, individuals may remain susceptible for many years 
and thus contract the infection at a later age than might be 
predicted from the age profi le of contacts alone [ 36 ]. More 
subtly, detailed network analyses show that even within a sin-
gle infl uenza outbreak, the burden of disease can cascade from 
children (where contacts are highest) to the less connected 
adults as immunity accumulates within the children, with 
implications for optimal vaccination distribution [ 37 ]. 

 Understanding the processes underlying the average age 
of infection has a practical importance for any infection 

where the burden of disease shows an age profi le. Rubella is 
a classic example. Infection during early childhood tends to 
be mild, but infection during pregnancy may result in birth of 
a child with congenital rubella syndrome, consisting of a 
range of birth defects (see Ref. [ 38 ]). A realistically complex 
age structure of mixing, as detailed in empirical studies, may 
thus be of crucial importance in establishing the burden of 
disease [ 39 ] but also how the burden of disease is likely to 
change as a result of vaccination.  

4       Spatial Dynamics 

 So far, we have assumed that deterministic, spatially homo-
geneous dynamics govern infectious disease outbreaks. In 
fact, epidemics often spread across a heterogeneous land-
scape of human cities, towns, or rural communities, and this 
spread depends partly on the links between those locations. 
This leads us to move from the  deterministic  SIR model 
described above to  stochastic  models, which account for the 
random nature of individual infection dynamics and 
 demography – for instance, individuals may or may not 
become infected with a given average probability, so that by 
chance, particularly in small populations, no new infections 
may occur, and the chain of transmission may be broken. 
During the troughs between epidemic outbreaks in smaller 
communities, incidence may fall to such low numbers that 
local extinction is likely. 
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 Based on this    observation, Bartlett [ 9 ,  40 ] used analyses 
of epidemiological data and stochastic models to develop the 
notion of critical community size (CCS), or population size 
below which stochastic extinction is expected, which was 
further developed by Black [ 41 ] in studies of measles persis-
tence in insular populations. Bartlett demonstrated the exis-
tence of a CCS of around 300,000–500,000 for measles in 
England and Wales. For measles to persist in locations with 
a population size smaller than this CCS, immigration of 
infected immigrants from elsewhere in the metapopulation is 
necessary. The result is that the spread of measles across 
England and Wales in the pre-vaccine era resembled travel-
ing waves spreading out from London [ 6 ], with a substantial 
epidemic lag in locations further away. The duration of the 
lag was also shaped by the size of the local populations. The 
duration of fade-outs following local extinction contains 
information on the degree to which a particular location is 
connected to the metapopulation as a whole [ 42 ]. Generally, 
this points to larger places being more connected. More 
detailed parametric analyses tend to confi rm this (e.g., the 
gravity model [ 43 ]). 

 Similar processes may operate for immunizing or lethal 
infections in animal populations, with, for example, the 
spread of rabies through raccoon populations acting as an 
invasion wave structured by large landscape features such 
as rivers [ 44 ]. For more complex human infections, fea-
tures such as imperfect immunity (see Sect.  5.2  below) will 
tend to shift the age class of hosts who disperse the infec-
tion. That shift may impact on the main mechanism of dis-
persal [ 45 ] and move the scenario away from invasion into 
a locally coupled landscape to a more demographically 
driven dynamic [ 46 ].  

5      Comparative Dynamics 

 So far, we have explored the epidemiological dynamics 
of acute, immunizing viral infections. Though the result-
ing dynamics are both important and fascinating from a 
 dynamical perspective, the natural (life) history of most viral 
infections departs, in one way or another, from this simple 
case. We review these complexities, and their epidemiologi-
cal and control implications, in succeeding Sections. 

5.1     From Acute to Chronic 

 A dramatically different life history from the transient infec-
tion paradigm represented by measles is observed with infec-
tions that are much more persistent (even lifelong). This 
difference may be expressed in terms of infectious period in 
individual hosts [ 4 ]. To illustrate how increasing infectious 
period alone modifi es the violent epidemics of childhood 
infections, we retain the assumption of lifelong immunity of 

the SEIR model and vary the infectious period, from the 
roughly 1 week of measles to 10 years, corresponding to the 
approximate average pre-HAART treatment infectious 
period of HIV [ 4 ].

   Figure  5.7  explores this comparison, simulating an infec-
tion which invades a partly susceptible population (full 
details are given in Ref. [ 6 ]; note that for clarity, the epi-
demic curves for 1- and 10-year infectious periods are raised 
above the curves for the more acute infections). Each simula-
tion refers to a virus with a different infectious period. We 
assume that  R  0  is identical for each of these infections.  R  0  is 
roughly given by the product of mean  per capita  infection 
rate and infectious period; thus, to keep  R  0  constant:
•    A short infectious period implies a relatively high infec-

tion rate.  
•   A longer infectious period requires a lower infection rate.    

 This assumption imposes a simple evolutionary constraint 
on our set of model pathogens in Fig.  5.7 , in that fi tness 
(roughly equating to  R  0 ) is kept constant as we increase the 
infectious period. Figure  5.7  indicates, fi rst, that increasing 
the infectious period reduces, and eventually eliminates, the 
tendency for cyclical epidemics [ 48 ]; essentially, a longer 
infectious period “fi lls in the troughs” following major epi-
demics. As infectious period increases, we therefore see a 
transition from seasonally driven biennial epidemics (at the 
measles extreme of a 1-week infectious period) to low- 
amplitude annual epidemics (at 1 month). For longer infec-
tious periods (1 year), we see slowly evolving epidemics 
with little seasonal activity and a modest post-epidemic 
overshoot. Finally, for a 10-year infectious period, we see a 
smooth slow epidemic, with an essentially “logistic” rise to a 
stable endemic plateau of incidence. Though crude, this 
exercise captures the essential dynamical transmission from 
the violent epidemics of acute infections to the much 
smoother and slower epidemic invasion of HIV [ 4 ]. Note that 
the seasonal variation in infection rate is assumed similar for 
the “measles” and “HIV” cases; however, the latter com-
pletely eliminates associated seasonal fl uctuations in inci-
dence due to the smoothing effect of prolonged infectious 
carriage. 

 Figure  5.7  also illustrates a second major dynamical 
impact arising from the trade-off of increased infectious 
period against lowered infection rate. “Fast” infections are 
much more prey to local stochastic extinction in the deep 
troughs between epidemics (Sect.  2.4 ) than the much more 
endemic incidence promoted by longer infectious period. On 
the other hand, acute immunizing infections can invade pop-
ulations much more quickly than chronic infections for the 
same  R  0  (Note that very imperfect immunity (corresponding 
to ‘SIS’ dynamics) could generate ‘fast’ invasion even for 
relatively chronic infections (Figure  5.7 , inset), because of 
the increased supply of susceptible individuals (Sect.  5.2 )). 
Note that, despite these great variations in dynamics, the 
assumption of a common  R  0  means that the herd immunity 
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threshold for elimination of infection is the same across this 
range of behaviors Sect. ( 2.3 ).  

5.2        Departures from the SEIR Paradigm 

 We have seen that the SEIR framework (Fig.  5.1b ) can be a 
powerful tool for capturing the dynamics of perfectly immu-
nizing infections such as measles. With its various refi ne-
ments to incorporate structure in the host population (such as 
age and spatial distribution), it yields a rich variety of 
dynamical behavior (Fig.  5.7    ). Given the range of immuno-
logical complexities and different viral life histories, how-
ever, it is clear that SEIR dynamics are only part of the story. 
In such cases, it is often possible to adapt Fig.  5.1b  to more 
faithfully refl ect such important biological complexities.

5.2.1       Waning Immunity 
 Many viruses are capable of reinfecting a host. This may be 
due to the waning of host immunity over time, as with respi-
ratory syncytial virus (RSV) [ 49 ], or due to viral evolution 
for immune escape (e.g., with norovirus [ 50 ] and infl uenza) 
[ 51 ,  52 ]: see Sect.  6  for a more in-depth treatment of the lat-
ter. In either case, the overall dynamical effect is for recov-
ered, immune individuals to eventually reenter the susceptible 
pool, as illustrated by Fig.  5.8a . 

 Where such waning of immunity is appreciable, the 
implications for vaccination can be profound. As the suscep-
tible pool is replenished not only by births but also by previ-

ously immune individuals, the critical vaccination threshold 
(Sect.  2.3 ) is raised, making it more diffi cult to control the 
spread of infection. For this reason, vaccination against 
many imperfectly immunizing infections is aimed at direct 
protection of those receiving vaccine, rather than at raising 
indirect protection.  

5.2.2     Partial Immunity 
 So far, the models we have considered assume that immune 
individuals have solid, transmission-blocking immunity, 
even if this should wane through time. In reality, however, it 
is common for immunity to be clinically protective (i.e., 
against symptomatic disease) but only partially protective 
from infection. This applies, for example, in the case of rota-
virus, the leading cause of severe diarrhea in infants world-
wide [ 53 ,  54 ]. Figure  5.8b  illustrates a model structure 
developed to capture these dynamics [ 46 ].  

5.2.3     Host Heterogeneity in Transmission 
 Recalling the qualitative differences between the dynamics 
of acute and chronic infections (Fig.  5.7 ), some viruses show 
a “mixed” character on the host population level: while some 
individuals clear infection relatively quickly, others may 
continue to harbor the virus as “carriers,” either in a latent 
phase or in a chronic infectious state, for a longer period. An 
example is hepatitis B, in which 5–10 % of adult patients 
show chronic infection. As illustrated in Fig.  5.8c , this can be 
represented mathematically by identifying two infectious 
classes: one acute and the other chronic. 
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  Fig. 5.7    Numerical solutions of 
seasonally forced SEIR models 
(see Fig.  5.3b ), showing changes 
in the dynamics of infection 
caused by increasing the 
infectious period (see  color key ) 
while maintaining the basic 
reproduction number of infection 
at a constant level. To simulate 
crudely the initial dynamics of a 
“novel” infection, the system 
starts by introducing 6 % 
infectives into a 20 % 
susceptible population (a real 
novel epidemic might be much 
more violent if everyone is 
susceptible).  Inset : Comparing 
the “slow” dynamics generated 
by a 10-year infectious period 
with a (sketched) solution of an 
SIS model with much faster 
dynamics (Taken from Figure 
in Box 2, Grenfell and 
Harwood [ 47 ])       
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 Such factors can have implications for the dynamics 
and persistence of infections in a population [ 55 ]. In par-
ticular, where a disease shows epidemic cycles, facing the 
possibility of local extinction in the epidemic troughs, the 
presence of a small number of carrier hosts can facilitate 
viral persistence in the population, through these troughs. 
For example, in some cases infection with varicella zoster 
virus can be followed decades later by infectious shingles, 
an occurrence which could maintain the virus in small 
populations [ 56 ].  

5.2.4     Complex Viral Strain Interactions 
 Strain structure, vector dynamics, and seasonality in trans-
mission offer yet more complexities, as in the example of 
dengue [ 57 ]. Spread by  Aedes  mosquitoes, dengue has shown 
a signifi cant emergence worldwide in the last 50 years. 

 Dengue dynamics are notable for the global circulation of 
four distinct serotypes (see Fig.  5.9a ). Notably, prior immu-
nity to a given serotype can elevate the risk of severe disease 
from subsequent infection by a different serotype [ 60 – 62 ]. It 
has been proposed that this arises from antibody-dependent 
enhancement (ADE) between different serotypes [ 63 ,  64 ], 
and modeling studies suggest that ADE could play an impor-
tant role in shaping the epidemiological and strain dynamics 
of dengue, on the host population level [ 65 – 67 ]. 

 However, there are also indications of a short period of 
cross-protective immunity (i.e., against all serotypes) for 
2–9 months following infection [ 68 ], potentially mediat-
ing some degree of competition between serotypes. 
Several studies have addressed the dynamical implica-
tions of interactions between ADE and such immunity 
[ 69 ,  70 ]. Dengue dynamics are therefore complex and 
multifactorial: an understanding of these effects is impor-
tant in understanding the potential for unexpected effects 
from transmission-reducing interventions [ 71 ].

6           Dynamics and Evolution 
of Immune Escape 

 Had viruses been discovered by the time that Darwin pro-
posed “descent with modifi cation” in the mid-nineteenth cen-
tury, they may quickly have been recognized as fi ne examples 
of evolution in action. Indeed, today there is wide acknowl-
edgment of the inextricable role that evolution plays in viral 
dynamics [ 58 ] and in the control of many different viral infec-
tions. RNA viruses in particular, lacking the replication fi del-
ity of a DNA genome, are capable of considerable mutation 
rates [ 72 ]. In the presence of host immunity, natural selection 
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  Fig. 5.8    Examples for extensions of the basic SEIR model (Fig.  5.1b ). 
( a ) Waning immunity can be represented by allowing individuals to return 
from recovered ( R ) to susceptible ( S ) status at a given rate. ( b ) If acquired 
immunity affords clinical but not sterilizing  (transmission-blocking) pro-

tection, then additional SEIR stages may be incorporated to capture the 
corresponding effects on transmission dynamics. ( c ) An example of pop-
ulation heterogeneity, distinguishing “acute” cases ( I  A ) from “carriers” 
( I  C ), the latter recovering at a slower rate than the former       
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will favor those mutants most capable of evading immunity 
while still being capable of spreading between hosts. 

 As a result of these high mutation rates, population-level 
evolutionary patterns that can arise are quite diverse. 
Figure  5.9a  illustrates how some infections, such as HIV, 
show signifi cant population-level diversity [ 73 ], while oth-
ers, notably seasonal infl uenza A, exhibit a markedly differ-
ent pattern, with a “trunk-like” phylogeny on the population 
level [ 74 ]. 

 The case study of infl uenza demonstrates not only inter-
esting evolutionary patterns but also the following important 
features:
    (i)    The challenges that evolution can pose for infection 

control   
   (ii)    The complex interplay, across a range of physical 

scales, between the evolution of a pathogen and its suc-
cess in spreading in a host population   

   (iii)    The many outstanding questions that remain, in under-
standing how viruses adapt to continue reinfecting their 
hosts     

 In what follows, we explore both within-host and 
population- level aspects of infl uenza evolution, with an 
emphasis on seasonal (interpandemic) infl uenza. We then set 
out the prevailing paradigms that seek to explain how these 
patterns arise, through complex interactions between viral 
evolution and epidemiology. 

6.1      Immune Escape and Herd Immunity 

 Classic theoretical principles [ 4 ] provide a useful framework 
in which to think about viral evolution, where “evolutionary 
fi tness” is determined ultimately by the capacity for trans-
mission in a given host population. Recall from Sect.  2.3  that 
in the presence of prior immunity in the population, the 
effective reproduction number,  R , serves as a compact mea-
sure of transmission potential. Vaccination aims to lower  R  
through reducing the number susceptible in the population; 
however, evolving pathogens introduce the complexity of 
countering this effect, by evading immunity and thus acting 
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  Fig. 5.9    ( a ) A diversity of viral diversity: examples of major human 
infections showing different patterns of evolution (Taken from (Ref. 
[ 58 ]), and references therein; Adapted from Fig. 1, Grenfell et al. [ 58 ]) 

( b ) Schematic illustration of the “epochal evolution” model, which seeks 
to explain notable features in the phylogeny of human infl uenza A (panel 
 a , rightmost phylogeny) (Taken from fi gure in van Nimwegen [ 59 ])       
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to restore  R . Note the combination of immune escape and 
transmissibility encapsulated in  R . In particular, on the scale 
of the host population and with a given level of existing 
immunity, the escape mutant with the greatest evolutionary 
fi tness is that which maximizes  R  [ 5 ].  

6.2     Molecular Aspects of Viral Evolution 

 As discussed in Chap.   21    , the infl uenza surface protein hemag-
glutinin (HA) is a key immune target, with anti-HA antibodies 
capable of offering sterilizing immunity, that is, the potential to 
block host infection altogether. Indeed, raising such immunity 
is a central function of current infl uenza vaccines. However, 
HA is also the most variable viral component, continually 
under selective pressure to escape antibody binding [ 51 ]. For 
these reasons, while infl uenza evolution is by no means limited 
to HA, this viral component has attracted the most attention. 

 An important mechanism of immune escape is through 
conformational changes of HA epitopes to abrogate antibody 
binding, without compromising the ability of the virus to 
attach to host cells [ 75 ]. More recently, however, results 
from mouse experiments suggest that escape mutants can 
also acquire increased viral avidity for host cells [ 76 ]. 
Another potential immune escape strategy [ 77 ] is glycosyl-
ation, or the attachment of oligosaccharides to the HA mol-
ecule, to occlude epitopes from antibody binding. Such 
strategies are not without potential functional costs for repli-
cation [ 78 ], and yet there are indications that human infl u-
enza A/H3N2 has been accumulating glycosylation since its 
introduction into the human population in 1968 [ 79 ,  80 ].  

6.3     Population-Level Manifestations 
of HA Evolution 

 On a genetic level, the evolutionary pattern for infl uenza HA 
(Fig.  5.9a ), showing serial replacement of strains through 
time, is often characterized as “drift.” The limited standing 
diversity, or “trunk-like” phylogeny, is especially paradoxi-
cal in light of the relatively high mutation rate of infl uenza A, 
where instead several lineages might have been expected to 
emerge and coexist in the population. 

 Moreover, how do such  genetic  patterns translate to  antigenic  
properties, that is, viral interaction with anti-HA antibodies? In 
2004, new techniques allowed a characterization of the antigenic 
evolution of the infl uenza subtype H3N2 [ 74 ] during the years 
since its introduction into humans in 1968. The resulting pattern 
is characterized by “punctuations” in antigenic evolution, occur-
ring roughly every 2–8 years, in contrast with the more gradual 
pattern of genetic change shown in Fig.  5.9a . These punctuations 
have great importance for public health, often necessitating 
major reformulation of current, HA-based vaccines [ 81 ]. 

 Two prevailing paradigms explaining these important 
phenomena, on both the genetic and antigenic levels, are the 
 epochal evolution  model [ 82 ] and that of  strain-transcending 
immunity  [ 83 ] .  Both may be considered “phylodynamic” 
models [ 58 ], in the sense of aiming to capture the complex 
interactions between viral immune escape, viral population 
genetics, and epidemiology. 

 The picture of “strain-transcending immunity” [ 83 ] 
invokes a temporary mode of immunity, which immediately 
follows recovery from infection and protects the individual 
against infection by all infl uenza strains. Such broad immu-
nity is postulated to arise, for example, either from T cells or 
from innate immunity [ 83 ]. Over the course of months, this 
broad immunity gives way to more long-lived, more nar-
rowly acting immunity that is specifi c to the immunizing 
strain. On the population level, a key dynamical effect of 
such immunity structure is to impose population-level con-
straints on viral diversity, suffi ciently strong to maintain a 
single dominant lineage through time. 

 The epochal evolution model [ 82 ] provides an alternative 
view. It builds on the proposal by Kimura in 1968 [ 84 ] that many 
amino acid substitutions in nature do not alter evolutionary fi t-
ness and are thus  phenotypically neutral . If infl uenza HA evolu-
tion can be thought of as tracing a series of paths through a space 
of genotypes, the epochal evolution model proposes that, in phe-
notypic terms, such a space has a modular structure (Fig.  5.9b ) in 
which each “module” is a group of genotypes sharing the same 
antigenic phenotype and a transition between modules corre-
sponds to the observed antigenic “jumps.” In particular, HA evo-
lution diffuses through the local genotype space, accumulating 
neutral substitutions and thus genotypic diversity, over several 
years. Ultimately, a single strain accumulates the substitutions 
required to transition to a new antigenic phenotype. At this point, 
the emergent strain – owing to its antigenic novelty – causes a 
peak in infection and undergoes a selective sweep in the host 
population, to the exclusion of other strains. Such an event thus 
acts to periodically control antigenic diversity, maintaining the 
“trunk-like” shape of the infl uenza phylogeny. 

 Alongside these two prevailing paradigms of infl uenza evo-
lution, yet another model [ 85 ] proposes that observed strains 
are drawn from a limited set of antigenic types, with their selec-
tion dependent on niches in host population immunity. While 
each of these models succeeds in capturing important features 
of infl uenza dynamics, they also highlight important gaps in 
our understanding of viral evolution and how to manage it.   

7     Coevolution and the Evolution 
of Virulence 

 The degree to which viruses harm hosts varies considerably. 
Both within and between virus species, some variants may 
barely affect hosts at all, while others have signifi cant health 
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impacts, up to and including host mortality [ 86 ]. An evolu-
tionary perspective indicates that variation in virulence 
across clones should be shaped by the costs and benefi ts of 
virulence for parasite transmission [ 87 ]. The spread and per-
sistence of virulence mutations may be favored if they covary 
with transmission. However, since host mortality can inter-
rupt transmission, a range of values of virulence may lead to 
equivalent levels of overall fi tness for the parasite [ 88 ]. 
While it is broadly agreed that the theoretical framework and 
empirical evidence on the existence of virulence- transmission 
trade-offs need to be further developed and extended [ 87 ], 
there are some systems where the general predictions appear 
to be borne out (e.g., [ 89 ,  90 ]). Perhaps most famously, the 
introduction of the myxoma virus into Australia was at fi rst 
devastating to rabbit populations, causing near 100 % mor-
tality. However, over subsequent years, the virulence of the 
infection decreased. Various lines of evidence suggest that 
this occurred in response to selection for increased transmis-
sion via decreased virulence – swift rabbit mortality was not 
an effi cient mode of transmission for the virus.  

8      Within-Host Dynamics 

 While we have so far largely discussed virus dynamics on the 
level of the host population, there are equally important pro-
cesses to be considered on the within-host level. The “kinet-
ics” of viral infection arise from a complex array of factors 
including viral replication and variability, the dynamics of the 
immune response, and pathogenicity to the host [ 91 ]. Over 
the past two decades, mathematical models have played an 
important role in studying these dynamics, often motivated 
by the need to understand the actual and potential impact of 
interventions such as treatment or immunization [ 91 – 93 ]. 

 A major example is HIV infection (see Chap.   43    ); its clin-
ical course is characterized by an initial acute phase of viral 
replication, lasting on the order of weeks, followed by an 
asymptomatic latent phase that can last decades before ulti-
mately progressing to AIDS [ 94 ]. Major advances in the 
1990s showed that despite the long clinical timescale 
involved, in vivo HIV replication is in fact a rapid process, 
with the viral life cycle being on the order of days [ 95 ,  96 ]. 
Subsequent studies modeling the dynamics of drug resis-
tance underlined the need for early and aggressive drug ther-
apy [ 97 ]. Conversely, more recent work capturing the 
dynamics of the immune response has illustrated how immu-
nity raised by CD8+ T-cell vaccination elicits a response that 
is too weak and too late to achieve sterilizing immunity [ 98 ]. 

 Hepatitis C virus (HCV) represents another major public 
health challenge and, like HIV, is a rapidly mutating virus 
capable of continually evading immunity to establish chronic 
infection [ 99 ]. HCV infection is currently treated with 
 broad- spectrum combination antiviral therapy including 

interferon- alpha, ribavirin, and protease inhibitors, with 
upwards of 50 % of treated patients being responders; how-
ever, there is a need for a more rationally optimized approach. 
Models capturing viral dynamics in treated and untreated 
patients have contributed to an understanding of the action of 
these therapies [ 100 – 102 ], estimates of parameters such as 
rates of viral growth and of viral RNA clearance [ 102 ,  103 ], 
and correlates of long-term response to therapy [ 104 ]. 

 Modeling approaches have been used to study the kinetics 
of acute infections too, notably in the context of infl uenza 
infection [ 105 ]. A key interest, for example, has been the 
relative importance of target cell depletion, innate immunity, 
and adaptive immunity in shaping the dynamics of viral 
infection [ 106 – 108 ]. 

 Overall, while there remain signifi cant gaps in our under-
standing of these and other major viral infections [ 103 ,  109 ], 
this work demonstrates the clinically relevant insights that 
can be derived from a careful study of within-host dynamics 
[ 91 ,  110 ].  

9     Summary and Future Directions 

 This chapter has broadly outlined the multitude of factors shap-
ing viral dynamics, as well as the role of mathematical 
approaches in elucidating these factors and their interactions. 
This growing body of work sets the stage for future directions. 

 The link between epidemiological modeling and policy is 
long-standing. Bernoulli’s work provides perhaps the earliest 
case study [ 1 ]; recent high-profi le examples include the use 
of models to guide responses to foot and mouth disease in the 
UK [ 111 ], smallpox [ 112 ], and infl uenza [ 113 ]. The key cri-
terion of the effective deployment of models for policy is that 
they are embedded in testable hypotheses, embodying the 
best possible science. Continuing progress in this area thus 
calls for better understanding of the basic principles. 

 Especially in the context of viral evolution, whether in 
relation to immune escape or virulence, a complete biologi-
cal framework calls for a linkage of processes across dispa-
rate scales, from the macroscopic structure of the host 
population to the molecular basis of viral replication and 
transmission. A key task at the heart of this challenge is argu-
ably to quantify transmission potential in terms of immune 
escape, that is, to measure empirically how changes at the 
molecular level impact  R  (see Sect.  6.1 ). Indeed, recent 
equine infl uenza experiments provide some important steps 
in this direction [ 114 ]. 

 New and emerging ways of tracking disease may also 
help to shed new light on the global spread of viruses and 
on how they may be better controlled. To name three exam-
ples, while disease surveillance continues to operate largely 
through public health channels, there is increasing interest 
in the use of alternative sources, including automated 
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 tracking of Internet and social media trends [ 115 ,  116 ]. 
Second, genetic sequencing and analysis complements 
existing epidemiological approaches. The advent of high-
throughput whole-genome sequencing is expected to shed 
new light on within-host viral diversity [ 117 ], an important 
aspect in our understanding of viral evolution. Third, any 
viral infection leaves its mark on the host immune system. 
Serological studies thus offer another valuable source of 
information in monitoring diseases [ 32 ] and already play 
an important role in many national surveillance programs 
(see Chap.   4    ). While in some cases there remain challenges 
in the clinical interpretation of quantitative serological data 
(e.g., Ref. [ 118 ]), its future use in estimating, for example, 
the prevalence of subclinical, but infectious, cases could be 
of signifi cant value to public health efforts [ 119 – 121 ]. 

 Finally, it is important to consider the role of the hosts 
themselves. With the host population providing the medium 
through which viruses spread, important factors in viral 
dynamics include heterogeneities among individuals (e.g., 
host genetic variation [ 122 ] and “superspreaders” of infec-
tion [ 123 ]) and patterns of human connectivity and mobility. 
Various approaches are beginning to unravel some of these 
patterns, both in the developed [ 34 ,  124 ] and in the develop-
ing world [ 125 ]. Future developments in such techniques 
will provide valuable new data for understanding the human 
role in viral dynamics.     
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