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Abstract

Background: Spatially-targeted approaches to screen for tuberculosis (TB) could accelerate 

TB control in high-burden populations. We aimed to estimate gains in case-finding yield under 

an adaptive decision-making approach for spatially-targeted, mobile digital chest radiography 

(dCXR)-based screening in communities with varying levels of TB prevalence.

Methods: We used a Monte-Carlo simulation model to simulate a spatially-targeted screening 

intervention in 24 communities with TB prevalence estimates derived from a large community-

randomized trial. We implemented a Thompson sampling algorithm to allocate screening units 

based on Bayesian probabilities of local TB prevalence that are continuously updated during 
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weekly screening rounds. Four mobile units for dCXR-based screening and subsequent Xpert 

Ultra-based testing were allocated among the communities during a 52-week period. We estimated 

the yield of bacteriologically-confirmed TB per 1000 screenings comparing scenarios of spatially-

targeted and untargeted resource allocation.

Results: We estimated that under the untargeted scenario, an expected 666 (95% uncertainty 

interval 522–825) TB cases would be detected over one year, equivalent to 8.9 (7.5–10.3) per 

1000 individuals screened. Allocating the screening units to the communities with the highest 

(prior-year) cases notification rates resulted in an expected 760 (617–926) TB cases detected, 10.1 

(8.6–11.8) per 1000 screened. Adaptive, spatially-targeted screening resulted in an expected 1241 

(995–1502) TB cases detected, 16.5 (14.5–18.7) per 1000 screened. Numbers of dCXR-based 

screenings needed to detect one additional TB case declined during the first 12–14 weeks as a 

result of Bayesian learning.

Conclusion: We introduce a spatially-targeted screening strategy that could reduce the number 

of screenings necessary to detect additional TB in high-burden settings and thus improve the 

efficiency of screening interventions. Empirical trials are needed to determine whether this 

approach could be successfully implemented.
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1. Introduction

Tuberculosis (TB) remains a leading infectious cause of death despite the availability of 

effective treatment. A major obstacle towards reducing transmission and mortality is the 

failure to detect and treat people with TB. Globally, one-third of the estimated 10 million 

people who developed TB in 2019 did not have access to high-quality TB treatment 

(Harding, 2020).

Levels of undiagnosed TB remain high in many countries and settings, suggesting 

that conventional diagnostic strategies which rely on self-presentation of symptomatic 

individuals to health services are not sufficient for limiting transmission. More pro-active 

strategies to find individuals with TB will thus be needed to achieve population-level impact 

(Dowdy et al., 2013). Systematic screening among specific high-risk populations could help 

reduce undiagnosed TB. Risk populations to be considered for screening include individuals 

exposed to TB in the household, people living with human immunodeficiency virus (HIV) 

infection, and workers exposed to silica, among others (World Health Organization, 2013).

As an alternative to using individual-level risk factors, targeting screening within 

geographically-defined populations (e.g. communities) could be an attractive approach 

(Cudahy et al., 2019; Dowdy et al., 2012). The concept of spatially-targeted screening is 

based on evidence of considerable geographical variation in TB incidence and prevalence 

reported from numerous studies (Touray et al., 2010; Wang et al., 2012; Yazdani-Charati 

et al., 2014). Focusing screening towards ‘hotspots’ of undetected TB and associated 

transmission could lead to more effective allocation of resources than untargeted country-
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wide efforts (Cudahy et al., 2019). The World Health Organization (WHO) recommends 

that systematic screening for TB “may be conducted among the general population in areas 

with an estimated TB prevalence of 0.5% or higher” (World Health Organization, 2021). 

Studies of spatially-targeted TB screening are limited to date. A recent systematic review 

identified only three studies in low TB incidence settings, and none had been conducted 

in high TB incidence countries (Cudahy et al., 2019). A recent modelling study of active 

TB case finding in Ethiopia suggested that targeting screening towards areas with a high 

TB burden would be efficient and cost-saving with the potential to significantly reduce the 

overall burden of TB (Shaweno et al., 2021).

A key challenge for spatially-targeted screening is the identification and prioritization 

of geographical ‘hotspots’ where such policies could be most effective (Dowdy et al., 

2012). Many high TB burden countries struggle to implement high-quality TB surveillance 

systems at subnational level (van der Werf and Borgdorff, 2007). Where these systems are 

in place, numbers of diagnosed TB patients might not accurately reflect local variation 

in the burden of undiagnosed, prevalent TB. As screening for TB demands considerable 

investments within often resource-constrained healthcare systems, guidance on how to 

prioritize geographical areas for spatially-targeted screening could help ensure that resources 

for TB screening are used in the most efficient way.

In this study, we propose the use of an adaptive decision-making algorithm for spatially-

targeted screening for TB. Our approach allows for the dynamic allocation of screening 

resources among multiple geographical areas in the absence of knowledge about variation in 

the local burden of undiagnosed TB. To investigate this approach, we developed a computer 

simulation of automated, digital chest radiography (dCXR)-based screening in 24 high 

TB burden communities in South Africa and Zambia (Ayles et al., 2013, 2008). We used 

the simulation to estimate gains in TB case-finding yield that would be expected under 

the spatially-targeted screening approach compared to untargeted (random) allocation of 

screening resources in the communities.

2. Methods

2.1. Conceptual framework

We propose an adaptive decision-making approach for spatially-targeted TB screening in 

high TB prevalence settings. The approach is based on Thompson sampling (Russo et 

al., 2018; Thompson, 1933), a Bayesian probabilistic sampling algorithm that addresses 

the “exploration-exploitation dilemma” (Auer et al., 2002; Berger-Tal et al., 2014) which 

has been investigated in a variety of scientific disciplines. Central to this dilemma is the 

trade-off between the need to obtain new knowledge and to exploit this knowledge to 

maximize rewards (Berger-Tal et al., 2014); the “exploration” features of these algorithms 

are potentially attractive for TB because case notifications will not reliably reflect incidence 

where there are varying levels of health access. The algorithm seeks to guide decision 

makers in allocating limited resources for screening among multiple geographically-defined 

populations with the aim to maximize the yield of TB detected over time. A central 

assumption of the algorithm is that the number of TB cases detected per screenings 

performed in a geographically-defined target population follows a distribution around the 
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true prevalence of undetected TB in this population. On average, this screening yield will be 

higher in populations with a higher background TB prevalence. Details about the decision 

algorithm are described below and in the Supplementary material (page 1).

2.2. Screening scenarios investigated

We assumed a hypothetical limited-resource scenario under which a mobile TB screening 

intervention would be implemented in 24 communities with unknown TB prevalence. No 

more than four mobile screening units would be available for a period of one year. The 

units would be placed at public points of interest to offer TB screening to adults walking 

by. In addition, field teams would be deployed to visit adjacent households to invite 

adults for screening. In line with WHO recommendations (World Health Organization, 

2013), screenings would employ a two-stage screening algorithm consisting of an initial 

screening test and a subsequent confirmatory bacteriological test. Screening would be 

offered regardless of TB characteristic symptoms or risk factors and consist of an initial 

screening test using digital chest radiography (dCXR) with automated, computer-aided 

detection. Those with a positive initial screening would be offered sputum examination 

via Xpert Ultra (Dorman et al., 2018). Key assumptions for the screening scenario are 

summarized in the Box below.

Box

Key assumptions for the hypothetical screening scenario.

• Twenty-four communities have been pre-selected for mobile TB screening.

• The prevalence of undetected TB in the communities is not known.

• Resources are available to deploy and operate 4 mobile TB screening units 

among the communities for a total duration of 52 weeks.

• Every day, between 50 and 70 adults (≥18 years) will be screened for 

TB, equivalent to 300–420 during a 6-day working week; screening will 

be conducted via digital chest radiography (dCXR); those with a positive 

dCXR test will undergo sputum testing via Xpert Ultra for bacteriological 

confirmation.

• The yield of TB patients detected per screenings performed at any time 

in a community follows a probability distribution around the prevalence of 

undetected TB at community level.

• To maximize screening yield, health authorities can revise decisions where 

to deploy the screening units after each week. Resources to move the units 

between communities are negligible.

• The prevalence of undetected TB at community level decreases with each 

screening round as a direct result of screening.

We defined an untargeted (base-case) scenario under which health authorities would 

randomly allocate the screening units among the communities. At the beginning of the 
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year, four communities, one per screening unit, would be randomly selected; units would 

be placed in the communities for the entire year. We compared the base-case scenario to 

two scenarios of spatially-targeted TB screening, a spatially-targeted case notification-based 
scenario under which four screening units would be placed in the four communities with 

highest prior-year case notification rates and an adaptive spatially-targeted scenario which 

seeks to dynamically deploy the four screening units in four distinct communities with the 

highest TB prevalence (i.e. 1st to 4th highest) under the adaptive decision-making approach.

2.3. Simulation data sources

We used estimates of population-level TB prevalence in 24 high TB burden communities 

obtained for the Zambia South Africa Tuberculosis and HIV Reduction (ZAMSTAR) study 

(Ayles et al., 2013; Marx et al., 2016), a large cluster-randomized trial conducted until 2010. 

For the primary outcome measure, a total of 64,452 adults were successfully evaluated for 

culture-positive TB in the 24 communities, irrespective of reporting symptoms, and 894 

adults with bacteriologically-confirmed TB were identified (Marx et al., 2016). Estimates 

of culture-confirmed TB varied among the 24 ZAMSTAR communities between 0.22% and 

3.11% (Fig. 1). In addition, we obtained estimates of dCXR and Xpert Ultra sensitivity and 

specificity from recent (meta-)analyses of diagnostic accuracy (Table 1).

2.4. Simulation approach and data analysis

We developed a Monte-Carlo simulation model to simulate the screening yield expected 

under the untargeted base-case and the two spatially-targeted scenarios. The simulation 

was implemented using R statistical application (version: 4.0.2) and consists of 1000 

independent model iterations. A detailed description of how we implemented the simulation 

is provided in the Supplementary material (page 1).

In brief, the simulation consists of two parts. In the first part, we conducted a series 

of independent Bernoulli trials to simulate TB cases detected through screening in the 

communities. Each series is set up with n Bernoulli trials representing the number of 

individuals screened per week and the success probabilities, p, are set to simulated ‘true’ 

TB prevalence values sampled from beta probability distributions that were approximated 

from TB prevalence survey estimates (Fig. 1). The simulation keeps track of TB prevalence 

over time to allow for reductions as a direct effect of TB cases detected through screening 

(see page 12 for further details). The number of k successes resulting from each Bernoulli 

experiment represents the simulated ‘true’ number of TB cases detectable through screening 

each week. We simulated false-positive and false-negative test results based on estimates of 

diagnostic accuracy obtained from the literature (Table 1). In the second part, we simulated 

decisions to allocate the screening units among the communities over time. Under the base-

case scenario, four distinct communities were randomly sampled for screening. Under the 

notification-based allocation scenario, four distinct communities with the four highest case 

notification rates in the previous year were selected for screening. To simulate the spatially-

targeted adaptive screening scenario, we implemented a Thompson sampling algorithm 

(Russo et al., 2018; Thompson, 1933). At the start of the first screening round (week), 

a prior probability of TB prevalence is sampled for each community from a single prior 

(beta) distribution. We approximated this prior distribution from a TB prevalence estimate 
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of 2.0% (1.0–3.0%) derived from two pilot studies conducted prior to the ZAMSTAR study 

(Ayles et al., 2009; Claassens et al., 2013). Sampled estimates of TB prevalence then inform 

decisions where to allocate screening during the first week of the intervention. Under the 

adaptive spatially-targeted scenario, the four screening units are allocated to four distinct 

communities with the (four) highest sampled prevalence estimates. At the end of the first 

screening round, prior probability distributions in the communities selected for screening 

are updated based on positive test results, with adjustments to account for the expected 

number of false-positive and false-negative test results (see the Supplementary material page 

9 for further details). Prior to the second week of screening, TB prevalence estimates for 

each community are then resampled from the updated (posterior) distributions to inform 

allocation decisions in the following week. The process of sampling, screening allocation, 

updating of distributions and resampling is repeated for each of the remaining screening 

rounds.

The principal outcome of this model-based analysis was the number of TB cases detected 

per 1000 individuals screened under the base-case and each of the two spatially-targeted 

scenarios during the 52-week intervention period. To investigate trends over time, we 

calculated weekly numbers of dCXR screenings performed to find one additional TB 

patient. All outcomes were calculated as the mean, and 95% uncertainty intervals as the 

2.5th and 97.5th percentiles of the 1000 model iterations.

2.5. Sensitivity and secondary analysis

We conducted additional analyses to understand how sensitive our findings were to specific 

assumptions made at primary analysis. We varied the number of screening units available 

and the number of individuals screened each week. We also increased the underlying 

population size to reduce the impact of the screening intervention relative to the estimated 

prevalent TB burden in the communities. Finally, we investigated the yield of the spatially-

targeted approach assuming lower sensitivity of dCXR-based screening, and the effect of 

increasing the duration of a screening round from one week to one month.

Additionally, we considered an alternative adaptive spatially-targeted scenario that seeks to 

maximize screening yield by allowing multiple screening units to be placed in the same 

community. Details of this alternative approach can be found in the Supplementary material 

(page 7). Furthermore, we explored an additional decision scenario using case notification 

rates as prior information to estimate the TB prevalence in the communities under the 

adaptive decision-making approach (Supplementary material page 17).

3. Results

3.1. Simulated screening yields

We estimated that under the base-case scenario (random allocation of the four screening 

units), an expected 666 (95% uncertainty interval 522; 825) bacteriologically-confirmed TB 

cases would be detected through screening over the one-year intervention period, equivalent 

to 8.9 (7.5; 10.3) per 1000 screened. Under the case notification-based allocation scenario, 

an expected 760 (617; 926) bacteriologically-confirmed TB cases would be detected over 
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one year, equivalent to 10.1 (8.6; 11.8) per 1000 screened. The increase in screening yield 

relative to the base-case scenario would be 14.8% (−4.5%; 36.6%). Adaptive allocation of 

the screening units would increase this yield. Under the adaptive spatially-targeted scenario, 

we estimated an expected 1241 (995; 1502) TB cases detected over one year, equivalent 

to 16.5 (14.5; 18.7) per 1000 screened. The increase in screening yield relative to the 

base-case scenario would be 87.0% (61.9%; 118.1%). Adaptive spatially-targeted screening 

also increased the combined positive predictive value (PPV) of the screening algorithm as 

the background prevalence of TB increased over time. Table 2 shows detailed results of the 

simulation.

3.2. Trends in numbers needed to screen over time

Under the base-case scenario, we projected a slight increase in numbers needed to screen 

(NNS) during the intervention period (Fig. 2a). This is due to the expected reduction in 

TB prevalence as a result of the impact of the screening intervention on TB prevalence in 

the communities. Under the spatially-targeted adaptive screening scenario (Fig. 2c), NNS 

declined over the first 12–14 screening rounds (weeks) as a result of Bayesian learning.

3.3. Sensitivity and secondary analysis

Lowering the number of individuals screened with dCXR each week (Fig. 3a) or the number 

of available screening units (Fig. 3b) led to slower declines in numbers needed to screen 

under adaptive spatially-targeted screening due to less optimal learning under the Thompson 

sampling algorithm. Increasing the population size in the communities reduced the relative 

impact of the screening intervention on TB prevalence and, hence, the increase in numbers 

needed to screen over time observed at primary analysis (Fig. 3c). Finally, lowering the 

sensitivity of dCXR to detect TB led to decreased numbers of TB cases found and thus 

higher numbers needed to screen over time for both the base-case (random allocation) 

and adaptive spatially-targeted screening scenarios (Fig. 3d). We estimated similar yields 

and numbers needed to screen for a maximum-targeted scenario, an alternative adaptive 

approach, under which multiple screening units can be placed in the same community (see: 

Supplementary material page 12).

Increasing the duration of a screening round from one week to one month led to slower 

declines in numbers needed to screen under the adaptive spatially-targeted screening 

approach due to slower learning. This is due to a reduction in the total number of relocations 

of all four screening units from 150 to 38, on average (Fig. 4). The total number of 

bacteriologically-confirmed TB cases was reduced by approximately 15%.

4. Discussion

In this study, we simulated an adaptive decision-making approach for spatially-targeted TB 

screening in high-burden communities. The proposed approach enables decision makers to 

leverage data obtained during subsequent screening rounds for Bayesian learning to increase 

the yield of TB detected over time and therefore improve the efficiency of community-based 

screening.
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The value of adaptive (sampling) strategies using spatially explicit and real-time intervention 

data to inform infectious disease control policies has previously been emphasized, including 

for interventions against foot-and-mouth disease (Probert et al., 2018), measles (Shea et al., 

2014), HIV (Gonsalves et al., 2018) and COVID-19 (Marecek, 2020). To our knowledge, 

our study is the first to propose an adaptive strategy for spatially-targeted TB screening. 

We think that this approach could be readily applied in settings where additional efforts 

are needed to find and treat people with TB, and where limited resources require allocation 

decisions to reach the best possible impact.

We propose this approach for spatially-targeted TB screening at a time when evidence is 

increasing that routine TB healthcare services in many high-burden countries have been 

seriously impacted by measures to contain the COVID-19 pandemic, resulting in a backlog 

of undetected TB, potentially with increased transmission, morbidity and mortality (Cilloni 

et al., 2020; Hallett et al., 2020; McQuaid et al., 2020). Spatially-targeted screening could 

play an important role in accelerating progress in TB control during a COVID-19 recovery 

phase, particularly in areas with the highest TB burden.

Our simulation of a hypothetical mobile screening intervention in 24 high TB burden 

communities suggests that dynamic, spatially-targeted allocation of screening units could 

greatly improve the efficiency of screening as the numbers of dCXR screenings required 

to detect additional TB could be reduced over time, compared to a random and a case 

notification-based allocation approach. Our findings are consistent with a recent modelling 

study which suggested that geographically-targeted allocation of TB active case finding in 

Ethiopia would be efficient and cost-saving compared to random allocation (Shaweno et 

al., 2021). They are also consistent with findings from an earlier study about mobile HIV 

testing in Chicago (Gonsalves et al., 2018), which projected that adaptive allocation nearly 

doubled the number of HIV infections that could be detected compared to allocation based 

on historic data.

We considered two different versions of adaptive spatial targeting, which represent options 

for decision makers to either balance resources among several communities with the 

highest TB prevalence (balanced-targeted), or allow screening units to be pooled in few 

communities to maximize screening yield (maximum-targeted; see supplementary). Our 

results suggest that both compare well in terms of additional TB cases found and screening 

yield over time. The maximum-targeted version showed marginally better efficiency of 

learning in the earlier intervention phase. However, placing multiple screening units 

simultaneously in the same community may be logistically challenging and less efficient 

especially in smaller communities. We show that the efficiency of spatially-targeted 

screening increases with the number of screening units available. This is because greater 

dispersion of available resources leads to improved learning under the adaptive sampling 

algorithm as each unit shares information about observed TB patients with the other units.

We simulated a spatially-targeted approach that employs chest-radiographic screening 

irrespective of self-reported symptoms. High levels of subclinical TB observed in high-

burden settings have raised important questions about the impact of symptom-based case-

finding approaches for reducing transmission (Kendall et al., 2021). TB prevalence surveys 
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in the study communities revealed that almost half of individuals with prevalent TB did 

not report TB-characteristic symptoms (Gunasekera et al., 2020), consistent with findings 

from a recent meta-analysis of country-level TB prevalence surveys (Frascella et al., 2020) 

and those from the recent South African national TB prevalence survey (The First National 

TB Prevalence Survey - South Africa, 2018, 2021). The screening approach we propose 

would therefore be preferable to symptom-based approaches which are likely to miss a large 

fraction of TB cases.

We note the following limitations. We applied our simulation to a specific hypothetical 

screening scenario in 24 communities with significant variation in TB prevalence rates 

ranging from 0.2% to 3.1%. Absolute case-finding yields under the screening intervention 

could be lower in communities where TB is less prevalent on average. Relative gains in 

case-finding yield under the adaptive approach in other settings will depend on the extent to 

which TB rates vary between geographical areas. However, up to ten-fold differences in TB 

incidence and prevalence at sub-country level have commonly been reported from several 

settings (Cudahy et al., 2019); we therefore believe that our approach will be relevant for 

other settings in need for enhanced strategies to detect TB.

The feasibility of an adaptive approach would also depend on the geographical distance 

between the communities as screening units will have to be frequently relocated. The 

proposed adaptive approach may be more easily applied in areas with smaller distances 

between communities, for example in (sub-) urban areas. We show that the algorithm could 

be adapted to incorporate screening rounds of longer duration (e.g. to 1 month) which would 

reduce the total number of relocations. Extending the duration of a screening round leads to 

fewer relocation decisions which slightly reduces the efficiency of the adaptive algorithm.

We specified screening yield, i.e. the number of TB cases detected per 1000 screenings, 

as the key target value for the adaptive approach. This parameter does not consider other 

relevant factors such as the rate at which people in the communities are willing to be 

screened and to initiate treatment if found to have TB, the overall epidemiological impact 

and the cost-effectiveness of the intervention. We note that our algorithm could be easily 

modified to focus on other target values of interest. For example, maximizing the absolute 

number of individuals in whom TB is detected via screening (or started on treatment) could 

be sensible if epidemiological impact was the priority. This target value would also take 

variation in participation rates between communities into account. Minimizing the costs per 

TB case detected could be specified to prioritize communities where screening was highly 

cost-effective. The latter approach would also need to consider the costs associated with 

moving screening units and teams between communities.

Further challenges related to bacteriological confirmation of TB could lead to lower absolute 

case-finding yields. For example, sputum scarcity and reduced sensitivity of Xpert ultra 

among individuals who tested positive at the initial screening test could lower the yield of 

TB detectable through the intervention. Other, novel diagnostic tools could be considered for 

spatially-targeted case finding to mitigate losses in TB diagnosis.
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Finally, our simulation is based on community-level TB prevalence as the key underlying 

determinant for weekly screening yield and does not consider other determinants such 

as the temporal and spatial variation in TB prevalence within communities. These other 

determinants would add to variation in screening yield observed in real life. However, they 

would unlikely eliminate the benefits of a spatially-targeted screening approach per se.

In conclusion, we propose an adaptive approach for spatially-targeted screening which 

could be implemented in settings with a high burden of undetected TB, where enhanced 

case-finding strategies are urgently needed (Burke et al., 2021). Empirical trials are needed 

to assess the feasibility and effectiveness of this approach. Transmission-dynamic modelling 

could help to determine the epidemiological impact and cost-effectiveness of this strategy 

for accelerating TB control in settings with a high TB burden. We emphasize that this 

approach could form part of dynamic case-finding policies (Yaesoubi and Cohen, 2013) that 

aim to make better use of data and observations to decide where additional investments for 

TB control are warranted, to reduce TB in populations most severely affected by the disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Estimates of community-level TB prevalence (adults, culture-confirmed TB) used in the 

simulation

Source: Zambia South Africa TB and HIV Reduction [ZAMSTAR] (Ayles et al., 2013; Marx 

et al., 2016).
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Fig. 2. 
Performance of different strategies of allocating 4 mobile screening units in the 24 

communities over time; left: base-case scenario (untargeted, random allocation), middle: 

notification-based scenario, right: adaptive spatially-targeted adaptive scenario; a-c: Number 

of dCXR screenings performed to find one additional TB case over time (weeks); bold 

black lines shows mean estimates of 1000 simulated trajectories; blue areas show 95% 

uncertainty intervals; grey lines show 50 randomly sampled model trajectories. Increases in 

the number of dCXR screenings performed to find one additional TB case over time are 

observed in later weeks as a result of the impact of the screening intervention. The increase 

is highest in the case notification-based approach due to lower population size in the selected 

communities.
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Fig. 3. 
Sensitivity analysis of simulation parameters. Trends in numbers needed to screen to find 

one additional person with TB over the 52-week screening period of allocating mobile 

screening units in the 24 communities over time: base-case scenario (untargeted, random 

allocation), balanced adaptive spatially-targeted allocation scenario in Fig. 3a,c,d and 

maximum-targeted allocation scenario in Fig. 3b. Full lines: primary analysis results, dashed 

lines: sensitivity analysis results. The following parameters were varied for sensitivity 

analysis: (a) number of screenings conducted per day for each of the 4 screening 

units (30,60,90); (b) number of screening units available (1,2,4) whilst total numbers of 

screenings per day was held constant; (c) population sizes increased by orders of magnitude 

(100,101,102); (d) sensitivity of digital chest radiography (dCXR) varied (75%,85%,95%) 

whilst specificity of dCXR remained fixed at 55%.
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Fig. 4. 
Trends in numbers needed to screen to find one additional person with TB over the 52-week 

screening period of allocating mobile screening units in the 24 communities over time: 

adaptive spatially-targeted screening allocation scenario with weekly and monthly screening 

rounds; bold lines shows mean estimates of 1000 simulated trajectories.
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Table 1

Simulation parameters used and their sources.

Simulation parameters Best estimate Uncertainty range Source

Community TB
a
 prevalence

Varying (seeFig. 
1) – (Ayles et al., 2013; Marx et al., 2016)

No. daily dCXR
b
 screenings 60 50–70 Assumption

dCXR sensitivity 95% – (Breuninger et al., 2014; Melendez et al., 2016; Murphy et al., 
2020; Philipsen et al., 2015)

dCXR specificity 55% 50–60% (Breuninger et al., 2014; Melendez et al., 2016; Murphy et al., 
2020; Philipsen et al., 2015)

Xpert Ultra sensitivity 85% 80–90% (Boehme et al., 2011; Dorman et al., 2018)

Xpert Ultra specificity 98% – (Boehme et al., 2011; Dorman et al., 2018)

a
Tuberculosis.

b
Digital chest radiography.
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Table 2

Simulated screening results under the different strategies of allocating 4 mobile screening units in the 

24 communities: base-case scenario (untargeted, random allocation), case notification-based scenario and 

spatially-targeted adaptive scenario. Values are presented as mean estimates over the 1000 simulation 

iterations and their (95% uncertainty interval).

Outcome measure
Base-case (random 
allocation)

Spatially-targeted, case 
notification-based

Spatially-targeted, 
adaptive

Total number of dCXR
a
 screenings performed 75,159 (63,024; 86,944) 75,159 (63,024; 86,944) 75,159 (63,024; 86,944)

% dCXR-positive, referred for Xpert Ultra 11.8% (10.7%; 12.9%) 11.9% (10.7%; 13.0%) 12.3% (11.2%; 13.4%)

Total number of TB
b
 patients detected 666 (522; 825) 760 (617; 926) 1241 (995; 1502)

Yield per 1000 dCXR screenings 8.9 (7.5; 10.3) 10.1 (8.6; 11.8) 16.5 (14.5; 18.7)

% increase in yield over base-case scenario (reference) 14.8% (−4.5; 36.6) 87.0% (61.9%; 118.1%)

Average no. of dCXRs conducted to identify 1 
additional TB case 113.0 (96.2; 133.0) 102 (66.3; 192.2) 60.8 (52.7; 68.9)

Total number of relocations of screening units
c

4 4 150 (117; 174)

Positive predictive value (%)
d 49.9% (44.6%; 54.9%) 53.3% (48.5%; 58.4%) 65.3% (60.2%; 70.5%)

Negative predictive value (%)
d 99.8% (99.7%; 99.8%) 99.8% (99.7%; 99.8%) 99.6% (99.5%; 99.7%)

a
Digital chest radiography.

b
Tuberculosis.

c
Total number of relocations over the 52-week period of all four screening units combined.

d
Combined positive- and negative predictive value of the two-step screening algorithm (dCXR followed by Xpert Ultra).
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