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Abstract: Post-quantum public cryptosystems introduced so far do not define a scalable public
key infrastructure for the quantum era. We demonstrate here a public certification system based on
Lizama’s non-invertible key exchange protocol which can be used to implement a secure, scalable,
interoperable and efficient public key infrastructure (PKI). We show functionality of certificates across
different certification domains. Finally, we discuss a method that enables non-invertible certificates
to exhibit perfect forward secrecy (PFS).
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1. Introduction

Since its origin in the late seventies, public key cryptography (PKC) has been exploited
to support user authentication and digital signatures over the internet. In PKC, each
user has two keys, the public Pu and the private key Pr, which are mutually inverse in
some mathematical sense. Not taking into account formal details we would write that
Pr = Pu

−1 thus, to achieve confidentiality, a message m is encrypted using Bob’s public key;
symbolically we write [m]Pu , then it is decrypted with the private key so m = [m]PuPu

−1 . In
contrast, to guarantee message authentication, m is encrypted with Alice’s private key and
decrypted with her public key. Symbolically we can write it as m = [m]Pr Pr

−1 .
Unfortunately, Shor’s algorithm [1] solves over a hypothetical quantum computer,

the mathematical problems on which PKC is supported: integer factorization and discrete
logarithm. In fact, most of the public key cryptosystems used today will become obsolete
in the foreseeable future because they would be broken by quantum computers [2]. For
this reason, the National Institute of Standards and Technology (NIST) initiated in 2015 a
process to evaluate cryptographic algorithms to choose the appropriate methods for the
quantum era. To this date, the selection process is in the third evaluation round [3,4].

The present work enhances a newly claimed post-quantum method called non-
invertible key exchange method (ni-KEP) which was conceived to establish a secret key
between two remote parties. Lizama’s ni-KEP is mathematically supported by Euler’s
theorem as RSA, it uses exponentiation to exchange a secret key as Diffie–Hellman and
it encrypts/decrypts through invertible multiplication as ElGamal cipher. Lizama’s non-
invertible key exchange protocol was introduced in [5]. Initially, the protocol was conceived
to transfer a secret value from Alice to Bob. We describe briefly the three development
stages of the algorithm:

1. Multiplication-based protocol. In a ring with unity over Zn where n = p · q and p,
q are prime numbers. An integer may or may not have a multiplicative inverse.
Multiplication between invertible and a non-invertible integer yields a non-invertible
integer according to the basic properties of modular arithmetic. Alice multiplies a
random non-invertible va by a random invertible ka, then she sends the result to
Bob who multiplies it by his random invertible kb returning the resulting integer
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to Alice who removes ka multiplying by k−1
a and sending the result to Bob. Finally,

Bob removes his invertible integer applying k−1
b . At this point Bob has obtained

va. Although a non-invertible integer does not have a multiplicative inverse, hence
factorization of the public integers are prohibited, a division attack is discussed in [5].

2. Exponent-based protocol. The integer that results after exponentiation say pxa gives
a non-invertible integer. Using this math property, the protocol defines that Alice
sends pxa ka mod n to Bob who returns pxa kakb mod n to her. Then she multiplies it
by k−1

a and sends back pxa kb mod n. Bob applies k−1
b thus obtaining the shared secret

pxa mod n. Unfortunately, this version of the protocol is also vulnerable to a division
attack [5].

3. Non-invertible KEP. This protocol defines a public key exchange algorithm. To surpass
the division attack, ni-KEP introduces Euler’s identity to derive the keys which are
defined according to the relations {pxi ki mod n, qyi ki mod n}, i = a, b for Alice’s and
Bob’s public keys respectively and n is obtained as n = p · q · r where p and q are
small prime public numbers and r is a big prime public integer. On the other hand,
{ki, xi} constitute the private key, while the number yi is derived from the equation
φ(n) = xi + yi + 1 where φ(n) is the Euler’s totient equation. A detailed discussion of
this protocol will be presented in a later section.

The public keys of the ni-KEP (and also the cipher texts) exhibit perfect indistinguisha-
bility [5]. It means, in the first case, that every ki in the ring satisfies the public key (exists
a corresponding xi). In the second case, it implies that each ciphertext ci can be derived
by any ki in the ring (exists a corresponding mi). In view of the above, we claim that the
unique opportunity for the eavesdropper, in order to get the private key (or the plaintext),
is implementing an exhaustive search among the elements in the ring which is equivalent
to searching an unsorted database problem.

Consider symmetric cryptography, which is assumed to be post-quantum because a
quantum computer running Grover’s algorithm requires computational cost proportional
to the square root of the key size which takes O(

√
N) time. Despite this, an adjustment in

the key size prevents the crypto system of being vulnerable to Grover’s algorithm which is
the fastest possible quantum algorithm for searching an unsorted database. By contrast, a
classical computer requires a linear search, which is O(N) in time to find the same entry [6].

For this reason, we claim that our algorithm is post quantum. On the other hand, we
do not devise how Shor’s algorithm would be used to break this protocol. As a consequence,
Lizama’s key sizes must be carefully chosen to resist a hypothetical quantum computer
running Grover’s algorithm.

Our contribution. In this work, we enhance Lizama’s non-invertible key exchange
method [5] in order to support Certification Authorities (CA) to allow users to exchange
digital certificates which are bounded to their public keys. We claim that our cryptosys-
tem exhibits competitive key size and is able to handle certificated keys, interdomain
certification and perfect forward secrecy.

Organization of the paper. First, in Section 2, we discuss the main quantum crypto-
graphic approaches: quantum and post-quantum. In Section 3, we summarize principles
of public key cryptography considering digital certificates and the Certification Authority
role. Then we describe in Section 4 Lizama’s non-invertible protocol to put forward and in
Section 5 how Lizama’s KEP can be used to support CAs in single and multiple certification
domains. Finally, Section 6 explains a method to derive a new session key from a past
session key, thus achieving Perfect Forward Secrecy (PFS). Appendix A contains a brief
description about RSA and DH cryptosystems along two possible attacks: prefix and
multiplication-based attacks.

2. Cryptography in the Quantum Era

Cryptography in the quantum era can be classified into two main approaches: quan-
tum and post-quantum cryptography. A formal discussion of such approaches is beyond
the scope of the present article. Let us simply mention that quantum cryptography relies
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on quantum physics principles that allow to establish a secret key between two authen-
ticated remote parties [7]. The eavesdropper cannot control quantum communication
because it produces a detectable noise. Works have been done recently to resist quantum
attacks [8–10].

On the other side, post-quantum cryptography encompasses cryptographic mathe-
matical methods conceived to resist computational capacity of quantum computers [4,11].
Several methods have been formulated based on computational problems whose complex-
ity surpass the theoretical capacities of quantum computers. Not wishing to fully cover
all cases, most promissory techniques include lattices, supersingular isogeny, multivariate
equations, code and hash-based cryptography.

Lattice-based methods have demonstrated good performance, by generating short
ciphertext, short keys and short signatures [12,13]. Similar to Diffie–Hellman key exchange
is the Supersingular Isogeny Diffie–Hellman (SIDH) method which is a quantum resis-
tant key exchange algorithm [14,15]. Supersingular Elliptic Curve Isogeny Cryptography
(SIDH) produces very small key sizes but it shows slower performance. The representa-
tive algorithm is the Supersingular Isogeny Key Encapsulation (SIKE). The basic objects
of multivariate cryptography are systems of nonlinear (usually quadratic) polynomial
equations in several variables over a finite field. When performing a digital signature, the
set of equations constitute the public key. The receiver computes the hash to verify that
the output of the equations corresponds to the hash of the message that is signed [16]. A
code-based cryptosystem is essentially a form of error correction code. The private key is a
code C, which allows to correct t errors. The sender will encode the message with the public
key and include t errors during encoding, then the ciphertext is obtained by adding an error
vector to each codeword. With code C, the receiver will be able to accurately correct the
errors when decoding the message. Hash-based cryptography was introduced by Lamport,
later it was enhanced using Merkle trees [17] and Lizama’s hash-based methods [18,19].

3. Public Key Cryptography
3.1. Digital Certificates

A cryptographic certificate is basically, a verified public key signed by a third trusted
party called Certification Authority (CA). By using this method, each user can verify the
origin of a request before accepting it. The importance of a certified key can be illustrated
showing a man in the middle (MITM) attack over the Diffie–Hellman (DH) protocol, the
first public key exchange algorithm [20]. In Figure 1, we represent the steps required
for this key exchange algorithm where the integer prime p and g are publicly known. A
description in depth can be found in Appendix A.

Alice Bob

gxa mod p

Kba = (gxa)xb mod p

gxb mod p

Kab = (gxb)xa mod p

Figure 1. Basic Diffie–Hellman protocol. All operations are performed module p.

Since there is no method to verify the origin of the integer numbers exchanged across
the public channel, an eavesdropper can implement a man in the middle (MITM) attack
over the Diffie–Hellman method as it is observed in Figure 2.
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A E B

gxa mod p

Kae = (gxa)xe mod p

gxe mod p

Kbe = (gxe)xb mod p

gxb mod p

Kbe = (gxb)xe mod p

gxe mod p

Kae = (gxe)xa mod p

Figure 2. A man in the middle (MITM) attack over Diffie–Hellman (DH) protocol. The eavesdropper obtains a key with
Alice Kae and other with Bob Kbe. Legitimate users cannot verify the origin of exchanged numbers.

To avoid an MITM attack over DH protocol, the RSA algorithm can be added to the
exchange protocol. RSA is described in Appendix A. Another common method to protect
DH key exchange algorithm is elliptic-curve cryptography [21,22], however Lizama’s
protocol is closely related to RSA, thus we describe here RSA and DH.

Figure 3 shows that Alice encrypts the DF constructor gxa mod p with Bob’s public key
written as (eb, nb), so that only Bob can decrypt it using his private key db. Alice verifies
the received message because it is attached a hash of the secret key computed by Bob as
represented in Figure 3.

Alice Bob

(gxa mod p)eb mod nb

((gxa mod p)eb mod nb)
e−1

b mod nb

K = (gxa)xb mod p, HK

gxb mod p, HK

K = (gxb)xa mod p

Figure 3. Diffie–Hellman algorithm with RSA. Bob’s public key is written as PUB = (eb, nb), Bob’s private key is eb
−1 that

indicates the inverse of eb in Zφ(n). HK represents the hash value of K which is used by Alice to verify the origin of the
received number.

In order for Alice to verify Bob’s public key, provided it does not come from an
illegitimate user, Bob must register first his public key with the Certification Authority
abbreviated as CA (a third trusted party). Generally speaking, Bob obtains a certificate of
his public key CB after CA encrypts (signing) Bob’s public key with CA’s private key PRCA .
In the next relations, encryption (or decryption) process is denoted as square brackets while
the encryption (or decryption) key is outside the brackets:

CB = [PUB ]PRCA

Every user can obtain and verify Bob’s public key decrypting CB with CA’s public
key PRCA :

PUB = [CB]PUCA
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3.2. Certification Authority (CA)

As mentioned earlier, a Certification Authority (CA) is a trusted third party that signs
a user public key using CA’s private key therefore binding the subject’s identity (and
associated information including the name of the owner) to the user’s public key inside
a cryptographic certificate. Cryptographic certificates can be exploited to achieve digital
signatures in a wide broad of internet transactions and PKI: certificates (X.509), secure
channels (TLS) and email (S/MIME).

In view of the imminent arrival of quantum computers, it is unpostponable to develop
strategies to adapt the public key infrastructure (PKI) for transition to the quantum era [3,4].
Up to now, few works have been published that adapt existing certificates to quantum
certificates or hybrid certificates, which include two public keys for the subject, one classical
and one post-quantum and two CA signatures [23,24]. Other works have evaluated existing
mechanisms to deal with large records like record fragmentation, segmentation, caching
and compression [25]. One the main challenges reported is the difficulty to manage larger
certificates by some cryptographic software libraries.

ITU-T Recommendation X.509 defines the format of public key certificates as well
as the provision of authentication services under a centralized control scheme that is
represented by a directory [26,27]. X.509 assumes a hierarchical system of Certificate
Authorities (CAs) for issuing certificates. This contrasts with web of trust models, like PGP,
where users sign others’ key certificates to establish the authenticity of the binding between
a public key and its owner [28].

A PKI is arranged hierarchically, so that there is always a direct path (a certificate
chain) from the root CA to every end-entity. Therefore, with many users, it may be more
practical to have a series of CAs, each of which securely provides its public key to a fraction
of the users.

If Alice has a certificate from CA1 and Bob owns a certificate from CA2 but Alice does
not securely know the public key of CA2, then Bob’s public certificate emitted by CA2,
cannot be used by Alice. However, if the two CAs have securely exchanged their own
public keys, the following procedure will enable Alice to obtain Bob’s public key:

1. Alice obtains the certificate of CA2 signed by CA1. Since Alice has the public key
of CA1, she can get the public key of CA2 from its certificate and verify it using the
signature of CA1 on the certificate.

2. From the directory, Alice obtains the certificate of Bob signed by CA2. Since Alice now
has the public key of CA2, she can verify the signature, therefore getting Bob’s public
key.

4. Lizama’s Key Exchange Protocol

Lizama’s key exchange protocol was introduced in [5], there it can be found all details
about the method and its security. The protocol is illustrated in Figure 4. The public key
of user i (a for Alice, b for Bob) has two components (Pi, Qi) where Pi = p2xi ki mod n and
Qi = qyi ki mod n. The value xi is chosen randomly while yi = φ(n)− xi + 1. The module
n is the product of tree public integer primes, so that n = p · q · r where p and q are small
integer primes and r is a big integer prime. To achieve indistinguishability p and q are
suggested to be 2, since 2 is a primitive root module r (see [5]). The exponent is chosen to be
2xi instead of xi to avoid a multiplication attack (see Appendix A). The xi value constitutes
along ki the private key of user i where ki is an invertible integer in the ring. Users share
their public keys (Pa, Qa) and (Pb, Qb) as well as the integer module n. The steps of the
protocols are summarized as follows:

1. Once public keys have been exchanged, Alice and Bob perform two operations over
the numbers received: exponentiation and multiplication as indicated in Table 1.



Entropy 2021, 23, 226 6 of 13

Table 1. These operations (exponentiation and multiplication) are performed at each side after public
keys of users are exchanged.

User Operation Result

Alice
(

p2xb · kb mod n
)xa · (qyb · kb mod n)ya p2xb xa qybya · kb mod n

Bob
(

p2xa · ka mod n
)xb · (qya · ka mod n)yb p2xa xb qyayb · ka mod n

2. To derive the results in the right column of Table 1, Euler’s theorem is applied in Zn.
The theorem is written in Equation (1) where r is an integer safe prime. As a result
that n = pqr, we have that φ(n) = (p− 1)(q− 1)(r− 1). Here, k and n are relative
prime to each other, so k is an invertible integer in Zn. The exponent xi constitutes
the private key, is chosen randomly, but xi and yi sum up φ(n) + 1, thus according to
Equation (1) we have kφ(n)+1 = kφ(n) · k1 = k because k is an invertible integer in Zn.

kφ(n) ≡ 1 mod n (1)

3. Users exchange the resulting value p2xaxb qyayb ki mod n, which is multiplied by the
corresponding inverse ki

−1 at each side to derive the secret shared key p2xaxb qyayb

mod n as depicted in Figure 4.

Alice Bob

(
p2xb kb

)xa · (qyb kb)
ya

p2xaxb qyayb kb
φ(n)+1

p2xaxb qyayb kb p2xaxb qyayb kb
p2xaxb qyayb kbkb

−1

ks = p2xaxb qyayb(
p2xa ka

)xb · (qya ka)
yb

p2xaxb qyayb ka
φ(n)+1

p2xaxb qyayb ka
p2xaxb qyayb kap2xaxb qyayb kaka

−1

ks = p2xaxb qyayb

Figure 4. Lizama’s non-invertible key exchange method (KEP) [5]. All operations are modulo n
where n = pqr. According to Euler’s theorem kφ(n)+1 mod n = k because k is an invertible integer
in Zn.

As an example of the required bits for the keys, consider that case where p = q = 2
and |r| = 1024 (the symbol | | denotes the number of bits) the length of the private key
yields 1536 bits (|x| = 512 and |k| = 1024) while the public key (P, Q) contains 2056 bits [5].
In this case, the security level of the secret key is 1024. The process to determine the size of
the key is the following: P = p2x · k mod n thus P = p2x mod n · k mod n, which in turn
implies that:

— |k| = |n|
— if p = 2 and n = 4r, we have 22x mod 4r, then 4x mod 4r yields |4| · |x| = |4|+ |r| and

|x| ∼ |r|2 .
— since the private key is conformed by x and k, its size is computed as |n| + |x| ∼

|r|+ |x| which gives 1536.
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4.1. Cipher-System

In Figure 4, the secret shared key ks is a non-invertible number in Zn, thus a convenient
method to achieve a cipher-system and secret communication is to divide ks = p2xaxb qyayb

mod n by pq, so if we choose p = q = 2, then kr = p2xaxb−22(2r−1−xa)(2r−1−xb) mod r.
Now, Alice and Bob can compute its multiplicative inverse kr

−1. Table 2 shows that the
enciphered message is obtained as c = m · kr mod r and the original plaintext is recovered
through the relation m = c · kr

−1 mod r because m = m · krkr
−1 mod r. To send a message

encoded as an integer in Zr, the number m must be less than r.

Table 2. Lizama’s key exchange algorithm can be used to encrypt/decrypt messages provided ks is
divided by pq.

Mode Mathematical Relation

Encryption c = m · kr mod r
Decryption m = c · kr

−1 mod r

4.2. Mathematical Representation

In the rest of the paper we will use the following mathematical notation: (Pi, Qi)
which constitutes the public key of user i. As stated before, Pi = p2xi ki and Qi = qyi ki
where (xi, ki) constitutes the private key of user i and xi + yi = φ(n) + 1. As stated before,
user j raises the public key of i to its private key. Then, j returns to i the integer number
[ki,j] ki where [ki,j] = p2xixj qyiyj and ki is a component of the private key of user i, then they
apply the inverse of ki in order to derive the shared secret key ki,j. The same procedure
is applied in the opposite direction so user i sends to j the integer [ki,j] k j to get the secret
number ki,j (see Table 3).

Table 3. Mathematical representation. All operations are performed module n.

Short Notation Mathematical Operation

(Pi, Qi) Pi = p2xi ki, Qi = qyi ki
Pi

xj ·Qi
yj

(
p2xi ki

)xj · (qyi ki)
yj

[ki,j] ki p2xi xj qyiyj ki

5. Key Certification with Lizama’s ni-KEP

In this section, we explain the public key certification method so that a Certification
Authority (CA) can certify the user’s public keys using Lizama’s ni-KEP. The protocol steps
are as follows:

1. To certify their public key with the Certification Authority CA, user i sends to CA
their public key (Pi, Qi).

2. If CA approves the request of i, they generate and publish the certified key [ki,ac] ki
which has been derived according to Table 3.

3. The CA’s public database of certified keys can be seen in Table 4 which contains the
certified keys of Alice and Bob.

Table 4. CA’s public database. The Certification Authority CA publishes their public key (Pca, Qca).

User Public Key Certified Key

CA (Pca, Qca) -
Alice (Pa, Qa) [ka,ca] ka
Bob (Pb, Qb) [kb,ca] kb

Now, Alice and Bob can establish a secret key with certified keys, but first Alice must
download Bob’s certified key from CA’s database and vice versa. The steps to derive the
key are depicted in Figure 5 and described as follows:
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1. Using CA’s public key (Pca, Qca), Alice computes [ka,ca] kca. In addition, she computes
[ka,b] kb using Bob’s public key (Pb, Qb).

3. Alice multiplies them by Bob’s certified key [kb,ca]kb and sends the resulting integer
number to Bob. The same procedure is applied by him.

4. Bob multiplies the received integer by kb
−1 twice, thus he obtains the secret shared

key Kab = [ka,b][kb,ca][ka,ca]kca (see Figure 5).
5. Applying this procedure, Bob derives the same secret number Kab.

It must be highlighted that in order to establish the secret key the certified key of the
intended user must be applied but also the public key of the Certification Authority CA.
Moreover, each user must apply (twice) their private key to get the shared secret key. In
addition, to avoid a prefix attack the relation Kab > r must be satisfied (see Appendix A).

Alice Bob

[ka,b] kb [ka,ca] kca [kb,ca] kb
Kab = [ka,b] [ka,ca] [kb,ca] kca

[ka,b] ka [kb,ca] kca [ka,ca] ka
Kab = [ka,b] [kb,ca] [ka,ca] kca

Figure 5. Non-invertible KEP with Certification Authority (CA). All operations are performed module n.

5.1. Indistinguishability

An important security property of the ni-KEP is the indistinguishability of ki in the
public key integers. It implies that each invertible ki in Zn satisfies the public key along the
appropriate xi value. The same property can be deduced for the cipher text, thus every ki
in the ring can be used to produce a given cipher text with a specific mi.

Indistinguishability can be extended to the certified key exchange method. Let us
rewrite the exchanged messages depicted in Figure 5 as Mb · kb mod m from Alice to Bob so
that Mb = [ka,b]kb[ka,ca]kca[kb,ca]. Similarly, in the reverse direction we have Ma · ka mod n
which implies that Ma = [ka,b]ka[kb,ca]kca[ka,ca]. Applying division to Ma (or Mb) by pq
we obtain:

(pq)−1Mi · ki mod r

From here, we know that Mi mod r and ki mod r are integers in Zr. Moreover, the
multiplication Mi · ki mod r produces a permutation of the integers in Zr because r is
an integer prime, thus the resulting integer is in Zr. As it was shown in [5], ki remains
indistinguishable inside encrypted messages; therefore, the unique opportunity for the
eavesdropper is to find the secret key ki by exhaustive search.

5.2. Multiple CAs

Suppose Alice has been registered with CA1 while Bob has a certified key from CA2.
In addition, Alice receives from Bob its certified key and vice versa but Alice does not have
access to CA2’s database neither Bob to CA1’s database. As indicated in Table 5, CA1’s
database is accessible to Alice and CA2’s database is reachable by Bob. However, as can be
seen there, CA1’s database contains the certified key of CA2 and CA2’s database contains
the certificate of CA1. Then, they follow the steps depicted in Figure 6 and detailed below:

1. Using CA1’s public key (Pca1 , Qca1), Alice computes [ka,ac1 ] kac1 , she also computes
[ka,b] kb with Bob’s public key (Pb, Qb).

3. Alice multiplies them by Bob’s certificate [kb,ca2 ]kb and CA2’s certificate [kca1,ca2 ] kca2

and sends the resulting integer number to Bob. The same procedure is applied by Bob.
4. Alice multiplies the received integer by ka

−1 twice, thus she obtains the secret shared
key Kab = [ka,b][ka,ca1 ]kca1 [kb,ca2 ]kca2 [kca1,ca2 ] (see Figure 6).
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5. Applying the same procedure, Bob derives the secret shared number Kab.

Table 5. Public databases of CA1 and CA2 which would be located distantly, so database of CA1 is
accessible to Alice and CA2’s database is close to Bob.

CA User Public Key Certified Key

CA1

CA1 (Pca1 , Qca1 ) -
CA2 (Pca2 , Qca2 ) [kca1,ca2 ] kca2

Alice (Pa, Qa) [ka,ca1 ] ka

CA2

CA2 (Pca2 , Qca2 ) -
CA1 (Pca1 , Qca1 ) [kca1,ca2 ] kca1

Bob (Pb, Qb) [kb,ca2 ] kb

Alice Bob

[ka,b]kb[ka,ca1 ]kca1 [kb,ca2 ]kb[kca1,ca2 ]kca2
Kab = [ka,b][ka,ca1 ]kca1 ·

[ka,b]ka[kb,ca2 ]kca2 [ka,ca1 ]ka[kca1,ca2 ]kca1
[kb,ca2 ][kca1,ca2 ]kca2

Kab = [ka,b][kb,ca2 ]kca2 ·
[ka,ca1 ][kca1,ca2 ]kca1

Figure 6. Non-invertible KEP with two CAs. Operations are performed module n.

6. Perfect Forward Secrecy (PFS)

Suppose Alice and Bob require to establish a new confidential communication. How-
ever, they do not want to use the same secret key of the last session. Perfect forward secrecy
(PFS) is a feature of key agreement protocols that guarantee that, if the currently key was
compromised, it does not compromise the security of previously used keys. Therefore,
the security of encrypted messages using old keys persists. When a system has a perfect
forward secret, the system is said to be forward secure.

In the next procedure, we demonstrate that Lizama’s non-invertible KEP is enhanced
to exhibit PFS (see Table 6 and Figure 7).

1. Alice and Bob share a certified key Ki from a previous exchange.
2. Using CA’s public key (Pca, Qca), Alice computes [ka,ca] kca. In addition, according to

Table 6, Alice computes [ka,b]
Ki kb

Ki using Bob’s public key (Pb, Qb).
4. Alice multiplies them by Bob’s certificate [kb,ca] kb and sends the resulting number to

Bob. The same procedure is applied by Bob.
5. Bob multiplies the received integer by kb

−Ki−1, thus he obtains the secret shared key
Ki+1 = [ka,b]

Ki [ka,ca][kb,ca]kca (see Figure 7).
6. Conversely, Alice multiplies the received integer by ka

−Ki−1, thus she gets the secret
shared key Ki+1 = [ka,b]

Ki [kb,ca][ka,ca]kca.

Therefore, the eavesdropper cannot derive Ki from Ki+1 and the procedure can be
repeated as many times as required to derive Km+1 from Km.
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Table 6. Mathematical operations to achieve perfect secrecy (PFS).

Short Notation Mathematical Operation

(Pi, Qi) Pi = p2xi ki, Qi = qyi ki
Pi

xj ·Qi
yj (p2xi ki)

xj · (qyi ki)
yj

[ki,j] ki p2xi xj qyiyj ki
Pi

ks xj ·Qi
ksyj (p2xi ki)

ks xj · (qyi ki)
ksyj

[ki,j]
ks ki

ks p2ks xi xj qksyiyj ki
ks

Alice Bob

[ka,b]
Ki kb

Ki [ka,ca] kca [kb,ca] kb
Ki+1 = [ka,b]

Ki [ka,ca] [kb,ca] kca

[ka,b]
Ki ka

Ki [kb,ca] kca [ka,ca] ka
Ki+1 = [ka,b]

Ki [kb,ca] [ka,ca] kca

Figure 7. Alice and Bob require to establish a new secret key Ki+1. However, they do not want to use the last secret key Ki.
This procedure is repeated to derive Ki+2 from Ki+1.

7. Discussion

After the third evaluation round, NIST has selected seven algorithms (and eight alter-
native candidates), four of them are public key encryption (and key-establishment) systems
and three correspond to digital signature algorithms. In the first category, CRYSTALS-
KYBER, NTRU-HPS, SABER are lattice-based while Classic McEliece is a code-based public
key encryption system. Regarding digital signature schemes, CRYSTALS-DILITHIUM and
FALCON are lattice-based and Rainbow is a multivariate-based algorithm. Since we are
only concerned with the first category, we found that public keys size in Lizama’s protocol
has the smallest size: 0.256 kilobytes (for |n| = 1024) while the corresponding certified key
size achieves 0.384 kilobytes (see Table 7). Furthermore, to reduce the required storage
space a good strategy would be saving only one component of the public key (Pi, Qi), e.g.,
Pi while the second one Qi will be transferred directly from Alice to Bob. In that case the
certified public key size decreases from 0.384 to 0.256 KB.

Table 7. A comparison of Lizama’s protocol against National Institute of Standards and Technology
(NIST) Round 3 finalists is shown in the categories of public key encryption and key-establishment
algorithms [29].

Scheme System Public Key (KB) Private Key (KB) Signature (KB)

Public Key/
KEM

LIZAMA’S KEP 0.256–0.512 0.192–0.384 –
Classic McEliece 261,120–1,357,824 6492–14,120 –
CRYSTALS-KYBER 1.632–3.168 0.8–1.568 –
NTRU-HPS 0.931–1.230 1.235–1.592 –
SABER 0.672–1.312 1.568–3.040 –

Signature
Algorithms

CRYSTALS-DILITHIUM 1.312–2.592 – 2.420–4.595
FALCON 0.897–1.793 – 0.666–0.280
Rainbow 157.8–1885.4 101.2–1375.7 0.066–0.212

We emphasize the importance of the key size because, as it was shown in [25], the
key size of known quantum-resistant schemes can grow from a few to many kilobytes
which can arise some difficulties for today’s existing infrastructures of X.509 certificates. A
good example is that post-quantum TLS handshake takes 40 KB which is 24 times more
expensive [30]. Even worse, there would be some scenarios which are very sensitive to
delays that cannot store big certificates or perform signature (generation or verification)
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because of those limitations. In such scenarios, most post-quantum signatures would be
impractical because of their required computational cost.

Still under study is the Identity-Based Encryption (IBE) scheme which is considered
an alternative to traditional certificate-based public key cryptography to reduce communi-
cation overheads in wireless sensor networks. In [30], it has been found that ID-based TLS
is 2.8× costlier than certificate-based TLS in the pre-quantum scenario.

8. Conclusions

We have detailed the steps to enhance the Lizama’s non-invertible key exchange proto-
col to be used as a public key cryptosystem with single and multiple certification domains.
We have provided the specification the certification authority keys and the method to
certify the user’s public keys. Therefore, our approach is scalable and interoperable and
can be exploited in the pre-quantum and the quantum era because the protocol exhibits
indistinguishability of the integers in the public key and ciphertexts.

We found that public keys size in Lizama’s protocol has the smallest size regarding
main post-quantum systems: 0.256 kilobytes and 0.384 kilobytes for public key and certified
key, respectively. Moreover, we suggest that the public key database only stores one
component of the two integers which are part of the public key, while the second component
can be transferred directly to the remote destination. This strategy reduces the required
storage space of certified keys to 0.256 kilobytes. Therefore it makes manageable some
issues caused by large certificates as fragmentation, segmentation and caching.

Furthermore, we have discussed a method to achieve perfect forward secrecy (PFS) so
that a session key can be derived from the previous one and the procedure is repeated as
many times as necessary.
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All authors have read and agreed to the published version of the manuscript.
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Appendix A

Appendix A.1. RSA Cryptosystem

The security of RSA cryptosystem relies on the difficulty of the integer factorization
problem. Two invertible numbers e and d are chosen inside the ring defined by Zφ(n), so
that e · d ≡ 1 mod φ(n). The other ring Zn is prepared with n = p · q where p and q are
secret prime integers [31]. The encrypted message is computed as C = Memod n while
M = Cdmod n returns the original cleartext M. The cryptosystem works because of Euler’s
theorem since (Memod n)dmod n = Medmod n but e · d = kφ(n) + 1, so Mkφ(n)+1mod n =
Mkφ(n) ·M1mod n which yields M provided M < n.

Appendix A.2. Diffie–Hellman Key Exchange

Diffie–Hellman key exchange (DH) was the first public key exchange algorithm [20].
The integer prime p defines a ring Zp and the generator g is a primitive root module p. The
integers p and g are publicly known.

Alice chooses randomly the exponent xa and she computes ka = gxa mod p which she
sends to Bob over a public channel. On the other side, Bob obtains kb = gxb mod p, then he
communicates this integer number to Alice across the channel.

Alice and Bob execute exponentiation over the received number, such that Alice’s
gets (gxb mod p)xa mod p = gxbxa mod p. Conversely Bob gets (gxa mod p)xb mod p =
gxaxb mod p. The two operations yield the same integer number because multiplication of
exponents is commutative. The security of the secret shared key relies on the difficulty that
given g, ka and kb it is computationally infeasible to derive gxaxb mod p.
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Appendix A.3. Prefix Attack

Consider the protocol running with n = 4r over a public channel. When an eaves-
dropper captures the integers from the public channel, where one of them, say wa, is a
prefix of the second number written as wab = wa · kb mod 4r. To derive kb, the attacker
computes the inverse of the prefix that is (wa)

−1 to factorize it from the second number.
However, in Z4r wa and wab are non-invertible integers, thus the attacker must perform
first multiplication by 2−2 changing the module from 4r to r.

Therefore, if the eavesdropper has captured wa and wab from the public channel,
they proceed to divide them by 4 thus getting wa

′ and wab
′. The eavesdropper computes

(wa
′)−1 and they get (wa

′)−1 ·wab
′. As a consequence, the eavesdropper obtains kb mod r

provided kb < r. To avoid a prefix attack, kb must be chosen to be greater than the integer
prime r. The steps are indicated as follows:

wa = 4xa · ka mod 4r
wab = wa · kb = 4xa · ka · kb mod 4r
wa
′ = wa · 4−1 = xa · ka mod r

(wa
′)−1 = (xa · ka)−1 mod r

kb = (wa
′)−1 · wab

′ = kb mod r

Appendix A.4. Multiplication-Based Attack

Consider again that p = q = 2, then φ(4r) = 2r − 2. If the eavesdropper knows P
which is computed as P = 22xk mod 4r, we affirm that they cannot derive 22xk mod r
because they ignore 22xk. However, after dividing P by 4 they get 22x−2k mod r. The
eavesdropper can perform the product of the public components P and Q:

P = 2xk mod 4r,
Q = 22r−1−xk mod 4r because y = 2r− 2− x + 1
P ·Q = 22r−1k2 mod 4r
P ·Q · 2−2 = 22r−3k2 mod r
k2 ≡ P ·Q · 2−2 · (22r−3)−1 mod r

As a result, the eavesdropper can derive the private key k. To avoid such attack, the
exponent is chosen to be 2x instead of x:

P = 22xk mod 4r,
Q = 22r−1−xk mod 4r where x < 2r− 1
P ·Q = 2x+2r−1k2 ≡ 2x 22r−1k2 mod 4r

In this case, the eavesdropper cannot compute the multiplicative inverse of 2x because
they do not know x and they cannot obtain k.
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