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SUMMARY

We provide an overview on the use of biological assays to calibrate and initialize
mechanism-based models of cancer phenomena. Although artificial intelligence
methods currently dominate the landscape in computational oncology, mathe-
matical models that seek to explicitly incorporate biological mechanisms into
their formalism are of increasing interest. These models can guide experimental
design and provide insights into the underlying mechanisms of cancer progres-
sion. Historically, these models have included a myriad of parameters that have
been difficult to quantify in biologically relevant systems, limiting their practical
insights. Recently, however, there has been much interest calibrating biologically
based models with the quantitative measurements available from (for example)
RNA sequencing, time-resolved microscopy, and in vivo imaging. In this contribu-
tion, we summarize how a variety of experimental methods quantify tumor char-
acteristics from the molecular to tissue scales and describe how such data can be
directly integrated with mechanism-based models to improve predictions of tu-
mor growth and treatment response.

INTRODUCTION

Although there is an ever-increasing body of clinical research that has sought to characterize cancer devel-

opment and evaluate viable therapies, there is still a fundamental lack of understanding of underlying fac-

tors involved in cancer development and progression. This is no doubt owing to the complex and dynamic

interplay of heterogeneous cell populations, signaling factors, and microenvironments that exist within tu-

mors (Hanahan and Coussens, 2012; Hanahan and Weinberg, 2011). In an attempt to capture and charac-

terize these phenomena in a well-controlled setting, scientists have developed and utilized a myriad of

in vitro and in vivo biological assays to uncover themolecular and cellular drivers of tumor growth and treat-

ment response. However, the vast majority of analyses applied to these in vitro and in vivo assays reduce

the observations to a single measurement or snapshot in time, ignoring the complex spatially and tempo-

rally evolving nature of cancer. For example, angiogenesis is linked to mechanical properties of the tumor

microenvironment, cell-cell interactions between tumor and vascular cells, as well as the presence of sol-

uble growth factors (De Palma et al., 2017). However, common angiogenic assays, such as tube formation

assays, reduce this phenomena to a measurement of expression of proangiogenic cytokines (e.g., vascular

endothelial growth factor) or endothelial cell proliferation (Staton et al., 2004). Although 2D and 3Dmodels

enable the study of more complex interactions (e.g., cell-cell or cell-ECM interactions [Boussommier-Call-

eja, 2020; Gadde et al., 2018; Hoarau-Véchot et al., 2018; Michna et al., 2018]) and in vivomodels can inves-

tigate tumor progression in the context of the microenvironment, the ability to quantitatively characterize

the spatiotemporal evolution of cancer is quite limited within current in vitro and in vivo experimental

paradigms.

We (and others) have posited that without a mathematical theory enabling the systematic analysis of the

numerous spatially and temporally evolving parameters and variables that characterize cancer, we are

left with trial and error (Coveney et al., 2016; Yankeelov et al, 2013, 2015). Mathematical models based

on biological processes can be used to abstract the fundamental phenomena of a developing tumor
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and allow for ‘‘in silico’’ experimentation to systematically investigate cancer processes. Biological assays

involve large investments in both time and money and often entail numerous conditions to evaluate quan-

tities of interest against appropriate controls. Mathematical models can guide experimental design by

simulating effects of the phenomena under investigation and narrowing the scope of biological measure-

ments needed, thereby saving resources. Additionally, they can provide mechanistic insight into cancer

processes that are difficult to isolate and measure experimentally. Development and validation of these

mathematical models with appropriate biological measurements may yield a comprehensive theory of can-

cer across spatial and temporal scales that can be used to fundamentally shift how cancers are treated.

Furthermore, application of biologically based, mathematical models that can be parameterized for indi-

vidual patients—and not ‘‘trained’’ on large population datasets—may yield patient-specific predictions

and have the potential to optimize therapeutic interventions on an individual patient basis (Rockne

et al., 2019; Yankeelov et al, 2013, 2015).

Historically there has been a lack of integration of mathematical theory and experimental data in cancer

biology and oncology (Yankeelov et al., 2013). We posit that this critical obstacle to personalized predic-

tions can now be overcome with quantitative biological assays combined with appropriate mathematical

models designed to incorporate them. One fundamental issue in attempting to bridge this divide is that

biological assays have not always yielded quantitative measures that could be used to parameterize mech-

anism-based models of cancer progression and response. Furthermore, the existing mathematical models

were not structured in a way that allowed for incorporation of data from such assays. However, there has

been much recent growth in developing assays that can provide quantitative biological data, as well as

new efforts to develop mechanism-based mathematical models that enable incorporation of available bio-

logical data (Rockne et al., 2019).

In this review, we introduce biological assays appropriate for quantitatively probing cancer dynamics

in vitro, ex vivo, and in vivo and highlight the opportunities for their integration into mechanism-based,

mathematical models of tumor growth and treatment response at the subcellular, cellular, and tissue scales

(please see Figure 1). This developing field is illustrated by presenting representative examples of studies

that have integrated quantitative data into mathematical models of solid tumor malignancies. We also

discuss the experimental and computational limitations to modeling cancer at each scale to highlight

the need for robust integration between mathematical and biological experiments.
BIOLOGY-BASED MATHEMATICAL MODELS

Mathematical models of cancer are broadly classified as discrete or continuous. Discrete approaches usu-

ally consist of agent-based models (Metzcar et al., 2019; Wang et al., 2015), whereby tumor cells are rep-

resented as independent entities that follow a set of rules dictating cellular behavior. Thus, agent-based

models are more amenable to in vitro cellular or small-range tissue-scale applications, which can utilize

microscopically resolved, genomic, and transcriptomic data. Continuous formulations feature ordinary

(ODE) or partial (PDE) differential equations that describe the population-averaged or spatially resolved

dynamics of tumor cells, respectively. ODEmodels are limited to temporal dynamics, but this enables their

use in a wide range of cellular and tissue-scale settings that can leverage multiple types of time-resolved

data (Benzekry et al., 2014; Jarrett et al., 2019; Johnson et al., 2020; Lorenzo et al., 2019b; Mendoza-Juez

et al., 2012; Morken et al., 2014). PDE models further include spatial dynamics and constitute the standard

approach for clinical, tissue-scale applications, which usually rely on longitudinal in vivo imaging data (Hor-

muth et al., 2020; Jarrett et al., 2018; Lorenzo et al., 2019a; Mang et al., 2020; Rockne et al., 2015; Wong

et al., 2017). Additionally, hybrid models combine a discrete and continuous formulation, which may

require multiscale multimodal data (Metzcar et al., 2019; Phillips et al., 2020; Vilanova et al., 2017; Wang

et al., 2015).

In principle, mathematical models of cancer often describe biological mechanisms common across tumor

types and therefore have the potential for general application. However, in practice, these models often

must be customized to describe disease-specific characteristics related to tumor development and

response to therapy. Despite the wealth and diversity of biologically based, mathematical models of can-

cer, there is a paucity of studies that explicitly link model predictions with experimental data (Altrock et al.,

2015; Karolak et al., 2018; Yankeelov et al., 2013). To facilitate future efforts at this interface, we now

describe how state-of-the-art biological assays can provide quantitative data to calibrate and validate

mathematical models from the cellular (following section) to tissue scales (next two sections).
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Figure 1. Overview of Biological Scales Described in This Review

For each scale we will introduce key elements of the relevant tumor biology, as well as how experimental data are

integrated with mathematical models to study cancer. At the cellular scale (A), we focus on the development of

mathematical models for identification of heterogeneous phenotypes and differentiation of cancer cell populations. At

the microenvironmental and tissue scales (B), we focus on in vitro and ex vivo data driven mathematical models for

analyzing protein and nutrient gradients, multicellular interactions, and vasculature within the tumor microenvironment.

Finally, we explore the tissue and organ scales (C) in the in vivo setting by discussing the coupling of imaging data from

animal models and patient tumors to mathematical models for predicting tumor development.
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MATHEMATICAL MODELING OF CANCER AT THE CELLULAR SCALE

Cellular Heterogeneity in Cancer

The origin and interactions of genetically and phenotypically distinct cells within a patient’s tumor influence

its proliferation rate, metastatic potential, and treatment response (Brock et al., 2009; Maley et al., 2017;

Pisco and Huang, 2015). Mathematical modeling can be used to describe and predict cellular behavior,

to better understand the contribution of individual subpopulations of cells to a cancer’s dynamic

ecosystem. Experimental assays can be used to quantify subcellular attributes (from genes to protein),

as well as identify cellular phenotypes. In Section ‘‘Cellular Scale Data Appropriate for Incorporating

into Mathematical Models of Cancer,’’ we will cover a diverse set of quantitative assays that can be used

to unveil the cellular phenotypic states. These widely available biological techniques can be used to cali-

brate, initialize, and validate mathematical models that seek to unveil fundamental mechanisms of tumor-

igenesis and understand how cancer cell populations interact and evolve (Figure 2).

Cellular Scale Data Appropriate for Incorporating into Mathematical Models of Cancer

Tumors are composed of phenotypically diverse cancer cell populations, which determine tumor behavior and

therapeutic sensitivity and response (Hardeman et al., 2017; Pisco et al., 2013). Experimental assays quantifying

gene expression and protein content can reveal key phenotypic states and signaling pathways, information that

can then be used to parameterize mathematical models of cancer cell dynamics. Quantitative polymerase chain

reaction (qPCR) can be used to quantify DNA levels within a sample and determine if a specific mutant allele is
iScience 23, 101807, December 18, 2020 3
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Figure 2. Quantification of Cellular Properties to Parameterize Mathematical Models of Cancer

(A) Illustration of how cancer cell populations exhibit heterogeneity at multiple levels, described by genomics

(represented by color), morphology (represented by shape), and gene expression (represented by receptor status).

Experimental assays quantify genomic, transcriptomic, or proteomic differences between cells to reveal the characteristic

properties of tumor cell subpopulations.

(B) Example outputs from high-throughput assays such as (1) flow cytometry in which cell populations are identified by

surface marker expression, (2) barcode labeling to quantify abundance of clonal populations over time, (3) scRNA-seq to

measure differential gene expression in individual cells, and (4) reveal distinct phenotypic clusters of cells.

(C) Display of how biological processes of tumor cell populations can be represented by mathematical models describing

the behavior and interactions of distinct cell types. Such models can be informed by the data in (B) to reveal novel insights

about the dynamic behavior of the cell population.
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present in a cell population (Alvarez-Garcia et al., 2018). Using qPCR measurements from patients with chronic

myeloid leukemia (CML), Michor et al. developed a four-compartment model of leukemic cell populations (Mi-

chor et al., 2005). Their model suggests that imatinib, a CML treatment, was effective treatment of differentiated

leukemic cells but not of leukemic stem cells, yielding insight into CML treatment failure (Michor et al., 2005).

DNA sequencing technologies, such as whole genome sequencing, can be used to quantify genetic mutations

associated with cancer cell populations. Such data have been used to link levels of specificmutations with tumor

growthpatterns, to reveal whichmutations are driving tumorbehavior. For example, in patients with chronic lym-

phocytic leukemia, Gruber et al. tracked the accumulation of genetic mutations over time and applied Bayesian

methods to estimate clonal proportions within the bulk population, then quantifying the fitness benefits

conferred to the bulk tumor (Gruber et al., 2019). A number of stochastic and agent-based models have been

developed to describe the effects of genetic drift and subclonal evolution on bulk tumor behavior (Beerenwinkel

et al., 2007; Chowell et al., 2018;McFarland et al., 2013;Moolgavkar andKnudson, 1981;Waclaw et al., 2015), but

there remains a need for integration of experimental data into these frameworks to construct models capable of

making predictions that can be directly tested.

RNA sequencing (RNA-seq) data, in combination with bioinformatics techniques can reveal gene expres-

sion patterns that drive protein signaling, cellular behavior, and therapeutic response. For example,
4 iScience 23, 101807, December 18, 2020
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Bouhaddou et al. integrated high-dimensional multi-omics data, including patient-derived RNA-seq data,

to construct an ODEmodel that integrated stochastic fluctuations in expression of commonly mutated can-

cer pathways and showed how these fluctuations influence tumor cell proliferation and death (Bouhaddou

et al., 2018). With bulk RNA sequencing, gene expression patterns are averaged across cell populations.

Single-cell RNA-seq (scRNA-seq) can be used to assess gene expression patterns at the individual cell level

to identify unique cellular phenotypes, enabling characterization of the diversity within cancer cell popu-

lations (Becht et al., 2019). For example, Johnson et al. calibrated a model with estimates of subpopulation

composition from scRNA-seq with longitudinal population data of cell number over time to predict the

population response to new treatment regimens and assess the degree of drug-induced resistance (John-

son et al., 2020). Inclusion of scRNA-seq data yielded improved predictive accuracy of treatment response

dynamics with a concordance correlation coefficient (CCC) of 0.89, compared with 0.79 without transcrip-

tomic information (Johnson et al., 2020).

Protein expression on the surface of cancer cells allows quick identification of distinct phenotypes that can

be monitored and isolated using flow cytometry and fluorescence-activated cell sorting (Fillmore and Ku-

perwasser, 2008; Gupta et al., 2011; Shipitsin et al., 2007). For example, Gupta et al. parameterized a Mar-

kov chain Monte Carlo model of phenotypic state transitions by monitoring the expression of characteristic

surface proteins on isolated basal, luminal, and stem-cell like cells from breast cancer cell lines (Gupta et al.,

2011). More recently, Morinishi et al. constructed anODEmodel to describe cancer cell transitions between

a more differentiated and a more stem-like state and experimentally estimated transition rates between

the two cell states under different conditions with flow cytometric time course data (Morinishi et al.,

2020). Modeling the temporal dynamics of key proteins that identify unique cancer cell states is critical

to developing an understanding of the biological mechanisms of cancer. Integration of flow cytometric

measurements into Markov and ODE models by Pisco et al. allowed them to reject the null hypothesis

that drug resistance in leukemia arises purely from Darwinian selection by differential growth rates, lending

support to the hypothesis that a drug-resistant cellular state is driven by chemotherapeutically activated

cell state switching (Pisco et al., 2013).
Limitations of Using In Vitro Data for Modeling Cancer

Although there is ever-increasing availability and quality of quantitative biological data at the cellular scale,

even the best designed experiments have intrinsic limitations owing to sample origin, choice of method-

ology, and complexity of data output. Targeted experimental assays quantify the expression of specific

genes or proteins of interest, whereas global experimental assays have increased readouts, providing

expression information for thousands of genes. Targeted experiments can define cell behavior and states

for quantitative modeling but may limit the scope of the cellular states identified and oversimplify a com-

plex state-space. Global experimental approaches can overcome this limitation by revealing the gene net-

works driving specific phenomena but add significant complexity in data analysis as it can be difficult to

identify which signals are most relevant for describing the phenomena of interest. Similarly, experimental

assays that pool groups of cells together (prior to, for example, quantifying gene or protein expression) are

beneficial for investigating whole population differences but ignore the cellular diversity within groups of

cells. This limitation is overcome in single cell analyses, including scRNA-seq and flow cytometry, which

provide insight into the full distribution of individual cell phenotypes in a population, but do so at the

cost of increased complexity and use of resources.

Cancer cell populations vary in both space and time, and mathematical models of these dynamics require

data that are spatially and/or temporally resolved. Many in vitro assays (including those mentioned in sec-

tion ‘‘Cellular Scale Data Appropriate for Incorporating intoMathematical Models of Cancer’’) require anal-

ysis of experimental samples at specific time points, often in a destructive or disruptive manner. Although

high-throughput assays can be performed at multiple time points, these temporal samplings may miss dy-

namics occurring more quickly than can be experimentally recovered. Time-resolved microscopy provides

a means to overcome some of this limitation by enabling tracking of individual cells over time. This tech-

nology has been applied to quantify whole-cell population growth under various conditions and, with

the addition of fluorescent (Weissman and Pan, 2015) or nucleotide (Al’Khafaji et al., 2018; Nguyen

et al., 2014) labels, can enable tracking of distinct cell phenotypes and specific protein expression within

cells. This information can then be used to inform models of population growth and treatment response,

as well as cell state changes over time (Hsu et al., 2019; Johnson et al., 2019).
iScience 23, 101807, December 18, 2020 5
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MATHEMATICALMODELINGOF CANCERAT THEMICROENVIRONMENTAL AND TISSUE

SCALES

The Tumor Microenvironment and Cancer Development

Central to tumor growth is the interaction of cancer cells with non-malignant stromal cell populations and

the local environment, collectively referred to as the tumor microenvironment (Hanahan and Coussens,

2012). Stromal cell populations, such as fibroblasts, immune infiltrates, or vascular endothelial cells, are re-

cruited to the tumor site via the cytokine expression of cancer cells (Hanahan and Coussens, 2012; Junttila

and de Sauvage, 2013). These cell populations impact the composition of the tumor microenvironment,

from local extracellular matrix deposition to gradients in nutrient concentration, which subsequently influ-

ence cancer cell protein expression and behavior (Hanahan and Coussens, 2012; Junttila and de Sauvage,

2013). Thus, the tumor microenvironment is an important consideration when modeling tumor develop-

ment. In this section, we highlight quantitative assays that characterize the spatial distribution of cancer

and stromal cell populations as well as environmental quantities such as oxygen and growth factor

concentration.

Microenvironmental and Tissue Scale Data Appropriate for Incorporating into Mathematical

Models

Microscopy techniques, ranging from confocal and brightfield microscopy to whole slide imaging, offer

quantitative in vitro and ex vivomeasurements of many properties of the tumor microenvironment (Gurcan

et al., 2009; Heindl et al., 2015; Saucedo et al., 2018). Used in combination with immunohistochemical or

immunofluorescent staining, microscopy can measure the spatial distribution of different cancer and stro-

mal cell types, as well as microenvironment components such as collagen fibers or microvasculature (Gur-

can et al., 2009; Heindl et al., 2015; Saucedo et al., 2018). For example, immunohistochemical staining tech-

niques can be used to identify the spatial distribution of proliferating or apoptotic cancer cell

subpopulations, which can then be used to calibrate models of tumor growth. Confocal imaging of normal

and mutant breast epithelial spheroids was employed by Rejniak et al. to stain for caspase-3 (apoptosis)

and Ki-67 (proliferation) to calibrate an in silico model of tumor spheroid formation (Rejniak et al., 2010).

The model was then used to determine potential mechanisms of morphological and molecular changes

that lead to development of mutant breast epithelial cells (Rejniak et al., 2010). Ahmadzadeh et al. em-

ployed two-photon microscopy to measure spatial variations in collagen distribution within the extracel-

lular matrix surrounding tumor spheroids (Ahmadzadeh et al., 2017). These data were then used to cali-

brate a mechanochemical free-energy based model that sought to describe the feedback loop between

cell contractility and realignment of the extracellular matrix fibers (Ahmadzadeh et al., 2017).

Techniques coupling immunofluorescent staining with time-resolved microscopy can be used to longitu-

dinally track fluorescently labeled cells. Studies have applied such in vitro data to develop in silico models

of tumor growth and invasion (Cristini et al., 2005; Enmon et al., 2001; Frieboes et al., 2006; Kam et al., 2009;

Liedekerke et al., 2019; Lorenzo et al., 2016; Macklin and Lowengrub, 2007; Sanga et al., 2007), cellular

migration driven by the tumor microenvironment (Kim et al., 2018; Mark et al., 2018; Shamloo et al.,

2016; Stokes et al., 1991), vasculogenesis (Merks et al., 2006; Serini et al., 2003; Shamloo et al., 2016),

and drug response (Kozusko et al., 2001; Maffei et al., 2014; Raghavan et al., 2016). In particular, our group

has developed a 3D in vitro vascularized microfluidic tumor platform to study angiogenic sprouting of an

endothelial vessel (Gadde et al., 2020). We utilized confocal microscopy images of vessel sprouting in com-

bination with an agent-based model (Phillips et al., 2020) to determine parameter values that govern the

driving dynamics of the model (e.g., vessel growth rate, production rate of pro-angiogenic factors) (Fig-

ure 3). This calibrated model can then be used to make predictions of vascular structure in response to

growth factors secreted by different tumor cell distributions in the in vitro platform.

Histopathology analysis yields high-resolution brightfield or immunofluorescent images of tissue sections

ex vivo (Gurcan et al., 2009). These sections are stained for markers of biological interest, including (for

example) vessel maturation, immune infiltration, and proliferation (Gurcan et al., 2009; Heindl et al.,

2015). Such measures can then be used to parameterize or validate models of tumor growth. Macklin

et al. developed a patient-specific, agent-based model parameterized by clinically available histopathol-

ogy data and accurately predicted the growth of ductal carcinoma in situ based on underlying cellular phe-

nomena (Macklin et al., 2012). Similarly, Jarrett et al. developed a model of HER2+ cancer that accounted

for the immune response to targeted therapy. In their model, they employed histological data to assign

values for tumor necrosis within the model and then compared the predicted immune response with
6 iScience 23, 101807, December 18, 2020



Figure 3. Model Calibration and Validation Pipeline

The left-most column shows the evolution of our agent-based model of tumor angiogenesis and the measured vessel

segmented from confocal microscopy images (right column). We utilize the microscopy data from days 4 and 8 to

calibrate key model parameters (e.g., production rate of VEGF) and then predict forward to day 12 where we can directly

compare the predictions to the experimentally observed data. If the model is found to be invalid (i.e., if the predicted

vasculature at day 12 does not appropriately recapitulate the observed data), the model must be modified by amending

terms, parameters, or rules based on established biological principles. Once the model is calibrated and passes a validity

test, the vasculature at day 16 is predicted with the calibrated parameters and compared with the data.
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immunofluorescent images of immune infiltration (Jarrett et al., 2019). This mathematical-experimental

approach was able to accurately model tumor response, with a CCC = 0.90 for treated tumor volumes,

as well as identify interactions between tumor response, immune cells, and vascular development, interac-

tions that would be challenging to elucidate only through experimentation.

Although immunohistochemistry staining of in vitro tumor models and ex vivo tumor samples can be used

to quantify nutrient, cytokine, or drug distributions across a tissue, ELISAs, western blots, and protein arrays

offer more accessible acquisition of similar information from bulk tissue samples. By employing time

resolved microscopy and cytokine multiplex array in a microfluidic tumor model, Lee et al. developed an

in silico model that couples chemokine-mediated signaling with mechanosensing to determine the influ-

ence of interstitial flow onmigration of macrophages in the tumor microenvironment (Lee et al., 2020). Göt-

tlich et al. used in vitro data from immunofluorescence, ELISA, western blot, and phosphokinase arrays from

a 3D lung model to generate cell specific in silicomodels for use in drug effect prediction and patient strat-

ification in treatment of lung cancer (Göttlich et al., 2018). A similar approach was utilized by Baur et al. for

colorectal cancer application (Baur et al., 2019).
Limitations of Using In Vitro and Ex Vivo Data for Modeling Cancer

Calibrating biologically based, mathematical models often requires data obtained at multiple time points,

whereas many biological assays measure quantities of interest at few or single time points. This limitation

can be overcome, in part, by employing dynamic assays, such as time-resolved microscopy, but there are

still constraints. For example, fluorescent assays often stain for only one or two markers of interest at a time

and the continuous exposure of cells to the lasers used in confocal microscopy can result in cell death via

phototoxicity. Additionally, biological data points defined using small sample sizes will have greater uncer-

tainty in their measurements. For example, tumor heterogeneity provides a significant challenge in the cali-

bration of tissue scale tumor models, as many mathematical parameters (e.g., cell growth rate) can vary
iScience 23, 101807, December 18, 2020 7
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depending on cell type, and heterogeneity can exist within cell populations of a cell line (Almendro et al.,

2013). Furthermore, bridging the gap between the in vitro and in vivo settings is non-trivial owing to the

fundamental differences in in vitro and in vivo experimental design. Thus, it is an open problem in the field

as to how mathematical models that are calibrated with in vitro data can provide insight into in vivo sys-

tems. Adaption of newer technologies, such as microfluidic tumor- or organ-on-a-chip systems and 3D bio-

printing, present means by which researchers can perform in vitro and ex vivowork in settings that are more

comparable with the in vivo system. In particular, microfluidic platforms have revealed insight into metasta-

tic cascade, cell migration, transport of anticancer agents, and even in predictive application for determi-

nation of tumor response to cancer treatments (Belgodere et al., 2018; Roberts et al., 2019; Sun et al., 2019;

Trujillo-de Santiago et al., 2019). 3D bioprinting allows for fine control over the recreation of the tumor

microenvironment (including the structural and compositional heterogeneity [Belgodere et al., 2018; Hein-

rich et al., 2019; Langer et al., 2019; Ma et al., 2018]) resulting in in vitro models that are realistic represen-

tations of an in vivo tumor.

MATHEMATICAL MODELING OF CANCER AT THE TISSUE AND ORGAN SCALES

Cancer Physiology at the Tissue and Organ Scale

Although the spatial scales of in vivo assessments of tumor physiology are typically limited to 0.25–5 mm

(Frangioni, 2008; Ramamonjisoa and Ackerstaff, 2017), these techniques do enable measurement of tem-

poral dynamics within the tumor microenvironment (Yankeelov et al., 2016b), such as vascular perfusion

(Yankeelov et al., 2014; Yankeelov and Gore, 2009), metabolic activity(Castell and Cook, 2008), or interstitial

flow (Kingsmore et al., 2018; LoCastro et al., 2020). These data types can also be acquired in 3D to evaluate

an entire tumor volume, permitting investigation of regional differences within a tumor (e.g., regions of ne-

crosis or proliferation, gradients of oxygen or nutrients) (Kim and Gatenby, 2017; Syed et al., 2020). Addi-

tionally, in vivo measurements can be acquired longitudinally within the same subject, thereby providing

temporally and spatially resolved data critical for the calibration of spatiotemporal models of tumor pro-

gression (Hormuth et al., 2019b). The next section introduces several established techniques for imaging

of tissue and incorporating such data into biologically based models of cancer.

Tissue and Organ Scale Data Appropriate for Incorporating into Mathematical Models

Magnetic resonance imaging (MRI), positron emission tomography (PET), and X-ray computed tomogra-

phy (CT) are in vivo imaging techniques that characterize a myriad of tumor features. These include mea-

sures of size and shape (used clinically to assess treatment response [Nishino et al., 2010]), as well as more

advanced measurements of cellularity (Padhani et al., 2009), vascularity (Yankeelov and Gore, 2009), and

metabolic activity (Castell and Cook, 2008; Rajendran and Krohn, 2015) that can report more specifically

on tumor status. As these data can provide longitudinal and 3D evaluations of tumors, they are excellent

candidates for initializing, parameterizing, and validating mechanism-based models of tumor growth (Hor-

muth et al., 2019a).

Contrast-enhanced CT and MRI techniques (i.e., studies in which a contrast agent is injected into the pa-

tient to highlight differences between diseased and healthy tissue) as well as anatomical MRI (Figure 4A)

are considered anatomical imaging techniques. These data types are commonly used to assess the extent

of clinical (or bulk) tumor burden (e.g., longest dimension and volume), subclinical (or invasive) tumor

burden, and vasogenic edema (Eisenhauer et al., 2009; Mabray et al., 2015). Additionally, healthy tissues

such as white matter, gray matter, muscle, adipose, or fibro glandular tissue also may be identified from

these images. Such data have been used to parameterize models of tumor growth and metastasis (Hor-

muth et al., 2019b; Neal et al., 2013; Yamamoto et al., 2019).

Diffusion-weighted (DW) MRI can provide both anatomical information (e.g., white matter fiber tracks) and

physiological measures (e.g., cellularity, necrosis, edema) (Padhani et al., 2009). Briefly, DW-MRI

techniques return estimates of the diffusion of water molecules in tissues called the apparent diffusion co-

efficient (ADC). As the ADC is heavily restricted by cell membranes, it has been used as a surrogate for

cellularity within the tumor tissue (Hormuth et al., 2020) (Figure 4B). Measures of cellularity derived from

DW-MRI have been employed to initialize and validate models of preclinical glioma (Atuegwu et al.,

2012; Hormuth et al., 2017) and clinical breast (Atuegwu et al., 2013; Weis et al., 2015) tumor growth. For

example, Weis et al. used DW-MRI estimates of cellularity before and following one cycle of therapy to cali-

brate a model to predict the pathological complete response of breast tumors to neoadjuvant therapy at

the time of surgery (Weis et al., 2015).
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Figure 4. Representative Images from a Murine Model of Glioma

(A) Contrast-enhanced magnetic resonance image with the brain indicated by the dashed box. (B and C) Transformation of DW-MRI estimates of ADC (B) to

cellularity (C). Likewise, (E) and (F) illustrate the transformation of DCE-MRI data (E) to blood volume fraction maps (F). Specifically, (E) shows a representative

voxel signal intensity time course from within the tumor, which can then be analyzed to estimate the blood volume fraction. These measurements are then

used to parameterize a mathematical model of tumor growth and angiogenesis. Using imaging time points not included in model calibration, the error is

then assessed between predicted and measured tumor growth (D and G).
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18F-flourodeoxyglucose (18F-FDG) is a glucose analog that is metabolically trapped when internalized and

phosphorylated by cells, resulting in an accumulation in cells actively consuming glucose. Thus,18F-FDG-

PET imaging is used to assess tumor glucose metabolism (Castell and Cook, 2008) and has been employed

to assign and calibrate cell proliferation rates in models of tumor growth (Liu et al., 2014). Liu et al. used 18F-

FDG to estimate tumor cell proliferation in a mathematical model of pancreatic tumor growth (Liu et al.,

2014). Images collected at baseline and at the first follow-up were used to calibrate model parameters,

and then the individualized parameters were used to predict tumor growth at the time of the second

follow-up, showing a high degree of accuracy between the predicted and observed tumor at the second

follow-up for each patient.

Dynamic contrast-enhanced (DCE) MRI can provide measures of healthy and diseased vasculature (Yan-

keelov and Gore, 2009). In DCE-MRI, several images are collected before, during, and after the injection

of a contrast agent, resulting in changes in signal intensity as a function of the concentration of the

contrast agent. These signal intensity dynamics can be analyzed with pharmacokinetic models to esti-

mate perfusion, vascular permeability, blood volume, blood flow, and tissue volume fractions. These

measures of tumor vasculature (Figure 4E) can be incorporated into models of tumor growth and angio-

genesis (Hormuth et al, 2019, 2020). For example, Hormuth et al. used DCE-MRI estimates of blood vol-

ume to initialize and calibrate a coupled biophysical model of tumor growth and angiogenesis in a mu-

rine model of glioma (Hormuth et al., 2019). They were able to spatially and temporally evolve

proliferation and carrying capacity values in response to changes in the local blood volume fraction,

achieving a high degree of agreement with less than 10% error between voxel-level predictions and

experimental measurements.

Finally, there are several additional MRI and PET techniques not typically collected clinically that measure

physiological characteristics that may be valuable for modeling approaches. For example, there exist ap-

proaches that measure proliferation (Woolf et al., 2014), pH (Rata et al., 2014), metabolic hallmarks (Sinha

and Sinha, 2009), receptor status (Mortimer et al., 2018), and mechanical properties (Glaser et al., 2012).
18F-fluoromisonidazole (18F-FMISO) is a PET tracer (Rajendran and Krohn, 2015) used to visualize tissue

hypoxia, a phenomena highly associated with resistance to radiation therapy (Gilkes, 2019). Rockne

et al. incorporated measures of hypoxia from 18F-FMISO-PET imaging into patient-specific models of

glioblastoma growth to inform the spatial variation in radiation sensitivity for informing more accurate

predictions of tumor response to radiation therapy (Rockne et al., 2015). Integration of these MRI and

PET-derived measurements with mathematical modeling will provide a better understanding of tumor

dynamics in vivo.
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Limitations of Using In Vivo Data for Modeling Cancer

One primary limitation of using these data to calibrate mechanism-basedmathematical models can be lack

of clarity associated with their interpretations. For example, in anatomical imaging, changes in steroid dose

or treatment-related reactions can result in transient changes in tumor appearance that are related to

neither progression nor regression (Hygino da Cruz et al., 2011). Similarly, although several studies have

shown that the ADC correlates inversely with tissue cellularity (Anderson et al., 2000; Barnes et al., 2015;

Sugahara et al., 1999), other factors such as cell size, cell permeability, and tissue tortuosity (all of which

can change during treatment) also influence ADC values. Similar limitations exist for FDG-PET (false pos-

itives can result because of macrophage infiltration [Strauss, 1996]) and for FMISO-PET (false negatives

seen within necrotic, non-viable tissue [Hirata et al., 2019]).

A second fundamental limitation of employing in vivo imaging to calibrate mechanism-based models of

tumor growth and treatment response is due to the achievable spatial resolution of these techniques. In

the clinical setting, anatomical MRI typically produces images with a voxel resolution on the order of

1 mm3, whereas the more quantitative approaches (e.g., DW- and DCE-MRI) may only achieve a resolution

of approximately 10 mm3. Similarly, the voxels in PET images are approximately 500 mm3 (Frangioni, 2008).

These spatial resolutions limit our ability to quantitatively interrogate tumor features in detail. For example,

MRI is unable to capture the microscopic invasion of a glioma (Figure 4) at the tumor margins. Additionally,

with a voxel size of 10 mm3, small vessels simply cannot be detected, which will directly affect generated

maps of tumor-associated vasculature as well as the characterization of perfusion. Thus, if these parameters

are used to approximate (for example) systemic drug delivery, it may result in predictions that over- or un-

derestimate actual tumor response owing to the coarseness of the estimate at which the drug distribution

profile can be estimated.
EMERGING APPLICATIONS FOR PRACTICAL MATHEMATICAL MODELING

Given a mathematical model that is capable of recapitulating the spatial and temporal development of a

tumor undergoing treatment, the model can then be used to optimize the delivery of treatment with the

goal of optimizing patient outcomes. This can be achieved by systematically varying (in silico) treatment

options and schedules, dosing regimens, or the effect of mechanisms of interest. These in silico tests

are a practical and direct method for replacing the trial-and-error approach that is the current paradigm

for clinical oncology with a more rigorous approach. Indeed, without a mathematical theory, we are left

with trial and error—and given the complex landscape of variables and parameters required to devise

an effective treatment plan, there are simply not enough patients or resources to run all the clinical trials

that would be required to adequately search that space. The integration of quantitative biological assays

with biologically based mathematical modeling is one practical way to move the field from population-

based trial and error to patient-specific optimized therapy. Furthermore, optimal control theory has

been gaining increasing attention to formulate personalized therapeutic regimens by integrating a biolog-

ically based mathematical model of cancer with knowledge of drug pharmacodynamics (Jarrett et al.,

2020a). This approach was leveraged by Angaroni et al. to determine optimal personalized regimens of im-

atinib for CML, aiming to minimize drug exposure and cancer stem cell burden (Angaroni et al., 2020). To

this end, the authors developed an ODEmodel of CML, calibrated with longitudinal measurements of can-

cer cell burden, as well as personalized pharmacokinetic and pharmacodynamic models of imatinib. Their

results suggest that the optimal imatinib therapies can render an improved control of the cancer cell

burden with similar or lower drug exposures with respect to standard scheduling for most patients in

the study cohort.

Biology-basedmodels enable the transformation of measured data samples into mechanistically interpret-

able parameters and variables, which help to quantitatively analyze the investigated cancer mechanisms

and further guide new research directions (Ayuso et al., 2017; Jarrett et al., 2020b; Johnson et al., 2019,

Johnson et al., 2020; Lorenzo et al, 2019b, 2020; Merkher et al., 2020; Morken et al., 2014; Pérez-Garcı́a

et al., 2019; Wang et al., 2006). Moreover, mathematical models parameterized by biological data need

not be comprehensive to make to gain insight into underlying tumor dynamics and make valid predictions.

For example, studies investigating scaling laws (Pérez-Garcı́a et al., 2020) and metastasis (Yamamoto et al.,

2019) made use of only volumetric measurements from imaging data to model longitudinal tumor growth

and response. Additionally, serum prostate-specific antigen (PSA) is a standard clinical measure for pa-

tients with prostate cancer undergoing treatment and has been used to parameterize patient-specific

models of prostate cancer response. For instance, Brady-Nicholls et al. modeled PSA dynamics for
10 iScience 23, 101807, December 18, 2020



Scale Cellular Microenvironmental

to Tissue Scales

Tissue to Organ Scales

Measures of � Cancer cell
phenotypes
and populations

� Interactions between
cancer cells and tumor
microenvironment

� Physiological
characteristics of
tumor tissue

Experimental assays � Whole-genome
sequencing

� RNA sequencing

� Flow cytometry

� Immunofluorescent or
immunohistochemical
staining and
microscopy

� DW-MRI

� DCE-MRI

� 18F-FDG PET

� 18F-FMISO PET

Strengths � Can gain insight into
cell population
dynamics under
various conditions

� Accounts for role of
tumor microenvironment
in tumor progression

� Offers insight into spatial
interaction of tumor
microenvironment and
cancer cell populations

� Cellular-level spatial
resolution

� In vivo and noninvasive

� 3D, whole tumor
imaging

� Enables longitudinal
measurements of tumor

Limitations � Limited temporal
resolution

� Single-cell analysis
techniques necessary to
account for cellular
diversity

� Lacking context of tumor
microenvironment and
other influences in vivo

� Limited temporal
resolution

� Limited sample sizes

� Limited spatial
resolution

� Mixed measures of
multiple biological
phenomena

Table 1. Strengths and Limitations of Integrating Experimental Data andMathematical Modeling at Each Biological

Scale
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adaptive response prediction of patients with prostate cancer who may be resistant to intermittent

androgen deprivation therapy (Brady-Nicholls et al., 2020). Lorenzo et al. proposed an ODE model for

the dynamics of PSA after external beam radiotherapy, leveraging clinical PSA data series to calibrate their

model and extract a reduced set of patient-specific parameters describing cancer cell proliferation and ra-

diation effects (Lorenzo et al., 2019b). These parameters were then used to define biomarkers to success-

fully identify tumor recurrence. This study suggests that model-inspired biomarkers may enable the iden-

tification of recurring tumors earlier than using standard increasing PSA criteria, thereby extending the

window of curability with a secondary treatment.

Bridging the data from cellular to tissue scale models remains a fundamental challenge in biologically

based mathematical modeling (Alber et al., 2019; Rockne et al., 2019). Multiscale models seek to simulta-

neously capture cancer dynamics at both the micro- and macroscale by coupling submodels representing

different features of cancer mechanisms at either scale (Deisboeck et al., 2011; Yankeelov et al., 2016a). This

strategy has been exploited to model angiogenesis and the motility of invasive cancer cells resulting from

epithelial-to-mesenchymal transition (Deisboeck et al., 2011; Vilanova et al., 2017). In both cases, multiscale

models track the movement and action of specific cells in response to the local values of macroscopic vari-

ables, which usually describe the dynamics of the tumor bulk and key substances (e.g., VEGF, nutrients). In

turn, the behavior of these individually tracked cells alter the dynamics of these macroscopic variables. For

example, in multiscale cancer models featuring angiogenesis, tumors grow and hypoxic tumor regions pro-

gressively vanish as nutrient concentrations increase owing to the sprouting angiogenic vasculature driven

by tip endothelial cells, which are activated and consume VEGF released by hypoxic tumor cells. Still, this

approach faces two central limitations: the requirement of extensive computational resources and the

large number of free parameters whose precise calibration may prove challenging. A primary barrier in

the development of these models is finding the balance between mathematical complexity and modeling

of relevant processes, particularly processes that can be parameterized with acquirable biological data.
iScience 23, 101807, December 18, 2020 11



ll
OPEN ACCESS

iScience
Review
Thus, it is of central importance to work with the most parsimonious mathematical model as identified

through established model selection schemes (Benzekry et al., 2014; Lima et al., 2016).

CONCLUSION

We have provided an overview of a number of common experimental assays that quantitatively distinguish

tumor characteristics from the molecular to tissue scales and how such data can be directly integrated into

biologically based, mathematical models to forecast tumor growth and treatment response in time and

space. A summary of the relative strengths and limitations of integrating experimental data and mecha-

nism-based, mathematical modeling of each biological scale is summarized in Table 1. Ultimately, when

data and models are successfully combined—in ways that account for the uncertainty in the biological

and mathematical strategies—it yields an experimental-mathematical framework with the ability to lower

experiment costs, shorten experiment timelines, and maximize both scientific understanding and predic-

tive capabilities. Although the field is still quite young, the early successes strongly suggest that this is an

extremely promising direction of investigation that can yield practical insights into both experimental

design for cancer biology and patient care for clinical oncology.
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