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High strength and low swelling 
composite hydrogels from gelatin 
and delignified wood
Shennan Wang1,2, Kai Li1,2 & Qi Zhou1,2*

A delignified wood template with hydrophilic characteristics and high porosity was obtained by 
removal of lignin. Gelatin was infiltrated into the delignified wood and further crosslinked with a 
natural crosslinker genipin to form hydrogels. The composite hydrogels showed high mechanical 
strength under compression and low swelling in physiological condition. The effect of genipin 
concentrations (1, 50 and 100 mM) on structure and properties of the composite hydrogels were 
studied. A porous honeycomb structure with tunable pore size and porosity was observed in the 
freeze-dried composite hydrogels. High elastic modulus of 11.82 ± 1.51 MPa and high compressive 
yield stress of 689.3 ± 34.9 kPa were achieved for the composite hydrogel with a water content as 
high as 81%. The equilibrium water uptake of the freeze-dried hydrogel in phosphate buffered saline 
at 37 °C was as low as 407.5%. These enables the delignified wood structure an excellent template 
in composite hydrogel preparation by using infiltration and in-situ synthesis, particularly when high 
mechanical strength and stiffness are desired.

Recently, utilizing the inherent nanocellulose fibril orientation, anisotropic tissue organization and cellular 
structure in wood, synthetic polymers and inorganic materials have been introduced into delignified wood to 
generate composites with transparency, electrical conductivity, and novel functions for applications in load-
bearing materials, environmental remediation, actuators, solar steam generation, etc.1–4. Wood-based hydrogels 
have also been synthesized by filling the micro channels of delignified wood with the polyacrylamide (PAM) 
hydrogel precursor followed by free-radical polymerization5. The wood/PAM hydrogel demonstrated remark-
ably enhanced fracture tensile strength and modulus as compared to the PAM hydrogel owing to the skeletons 
of natural aligned cellulose nanofibers (CNFs) and the strong interfacial hydrogen bonding in the hydrogel. This 
top-down approach opened up a new way to synthesize strong hydrogels exploiting the advantages of the cel-
lular structure with highly aligned CNFs bundles in the cell walls in delignified wood, which provides not only 
mechanical support but also liquid conduction through the natural aligned micro and nano channels.

Gelatin is a mixture of peptide hydrolysed from collagen and has been widely used in food, pharmaceutical 
and cosmetic industries as a stabilizing ingredient since it is non-toxic, biocompatible, and biodegradable. In 
tissue engineering and biomedicine, gelatin-based hydrogels with porous network structures can provide an ideal 
environment for cells attachment and promote their colonization, migration and proliferation6–8. The gelation of 
mammalian and warm-water fish gelatin in aqueous solution occurs at temperature below 25 °C due to physical 
folding of the polypeptide backbone, i.e. the single-strand to triple-helix transition of gelatin chains. The gelling 
temperature of cold-water fish gelatin is even lower, at around 10 °C9,10. This gelation process is reversible as the 
temperature increases to 37 °C. To avoid the dissolution of gelatin at the physiological temperatures, chemical 
or enzymatic crosslinking is usually employed11–13. Conventional synthetic crosslinking reagents such as glu-
taraldehyde, diisocyanates, and carbodiimides, as well as genipin, a natural crosslinker with low acute toxicity, 
have been used for gelatin crosslinking. However, the poor mechanical performance and high swelling ratio of 
gelatin largely limit the application of gelatin hydrogels.

The strategies to substantially improve mechanical properties of hydrogel include hybridization with nano-
materials or incorporation of multiple components with different crosslinking mechanisms involving chemical 
bonding and physical entanglement14. Various matrixes, either organic or inorganic, have been hybridized with 
gelatin to improve its mechanical and thermal performance15–19. For example, crosslinked porous gelatin/chitosan 
scaffolds with controllable mechanical properties for load bearing soft tissues have been prepared using genipin20. 
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Formation of interpenetrating network (IPN) and semi-IPN structures in gelatin/chitosan hydrogels could also 
enhance the mechanical properties. Gelatin was modified with methacrylic anhydride and covalently crosslinked 
by ultraviolet light radiation, while chitosan was crosslinked by hydrophobic interactions at high pH19. Gelatin/
alginate hydrogels with IPN structures by chemical crosslinking of gelatin with genipin or carbodiimide together 
with ionic crosslinking of alginate with calcium or zinc ions have also been prepared. The hydrogel was further 
reinforced with cellulose nanocrystals (CNCs) and demonstrated good mechanical properties comparable to 
natural cartilage21,22. Dialdehyde CNCs prepared by sodium periodate oxidation was able to crosslink gelatin to 
form hydrogel with improved mechanical properties and thermal stability23. CNFs have also been dispersed into 
crosslinked gelatin/chitosan matrix to fabricate 3D porous scaffolds by freeze-drying24. The scaffolds demon-
strated high porosity and viscoelasticity when immersed in phosphate buffered saline (PBS). Bacterial cellulose 
(BC)/gelatin composite hydrogels crosslinked with N-(3-dimethy-laminopropyl)-N′-ethylcarbodiimide hydro-
chloride have also showed significant enhancement in mechanical strength and stiffness owing to the natural 
ultrafine-fibre network structures of BC25–27. The fracture stress and elastic modulus of BC/gelatin hydrogel 
under compression were reported to be 3.7 MPa and 1.7 MPa with water content of 82.8 wt%, respectively27. The 
interfacial interaction and bonding between cellulose and gelatin and the formation of CNF network structure 
are important to the mechanical properties of gelatin/CNFs hydrogels. To further increase their mechanical 
properties while maintaining high water content (> 80 wt%), the formation of oriented structure of aligned CNFs 
in the hydrogel is highly desirable. However, this is rather challenging and requires shear-induced alignment 
when using CNFs by bottom-up assembly approaches28,29.

In this work, delignified wood with inherently aligned CNFs and native porous cell wall structure is used as 
mechanical reinforcement and structural confinement for gelatin hydrogels, aiming to enhance the compres-
sive mechanical properties of gelatin hydrogel as well as decreasing its swelling under physiological condition. 
Composite hydrogels from delignified wood and gelatin have been prepared by infiltration of gelatin followed by 
chemical crosslinking with genipin at different concentrations and characterized in terms of structural features 
(porosity and pore size), molecular configuration, mechanical properties and swelling behaviour. As illustrated 
in Fig. 1, lignin was removed from wood structure and the cellular structure with inherent CNFs alignment in 
the cell wall was preserved. Gelatin was infiltrated in the channels of the delignified wood and crosslinked by 
genipin. The microstructure of the delignified wood/gelatin composite hydrogels was characterized by optical 
microscopy and field emission scanning electron microscopy (FE-SEM). The compressive mechanical properties 
and the swelling behaviour of the composite hydrogels were studied.

Results and discussion
Structure of the composite hydrogel.  Balsa wood was delignified by using 1 wt% sodium chlorite at 
80  °C. The main functional substance in sodium chlorite delignification is chlorine dioxide, which has been 
widely used for disinfection, sterilization in food and medical application owing to its low toxicity. The delig-
nified wood was washed intensively with deionized water before the infiltration of gelatin. Delignified wood 
showed a white colour (Fig. 2a) as most of lignin and chromophores have been removed from the wood struc-
ture. This was further confirmed by the disappearing of lignin-attributed peaks30 at 1596 cm−1 (symmetric ring 
stretching), 1504 cm−1 (asymmetric ring stretching) and 1464 cm−1 (asymmetric C–H deformation) in the ATR-
FTIR spectrum of delignified wood as compared to the original Balsa wood (Fig. 3). Besides, hemicelluloses 
remained in the delignified wood as indicated by the peak at 1730 cm−1 corresponding to the C=O stretching 
frequency of carbonyl groups in hemicellulose.

The crosslinking strategies significantly impact the structure and properties of gelatin-based hydrogel31,32. 
The complete gelation of gelatin (37.5 wt%) was achieved within 35 min at 37 °C when 1 wt% (44 mM) genipin 
was used as a crosslinker33. However, the complete infiltration of gelatin into porous delignified wood structure 
takes much longer time. To avoid gelling, gelatin from bovine skin was first infiltrated into the delignified wood 
at 50 °C for one week. The composites were then kept overnight at 4 °C, which is below the upper critical solution 
temperature of gelatin, to allow physical gelation of gelatin. Subsequently, the composite hydrogels were further 
chemically crosslinked in a genipin solution for 48 h, to assure complete crosslinking of infiltrated gelatin in the 
composite. The initial genipin concentration and the compositions of gelatin, delignified wood, and water in 
the resulting composite hydrogels are summarized in Table 1. The delignified wood/gelatin composite hydrogels 
with water content of around 81 wt% were successfully prepared. The water content was lower than those for 

Figure 1.   Schematic illustration for the preparation of delignified wood/gelatin composite hydrogel.
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neat gelatin hydrogel due to the interaction between gelatin and delignified wood and the structural confinement 
provided by the wood cell wall structure as evidenced by FTIR analysis and swelling behaviour discussed in lat-
ter sections. Nonetheless, a highly hydrated network (water content > 80 wt%) was maintained in the composite 
hydrogels, which is of great interests for ultra-stiff/strong hydrogel preparation34. Both gelatin hydrogel and 
the delignified wood/gelatin hydrogels showed a dark blue colour (Fig. 2b,c) indicating the successful chemical 
crosslinking of gelatin by genipin. This characteristic colour is typically observed for dyeing in food, textile, and 
tattoo when the amine groups are crosslinked with genipin. Infiltration of gelatin into the lumen of the wood 
structure was confirmed by the microscopy observation (Fig. 2d,e). This was further confirmed by FTIR analysis 
(Fig. 3). The absorption band at 1527 cm-1 in neat gelatin was ascribed to NH bending (amide II). The shift of the 
amide II band from 1527 to 1540 cm-1 (Fig. 3b) was observed in delignified wood/gelatin hydrogels, indicating 
that the presence of delignified wood prevented the formation of β-sheet structure, resulting in more random coil 
to α-helix structure during the physical folding of gelatin in cooling process35. The peak at 897 cm-1 (Fig. 3a) is 
originated from the CH deformation at C1 position associated with C–O–C stretching of the β-glycosidic link-
ages in cellulose and hemicellulose36. The intensity of the shoulder peak at 897 cm-1 in the composite hydrogels 

Figure 2.   Photographs of (a) delignified wood, (b) gelatin and (c) delignified wood/gelatin hydrogel. (d) SEM 
image of freeze-dried delignified wood, showing the well-preserved cellular structure. (e) Optical microscopy 
image of delignified wood/gelatin composite hydrogel in wet state with initial gelatin and genipin concentrations 
of 30 wt% and 100 mM.
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decreased with increasing crosslinking density at higher genipin concentrations, which indicating an increased 
hydrogen bonding between gelatin and delignified wood. Indeed, the broadening of the OH stretching vibration 
region centred at 3340 cm-1 (Fig. 3b) and the NH stretching of hydrogen-bonded amide group at 3300 cm-1 was 
observed for the composite hydrogel with increasing genipin concentration37. The peaks at 3080 and 2940 cm-1 
(Fig. 3a) were attributed to the CH3 stretching and CH2 stretching of amide B structure, respectively38. The rela-
tive intensity between 3080 to 2940 cm-1 (I3080/I2940) of genipin crosslinked delignified wood/gelatin composite 
was higher than the neat gelatin, indicating stronger entanglement in the gelatin network.

The effect of genipin concentrations on the morphology and pore structure of delignified wood/gelatin hydro-
gels was further studied by FE-SEM (Fig. 4) using freeze-dried samples. Their pore size and porosity data are sum-
marized in Table 2. As shown in Fig. 4a, the cross section of delignified balsa wood possessed a honeycomb-like 

Figure 3.   ATR-FTIR spectra of original wood, delignified wood, neat gelatin and delignified wood/gelatin 
hydrogel crosslinked with genipin at different concentrations in the range of (a) 4000 to 800 cm-1 and (b) 3700 
to 3100 cm-1 and 1600 to 1400 cm-1.

Table 1.   Initial genipin concentration and the composition of gelatin, delignified wood, and water in the 
resulting hydrogels.

Sample Genipin (mM) Gelatin (wt.%) Delignified wood (wt.%) Water (wt.%)

Gelatin hydrogels

1 11.8 ± 0.1 – 88.2 ± 0.1

50 13.4 ± 0.2 – 86.6 ± 0.2

100 14.1 ± 0.1 – 85.9 ± 0.1

Delignified wood/Gelatin hydrogels

1 14.0 ± 0.1 4.8 ± 0.1 81.2 ± 0.8

50 14.2 ± 0.1 4.9 ± 0.1 80.9 ± 0.3

100 14.4 ± 0.1 4.8 ± 0.1 80.8 ± 0.6

Delignified wood – – 5.5 ± 0.4 94.5 ± 0.4
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Figure 4.   Cross section SEM images of freeze-dried delignified wood (a), (b) and freeze-dried delignified 
wood/gelatin hydrogel crosslinked with different genipin concentrations: (c), (d) 1 mM; (e), (f) 50 mM; (g), (h) 
100 mM.
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structure which is composed of hollow fiber cells with diameters between 20 and 50 μm. Nano- and micron-scale 
pores were observed in both cell walls and cell wall corners (Fig. 4b), and a total porosity of 93.4 ± 0.6% was 
obtained. Such porous structure allowed the penetration of gelatin into the cell wall structure and facilitated the 
interaction of gelatin with cellulose and hemicellulose in delignified wood. The fixation of gelatin in delignified 
wood was enabled by chemical crosslinking with genipin. When only 1 mM genipin solution was applied, the 
composite hydrogel shows similar macroscopic structure as delignified wood (Fig. 4c). Due to the low initial 
concentration of genipin, network structure of gelatin did not form in the lumens. Gelatin was mainly adsorbed 
onto the surface of lumens and infiltrated into the cell wall and cell wall corners, resulting in a decreased porosity 
of 83.7 ± 0.2%. Indeed, smooth surface was observed at both cell wall and cell wall corners (Fig. 4d). When the 
genipin concentration was increased to 50 mM, gelatin network was formed within lumens and showed a pore 
size of 6.0 ± 1.2 μm (Fig. 4e,f). As the concentration of genipin was increased to 100 mM, denser gelatin network 
was clearly observed in lumens (Fig. 4g,h), and the crosslinked gelatin aerogel exhibits a porous structure with 
relatively smaller pore size of 2.3 ± 0.5 μm. Consequently, the total porosity of delignified wood/gelatin hydrogel 
decreased to 72.7 ± 0.3% and 69.0 ± 0.2% when 50 and 100 mM genipin were applied, respectively. Beyond short-
range crosslinking between amino acids, genipin also undergoes a long-range intermolecular crosslinking which 
involves self-crosslinking between genipin monomers. By tuning the degree of polymerization of polygenipin, 
the pore size of gelatin scaffold certainly can be controlled for different purposes39. 

Compressive mechanical properties.  The typical compressive stress–strain curves of gelatin, deligni-
fied wood, and delignified wood/gelatin hydrogels are shown in Fig. 5 and their mechanical property data are 
summarized in Table 3. When neat gelatin was chemically crosslinked with genipin, the enhancement in elastic 
modulus, fracture stress and fracture strain was achieved owing to higher crosslinking density with increasing 
concentration of genipin (Table  3). The elastic modulus of gelatin hydrogel increased from 22.5 ± 2.4  kPa to 
135.8 ± 23.0 kPa as the genipin concentration increased from 1 to 100 mM, respectively. The crosslinked gelatin 
hydrogel showed elastic behaviour and large deformation (compressive strain up to 50%) was induced with low 
stress load (Fig. 5a). Increasing crosslinking density resulted in denser polymer network with decreased water 
content (from 88.2 ± 0.1 to 85.9 ± 0.1 wt%, Table 1), which substantially enhanced the mechanical properties 
of neat gelatin hydrogel27. As the genipin concentration increased from 1 to 100 mM, significant increase in 
fracture strain and fracture stress for neat gelatin hydrogel was observed (Table 3). The impact of crosslinking 
density on the mechanical properties of gelatin is significant due to its amorphous nature and lack of rigidity27. 
Relatively high fracture stress (1.01 ± 0.37 MPa) was achieved at a fracture strain of 75.3 ± 4.9% by using 100 mM 
genipin.

By contrast, the delignified wood hydrogel showed a completely different compressive stress–strain curve 
with an initial linear elastic deformation followed by a non-linear plastic yielding and the highest stress 
(311.0 ± 21.6 kPa) was reached at a compressive strain of 3.2 ± 0.3% (Fig. 5b). Due to the misalignment of fibres, 
shear force was generated along with compression, thus tangential displacement of fibres under stress transi-
tioned into a plateau when the strain was between 5 and 90%. Benefit from the crystalline nature of cellulose 
and oriented organization of cellulose microfibrils along axial direction in the secondary cell wall of wood40, 
high stiffness was achieved with an elastic modulus of 21.89 ± 3.76 MPa for the delignified wood hydrogel. When 
gelatin was infiltrated into delignified wood and crosslinked by genipin, the composite hydrogels showed similar 
compressive stress–strain profile as delignified wood, and a decrease in elastic modulus with an enhancement 
in yield stress and an increase in yield strain were observed (Table 3). Although the composite hydrogels had 
much lower water content (higher solid density) as compared to delignified wood (Table1), the elastic modulus 
of the composite hydrogels decreased with the increasing genipin concentration as compared to delignified 
wood. This suggests that the volume fraction of infiltrated gelatin inside the wood cell walls and cell wall corners 
were increased with increasing crosslinking of gelatin. Indeed, the interaction between gelatin and delignified 
wood was also enhanced with increasing genipin concentration as confirmed by FTIR analysis. When 1 mM 
genipin was applied, slight increase in both yield stress and yield strain was found for composite hydrogel as 
compared to delignified wood. As the concentrations of genipin were increased to 50 and 100 mM, the yield 
stress of delignified wood/gelatin hydrogel increased two-fold compared to delignified wood to 652.6 ± 49.8 kPa 
and 689.3 ± 34.9 kPa, respectively, owing to the dense crosslinking between amino acid chains of gelatin and 
subsequent formation of hydrogel network within the cell lumens of delignified wood as revealed in Fig. 4e–h. 
The network structure inside wood cell lumens contributed to energy dissipation during compression, improving 
the resistance of composite hydrogel to yield, hence the yield strain was increased to 9.7 ± 0.2% and 10.2 ± 0.6%, 
respectively. The fracture strains of delignified wood and the composite hydrogels are all higher than 95%. 
The compressive stress of the composite hydrogels at 95% compressive strain was increased significantly with 

Table 2.   Porosity of freeze-dried delignified wood/gelatin hydrogels and pore size of the infiltrated gelatin 
inside the lumens of delignified wood.

Sample Genipin (mM) Pore size (μm) Porosity (%)

Delignified wood/ Gelatin hydrogels

1 – 83.7 ± 0.2

50 6.0 ± 1.2 72.7 ± 0.3

100 2.3 ± 0.5 69.0 ± 0.2

Delignified wood – – 93.4 ± 0.6
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Figure 5.   Compressive stress–strain curves of (a) genipin crosslinked gelatin hydrogels and (b) delignified 
wood and delignified wood/gelatin hydrogels at genipin concentrations of 1, 50, and 100 mM.

Table 3.   Effect of genipin concentration on the compressive mechanical properties of delignified wood, 
gelatin, and their composite hydrogels. a Compressive stress at the compressive strain of 95%.

Sample Genipin (mM)
Elastic modulus 
(MPa)

Fracture strain 
(%)

Fracture stress 
(MPa) Yield stress (kPa) Yield strain (%)

Gelatin hydrogels

1 0.0225 ± 0.0024 45.4 ± 3.6 0.0217 ± 0.0046 – –

50 0.0663 ± 0.0064 71.2 ± 2.8 0.5742 ± 0.1654 – –

100 0.1358 ± 0.0230 75.3 ± 4.9 1.01 ± 0.37 – –

Delignified wood – 21.89 ± 3.76  > 95 0.3146 ± 0.0072a 311.0 ± 21.6 3.2 ± 0.3

Delignified wood/
gelatin hydrogels

1 18.12 ± 1.87  > 95 5.06 ± 1.05a 382.3 ± 32.8 4.5 ± 0.2

50 14.07 ± 1.42  > 95 7.40 ± 2.29a 652.6 ± 49.8 9.7 ± 0.2

100 11.82 ± 1.51  > 95 14.44 ± 2.65a 689.3 ± 34.9 10.2 ± 0.6
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increasing genipin concentration as compared to that for delignified wood. With 100 mM genipin, the compres-
sive stress at 95% compressive strain was as high as 14.44 ± 2.65 MPa, one to two magnitude higher than that for 
neat delignified wood and the fracture stress for neat gelatin crosslinked with 100 mM genipin (Table 3). The 
elastic modulus of the composite hydrogel (11.82 ± 1.51 MPa) was also two magnitude higher than that for neat 
gelatin hydrogel at 100 mM genipin. Such synergistic enhancement in both elastic modulus and compressive 
stress indicated the mutual toughening effect owing to the formation of porous structure of gelatin in the lumens 
of honeycomb like wood cell structure and strong intermolecular hydrogen bonding between infiltrated gelatin 
and delignified wood inside the wood cell walls and cell wall corners.

Swelling behaviour.  The swelling behaviour is another key factor which is strongly influenced by the struc-
ture of composite hydrogel. To study the swelling behaviour of neat gelatin hydrogel, delignified wood and 
composite hydrogels, samples were freeze-dried and then rehydrated in 0.1 M PBS (pH 7.4) buffer at 37 °C for 
48 h to reach an equilibrium state. As shown in Fig. 6, the equilibrium water uptake of delignified wood was 
1747.5 ± 14.1% because of its high porosity and hydrophilicity. Freeze-fried neat gelatin hydrogel also showed 
high water uptake, around 2120.1 ± 153.9%, when 1 mM genipin was applied. The loosely crosslinked gelatin 
network enabled accommodating large volume of phosphate buffer. The swelling of neat gelatin hydrogel was 
restricted when higher concentration of genipin was applied. A water uptake of 825.1 ± 17.7% was obtained at a 
genipin concentration of 100 mM. A plausible explanation is the formation of a rigid network through genipin 
crosslinking, which reduced the accessible hydrophilic groups as well as the extensibility of gelatin network. Dif-
ferent from neat gelatin, delignified wood/gelatin hydrogels showed less dependence on the genipin concentra-
tion. The water uptake values of the composite hydrogels were 431.1 ± 5.7%, 427.9 ± 4.4%, and 407.5 ± 5.2% at a 
genipin concentration of 1, 50, and 100 mM, respectively. Such lower water uptake values as compared to delig-
nified wood and neat gelatin were resulted from the infiltration of gelatin into wood cell wall and the formation 
of strong intermolecular hydrogen bonding between delignified wood and gelatin after genipin crosslinking. 
These values also suggested that the corresponding water content of the PBS rehydrated composite hydrogels 
were ca. 81.2%, 81.1%, and 80.3%, respectively, same to the original water content in the composite hydrogels 
(Table 1). This indicates that unlike the neat gelatin hydrogel, further swelling of the composite hydrogel did 
not occur. Indeed, the accessibility of delignified wood cell wall and hydrophilicity of both components were 
significantly constrained. Particularly, the rigid nature of the cell wall structure in delignified wood restricted 
the swelling of gelatin.

As a comparison, when 30  wt% gelatin was crosslinked with N-(3-dimethy-laminopropyl)-N′-
ethylcarbodiimide hydrochloride (EDC) within the bacterial cellulose (BC) scaffold27, the double-network (DN) 
composite hydrogel showed a compressive stress of 3.7 MPa, a modulus of 1.7 MPa, and an a degree of swelling 
of 5.8, which is equal to a water uptake value of 480%. Another example is TEMPO-oxidized CNF/gelatin (1:10 
by weight) composite, in which gelatin was crosslinked initially through physical dehydrothermal treatment 
and then chemically with 6 wt% hexamethylenediamine and/or 1 wt% genipin. The resulted composite hydrogel 
showed a compressive stress of 25.6 kPa, an elastic modulus of 35.2 ± 3.1 kPa and a swelling ratio of 10.8 ± 0.6, 
which is equal to a water uptake value of around 1080%8. Photo-crosslinked IPN hydrogel consisting of chitosan 
and gelatin methacryloyl achieved a compressive modulus of 116.08 ± 9.62 kPa and an equilibrium water uptake 
value of around 1000%19. Taking advantage of the native aligned cellulose fibrils in wood cell wall and honeycomb 

Figure 6.   Effect of genipin concentration on the equilibrium swelling ratio of delignified wood, delignified 
wood/gelatin hydrogel and gelatin hydrogels in PBS buffer solution.
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like cellular structure of wood5, the delignified wood/gelatin hydrogel prepared in this work was proved to be both 
mechanically tough under compression (Fig. 5) and highly resistant to swelling under physiological condition 
(Fig. 6). Besides, the water content of delignified wood/gelatin hydrogel (ca.81%, Table 1) is among the highest 
which is close to that in natural cartilage21.

Conclusions
A bio-based composite hydrogel composed of gelatin and delignified wood was successfully prepared through 
infiltration of gelatin into the porous wood template at 50 °C and subsequent crosslinking with genipin at 
4 °C. The composite hydrogels demonstrated tunable porous structure with high mechanical strength and high 
resistance to swelling during rehydration in phosphate buffer (0.1 M, pH 7.4) at 37 °C. With increasing genipin 
concentration from 1 to 100 mM, the composite hydrogels showed an increase in compressive yield stress as 
high as 689.3 ± 34.9 kPa owing to the infiltration of gelatin into the cell wall and cell wall corner and the forma-
tion of gelatin network within lumen of the well-preserved wood cell structure in delignified wood. The elastic 
modulus of the composite hydrogel was 11.82 ± 1.51 MPa at a genipin concentration of 100 mM, two magnitude 
higher than the corresponding neat gelatin hydrogel. The swelling of gelatin was confined within lumen of the 
wood cell, resulting in the water uptake at equilibrium state as low as 407.5 ± 5.2%. These unique properties are 
superior to those for the DN hydrogel of BC/gelatin and IPN hydrogels of CNF/gelatin and chitosan/gelatin. 
In addition, both pore size of the infiltrated gelatin and porosity of the freeze-dried composite hydrogels were 
tunable by varying the genipin concentration. This work demonstrated wood structure an excellent template in 
preparation of high-performance composite hydrogels, taking advantages of inherently aligned CNFs and native 
porous cell wall structure for mechanical reinforcement and structural confinement.

Methods
Reagents and materials.  Gelatin from bovine skin (75 Bloom), sodium chlorite, sodium acetate, acetic 
acid, glycine, sodium dihydrogen phosphate dihydrate and sodium phosphate dibasic dihydrate were purchased 
from Sigma-Aldrich and used as received. Genipin powder (98%, HPLC) was a product of Zhixin Biotechnol-
ogy, China. Wood blocks (10 × 10 × 10 mm3, Longitudinal × Radial × Tangential) were cut from air-dried balsa 
wood (Ochroma pyramidale) sticks with a density of 175 kg/m3 purchased from Wentzel’s Co. Ltd., Sweden.

Preparation of delignified wood.  Balsa wood blocks were immersed in 1 wt% sodium chlorite buffered 
with acetate solution (PH 4.6) overnight at room temperature prior to heating up. The delignification was then 
carried out at 80 °C for 24 h. After washing thoroughly with deionized water, the delignified wood blocks were 
kept in water until further use.

Preparation of delignified wood/gelatin composite hydrogels.  Gelatin was dissolved in deionized 
water at concentration of 30 wt% and stored overnight at 50 °C. The delignified wood blocks were then trans-
ferred into the gelatin solution and kept for 1 week at 50 °C to ensure a complete infiltration of gelatin into the 
delignified wood. Gelatin-impregnated wood samples were then taken out and cooled down to 4 °C overnight 
to allow physical crosslinking of gelatin. The samples were then crosslinked in a genipin solution with different 
concentrations: 1, 50, and 100 mM at 4 °C for 48 h. The composite hydrogels were then washed with 1 wt% gly-
cine solution followed by deionized water to remove the unreacted genipin. Neat gelatin hydrogel was prepared 
in the same way as the composite hydrogel.

Attenuated total reflection Fourier transform infrared spectroscopy (ATR‑FTIR).  ATR-FTIR 
spectra of original wood, delignified wood, delignified wood/gelatin hydrogel, and neat gelatin without genipin 
crosslinking were obtained with a FTIR spectrometer (Spectrum 2000, Perkin-Elmer, USA). The resolution was 
4 cm-1 and 32 scans were accumulated over a range of 600–4000 cm-1 for each sample. Prior to FTIR characteri-
sation, thin slices of each samples were obtained with microtome and freeze-dried.

Optical microscopy and FE‑SEM.  The morphology of crosslinked gelatin within the delignified wood 
structure was characterized by using an optical microscope (LSM 510 Pa, Zeiss, Germany) in wet state. The 
microstructure was further characterized by using a field emission scanning electron microscope (FE-SEM, 
S-4800, Hitachi, Japan) working at low acceleration voltage (3 kV) and short working distance (8 mm). Thin 
Sections (200 μm in thickness) were obtained from the cross section of the delignified wood/gelatin hydrogel 
and delignified wood with a sliding microtome (SM 2010R, Leica, Germany). The hydrogel sections were then 
frozen at − 20 °C for 24 h and lyophilized with a freeze-dryer for 48 h. Freeze-dried sections were fixed onto 
metal stubs with carbon tape and then sputtered with platinum-palladium with a thickness of 3 nm. Pore size 
of the infiltrated gelatin in the freeze-dried composite hydrogel was measured from the FE-SEM images using 
Image-J software and 100 pores were measured for each sample41,42.

Compression test.  Compression test was carried out on a universal mechanical tester (Instron-5566, 
Instron, USA) equipped with a 10 kN loading cell. The strain rate was 1 mm/min. Both gelatin hydrogel and 
delignified wood/gelatin hydrogels were taken out from water and tested immediately after wiping off the exces-
sive water on the surface. Load was applied to the composite hydrogel samples along the longitudinal direction 
of the wood. At least five specimens were tested for each sample.
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Swelling behaviour.  Delignified wood, delignified wood/gelatin hydrogels and neat gelatin hydrogels were 
freeze-dried and then rehydrated in phosphate buffer (0.1 M, pH 7.4) at 37 °C for 48 h. The equilibrium water 
uptake (Q) was calculated using the following equation:

where We is the weight of the sample at equilibrium condition and Wd is the weight of the dry sample.

Porosity.  The porosity of freeze-dried composite hydrogels was estimated based on their bulk density (ρb) 
calculated from dry weight and apparent volume (geometry), and true density (ρt) measured with a helium pyc-
nometer (AccuPyc 1330, Micromeritics, Norcross, GA, USA), using the following equation:
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