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Rationale. Heart failure (HF) is accompanied by the development of an imbalance between oxygen- and nitric oxide-derived free
radical production leading to protein nitration. Both chlorinating and peroxidase cycle of Myeloperoxidase (MPO) contribute to
oxidative and nitrosative stress and are involved in tyrosine nitration of protein. Ceruloplasmin (Cp) has antioxidant function
through its ferroxidase I (FeO,I) activity and has recently been proposed as a physiological defense mechanism against MPO
inappropriate actions. Objective. We investigated the relationship between plasma MPO-related chlorinating activity, Cp and FeO,],
and nitrosative stress, inflammatory, neurohormonal, and nutritional biomarkers in HF patients. Methods and Results. In chronic
HF patients (n = 81, 76 + 9 years, NYHA Class II (26); Class III (29); Class IV (26)) and age-matched controls (n = 17,75 + 11
years, CTR), plasma MPO chlorinating activity, Cp, FeO,I, nitrated protein, free Malondialdehyde, BNP, norepinephrine, hsCRP,
albumin, and prealbumin were measured. Plasma MPO chlorinating activity, Cp, BNP, norepinephrine, and hsCRP were increased
in HF versus CTR. FeO,I, albumin, and prealbumin were decreased in HE. MPO-related chlorinating activity was positively related
to Cp (r = 0.363, P < 0.001), nitrated protein, hsCRP, and BNP and inversely to albumin. Conclusions. Plasma MPO chlorinated
activity is increased in elderly chronic HF patients and positively associated with Cp, inflammatory, neurohormonal, and nitrosative
parameters suggesting a role in HF progression.
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1. Introduction

Heart failure (HF) disease is accompanied by the develop-
ment of an imbalance between oxygen- and nitric oxide-
derived free radical production and the ability of the pro-
tective shield represented by a series of antioxidant enzymes
to scavenge and buffer the overwhelming quantity of rad-
ical species generated [1]. Myeloperoxidase (MPO) is a
glycosylated heme-enzyme, mainly stored in the primary
azurophilic granules of polymorphonuclear neutrophils and
macrophages, which owns a potent bactericidal action that is
mediated by production of hypochlorous acid from hydrogen
peroxide and chloride ions [2, 3]. Generation of hypochlorous
acid has been related to MPO and to this enzyme among
the other animal hemoperoxidases [4]. MPO is also secreted
in the extracellular space and increased plasma levels of
MPO are promoted by inflammatory conditions in acute
and chronic settings of cardiovascular patients [2]. A prog-
nostic role of MPO has been reported in acute myocardial
infarction, acute and chronic heart failure, and also healthy
middle age or elderly subjects [5-8]. MPO contributes to the
effects of oxidation and alterations of lipids and propagation
of oxidative stress through chlorinating (halogenating) and
peroxidase cycle activities [3]. MPO is also involved in the
generation of nitrating species. In experimental and human
HE increased peroxynitrite (ONOO™) generation, which
leads to extensive tyrosine protein nitration, derives from
nitric oxide and superoxide or from MPO among the known
animal hemoperoxidases [9, 10]. Tyrosine nitration along
with cysteine oxidation may affect protein structure with a
loss of function as we demonstrated in HF patients where
Ceruloplasmin (Cp) showed a reduced FeO,I activity [11]. It
has recently proposed that the physiological defense against
the inappropriate action of MPO could be ascribed to Cp
binding [12]. Cp, an alpha2-glycoprotein mainly synthesized
by hepatocytes, whose functions include the transport of
serum copper [13] and the acute phase inflammation reactant,
is also involved in iron metabolism through its ferroxidase
activity (FeO,) [14]. Cp is the main contributor of FeO,
activity in human plasma and is called FeO,I [15]. Cp has
been suggested to be also a potent inhibitor of purified MPO,
thus inhibiting production of hypochlorous acid even at low
concentrations [16]. It has been demonstrated that, in plasma
from Cp knock-out mice, MPO was able to act as a potent
oxidizing enzyme, but no significant oxidation was observed
in plasma from wild type animals where Cp was present
[12,16]. Cp and MPO binding has been suggested to be related
to an electrostatic interaction between the cationic nature
of MPO and the anionic charges of Cp [17]. It appears that
Cp should provide a protective hedge against inadvertent
oxidant production by MPO during inflammatory conditions
(Figure 1). In the HF population, no data are available on the
relationship between plasma MPO-related chlorinating activ-
ityand Cp and its FeO, I activity. Also even less known are the
relationships between plasma chlorinating activity related to
MPO and different parameters, expression of neurohormonal
(BNP, norepinephrine, plasma renin activity, and aldos-
terone), inflammatory (high-sensitivity C-reactive protein
(hs-CRP)), metabolic-nutritional (albumin and prealbumin),
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and oxidative (nitrated proteins, free malondialdehyde, and
15-F2t-isoprostane) domains. Based on these premises, we
undertook a study on a cohort of stable chronic elderly HF
of different severity compared to age-matched Controls, to
investigate the above relationships and focusing in particu-
lar on the interaction of plasma MPO-related chlorinating
activity with Cp-mediated FeO,I activity and with the other
parameters linked to neurohormonal, inflammatory, nutri-
tional, and oxidative/nitrosative domains.

2. Methods

2.1. Study Cohort and Follow-Up of Patients. Eighty-one
consecutive stable chronic HF patients referred to the heart
failure outpatient Clinic of the Cardiorenal Research Unit of
the Department of Clinical and Experimental Medicine of the
University Hospital of Parma were included in the present
study. This group was a part of an original cohort of patients
(81 of the 96 patients) already evaluated for nitrosative and
oxidative stress in heart failure [11]. The diagnosis of HF
was based on symptoms and clinical signs according to
guidelines issued by the European Society of Cardiology [17]
and by the American College of Cardiology [18]. The patients
were free from clinical or laboratory signs of acute infec-
tion, rheumatoid or other autoimmune diseases, primary
cachectic states (cancer, thyroid disease, severe liver disease,
and severe chronic lung disease), neuromuscular disorders,
myocardial infarction within the previous 20 weeks, diabetes
mellitus, or severe chronic renal failure (serum creatinine
level >2.0 mg/dL, >177 umol/L). Patients were clinically stable
and on constant therapy at least 8 weeks prior to entering
the study. The study was approved by the University of
Parma Ethics Committee and complied with the Declaration
of Helsinki, and all participants provided written informed
consent.

Seventeen age-matched healthy subjects were recruited
as Controls (CTR) from healthy subjects reporting for a
periodical check-up at the cardiovascular prevention clinic
of the same department. On study entry, a complete med-
ical history, a physical examination, basal laboratory tests
(serum creatinine, electrolytes, and lipid profile), plasma
neurohormonal and inflammatory markers determination,
an electrocardiogram, and an echocardiogram were obtained
from all patients. Estimated glomerular filtration rate (eGFR)
was calculated from the four-component Model of Disease
in Renal Disease (MDRD) equation incorporating age, race,
sex, and serum creatinine level: estimated eGFR = 186 =
(serum creatinine [in milligrams per deciliter]) 115 « (age
[in years])~****. For women, the product of the equation was
multiplied by a correction factor of 0.742 [19].

2.2. Venous Blood Sampling Procedure and Biochemical
Assays. Venous samples were collected as previously indi-
cated [11, 20]. After at least 30 minutes of supine rest, blood
was obtained from an indwelling catheter and collected in
polypropylene tubes containing an EDTA (ethylenediamine
tetraacetic acid) buffer (1.5 mg/mL), except for BNP where
a mix of protease inhibitors (phenylmethylsulfonyl fluoride,
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FIGURE 1: Schematic diagram indicating the relationship between Myeloperoxidase-related chlorinating activity and Ceruloplasmin (Cp).
Ceruloplasmin binding to MPO determines reduction of the active Compound I to Compound II and prevents the recycling of Compound

II back to the active enzyme.

trypsin inhibitor, and aprotinin 500 units/mL) was added.
Except for FeO,I activity measurement, where fresh serum
samples were used, multiple aliquots of plasma samples were
stored at —80°C until assay time for norepinephrine, BNP,
free malondialdehyde (MAD)), total nitrated proteins, and Cp.
All laboratory measurements were performed without any
freeze-thaw cycles of the samples and by investigators blind
to the clinical data.

Plasma chlorination activity, related to MPO, was mea-
sured in EDTA plasma samples by a colorimetric assay (OxiS-
elect Myeloperoxidase Chlorination Activity Assay Kit, Cell
Biolabs, Inc., San Diego, CA, USA) evaluating hypochlorous
acid generation by monitoring Cl-tau generation as previ-
ously described [21, 22]. Each sample from patients and
Controls has been tested for 2 time points’ determination (30
and 60 minutes of hydrogen peroxide incubation). Twenty-
five yuL plasma sample from patients and Controls was
mixed with 1mM hydrogen peroxide solution according
to the manufacturer instructions. After the generation of
hypochlorous acid, the rapid reaction with taurine pro-
duced the stable taurine chloramine product. After adding a
catalase-containing stop solution to block MPO catalysis by
eliminating hydrogen peroxide, taurine chloramine reaction
with TNB chromogen probe allowed measurement of MPO
activity (absorbance at 405-412nm). Data related to 60-
minute incubation has been reported in the paper. The intra-
assay and interassay coeflicients of variation were 12% and
17% and the analytical sensitivity was 2.8 mU/mL. This assay
measures plasma chlorinating activity that is related to MPO.
Plasma samples from a subgroup of patients and CTR (one
out of five patients) underwent MPO immunoprecipitation

procedure to evaluate the contribution of MPO to plasma
chlorinating activity. In the present study, chlorinating activ-
ity was found almost abolished in the supernatant after
immunoprecipitation of MPO suggesting that chlorinating
activity in plasma is mainly due to MPO (data not shown).
A monoclonal anti-human anti-MPO antibody (Myeloper-
oxidase Antibody (1A1), Thermo Scientific Pierce Antibodies,
Waltham, MA, USA) was cross-linked to Dynabeads protein
G (Dynal Biotech, Oslo, Norway). Anti-MPO antibody was
prepared from a stock solution of 1 mg/mL. After washing,
50 uL of Dynabeads (1.5 mg) was resuspended after magnetic
separation (Dynal MPC) in 0.1M Na,HPO, pH 8.0 and
transferred to a polypropylene test tube. The solution was
incubated with rotation (Dynal MX1-Mixer) for 20 minutes at
room temperature with 200 L of phosphate buffer saline (pH
7.4) containing 6.5 ug of antibody. After magnetic removal
of supernatant, the beads-Ab complex was resuspended with
phosphate buffer saline (pH 7.4) with 0.02% Tween 20. Two
hundred and fifty L of diluted samples (1:25) from the
patients and CTR was incubated with tilting and rotation for
60 minutes at room temperature. Test tubes were then placed
on the magnet for 3 min to separate beads beads-Ab complex
on the tube wall and the supernatant. Chlorinating activity
was then measured in the supernatant.

FeO,I was measured by ferrous ion as substrate (Fe(II);
ferrous ammonium) according to the method of Erel [23].
Norepinephrine, BNP, plasma renin activity, aldosterone,
free MAD, high sensitivity C-reactive protein (hsCRP),
Cp, albumin, and prealbumin were determined as previ-
ously described [11, 19]. Total nitrated proteins levels were
assessed using a sandwich ELISA assay kit (Oxis Research
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TaBLE 1: Clinical characteristics of heart failure patients and healthy Controls.

Controls (n = 17) NYHA ClassII (n =26)  NYHA Class III (n = 29) NYHA Class IV (n = 26)
Age, years 76 £11 76 £7 77 £10 759
Gender, male 7 9 20
BMI (kg/mz) 23.7+4.0 257+29 23.8+3.7 23.5+3.6
Systolic BP (mm Hg) 135+ 23 138 + 19 136 +17 113 + 19*™
Diastolic BP (mm Hg) 73+8 80 + 14 79 + 12 64 +12M
Heart rate (bpm) 81+13 78+ 11 72+ 11 80+11
Ischemia/hypertense/idiopathic — 20/13/0 24/14/0 22/6/2
Current smoker (%) 47 14 35
Ejection fraction (%) 66 6 51+6* 41+77F 29 + 7+
Haemoglobin (g/dL) 13.2+£1.0 129+ 0.9 13.0+14 12.6 +1.1
Neutrophils (103 cell/pL) 2.70 £ 0.92 3.73 £1.43" 3.51 +1.27* 3.66 +1.21"
Sodium (mEq/L) 141 + 4 141 + 4 138 +3 135 + 5*F
eGFR (mL/min) 60 +22 49+ 15 45 + 18" 41+ 14"

Data are reported as mean + SD; eGFR: estimated glomerular filtration rate; * indicates P less than 0.05 versus Controls, T versus NYHA II, and # versus NYHA

111

International Inc., Foster City, CA USA). The intra-assay and
interassay coefficients of variation were 4% and 14% and the
analytical sensitivity was 2 nmol/L.

The test analytical sensitivity was 0.15ng/mL for PRA,
7.6 pg/mL for aldosterone, and 3.0 pg/mL for BNP. hs-CRP
was measured using the Dade Behring N Highly Sensitive
CRP assay (Dade Behring Diagnostics) on the BN 100 Neph-
elometer. Plasma-free malondialdehyde, a marker of lipid
peroxidation, was measured together with 15-F2t-isoprostane
as oxidative pathway markers.

Plasma-free malondialdehyde was determined by HPLC-
based thiobarbituric acid separation and spectrophotometric
[11]. The intra-assay and interassay coefficients of variation
were less than 10%. Plasma 15-F2t-ISO, after the extraction
procedure, was measured by an enzyme immunoassay kit
(Cayman Chemical, USA). Intra- and interassay coeflicients
of variation were 6 and 9%, respectively.

2.3. Data Analysis. Values are presented as mean + SD or as
median (range). Comparisons of the baseline characteristic
variables among Controls and HF patients in NYHA Classes
I1, 111, and IV were made with one-way analysis of variance
or nonparametric equivalent Kruskal-Wallis one-way analysis
of variance by ranks (depending on the parametric or non-
parametric distribution) followed by Bonferroni post hoc or
Dunn’s test. Relations between parameters, including MPO-
related chlorinating activity, FeO,I, Cp, nitrated protein,
hsCRP, BNP, free MAD, albumin, prealbumin, and eGFR,
were analyzed by linear regression analysis using Pearson
or Spearman correlation coefficients. Lin-log plots are used
to describe a semilog plot with a logarithmic scale on the
x-axis and a linear scale on the y-axis or log-log plots to
describe the relationship according to the distribution of
the parameters. The D’Agostino-Pearson normality test was
passed for all parameters, except for hsCRP, MPO-related
chlorinating activity, and BNP that were log transformed
to create a normal distribution. All statistical analyses were

performed using SPSS for Windows 18.0 (SPSS Inc.). P < 0.05
was considered statistically significant.

3. Results

Eighty-one HF patients were included and agreed to partic-
ipate in the study (40 females and 41 males). Their mean
age was 76 * 9 years and their New York Heart Association
(NYHA) functional class was separated in Class II/III/IV:
26/29/26, respectively. The clinical characteristics are indi-
cated in Table1 and clinical parameters were compared to
age-matched CTR subjects (n = 17). Setting at 45%, the cut-
off for EF, 52 (64%) HF patients had a reduced EF and 29
(36%) had a preserved EF. HF cause was ischemic in origin
in about 81% of the patients, and 43% of them suffered from
hypertension. Systolic and diastolic blood pressure were sig-
nificantly lower in NYHA Class IV patients versus the other
groups of patients (Table 1). Estimated GFR was reduced in
the advanced HF Class (III and IV) compared to Controls
and NYHA Class II patients. HF patients showed higher
plasma levels of MPO-related chlorinating activity, Cp, BNP,
norepinephrine, hsCRP, free MAD, nitrated protein, and 15-
F2t-isoprostane as compared to CTR subjects, whereas FeO,I
activity, albumin, and prealbumin were significantly reduced
in HF versus CTR subjects (Table 2). A significant difference
in MPO-related chlorinating activity was observed between
HF patients and CTR, with an incremental trend from NYHA
IIto NYHA class IV (Figure 2(a) and Table 2). No differences
were observed in MPO-related chlorinating activity between
HF patients with reduced or preserved EF. Cp levels were
higher in NYHA Classes III (+16%) and IV (+24%) as
compared to NYHA Class II (P < 0.05) (Figure 2(b)). FeO,I
activity was reduced in Class IV HF patients compared to
NYHA Class II patients (—23%) and Controls (—24%) as
indicated in Table 2.

In HF patients, a close correlation was found between
plasma MPO-related chlorinating activity and CP levels (r =
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TABLE 2: Oxidative, neurohormonal, inflammatory, and nutritional parameters of heart failure patients and healthy Controls.

Controls (n = 17)

NYHA Class IT (n = 26)

NYHA Class III (n = 29) NYHA Class IV (n = 26)

Oxidative
MPO activity (mU/min) 10.5 (2.5-26.4) 21.9 (4.8-83.1)* 23.5 (2.5-102.5)" 30.1(12.2-85.2)"
Ceruloplasmin (nmol/L) 2176 + 453 2153 + 426 2508 + 489" 2662 + 560"
FeO, I activity (UI/L) 442 +128 437 + 142 367 + 151 336 + 110"
Nitrated proteins (nmol/L) 274 + 69 314 + 75 402 +97*1 428 + 85*7
Malondialdehyde (umol/L) 0.25 + 0.09 0.32 + 0.09 0.43 + 0.13*" 0.47 + 0.12*7
15-F2t-isoprostane, pg/mL 56 + 30 91+ 30 128 + 48" 140 + 46™1
Neurohormonal
Norepinephrine (pg/mL) 256 + 76 266 + 70 363 +101°" 621 + 220"
BNP (pg/mL) 37 (11-62) 48 (12-196) 183 (19-459)*" 283 (105-620)*"
PRA, ng/mL/hr 112+ 0.86 1.58 + 0.81 2.41+1.24" 4.69 +2.22°
Aldosterone, pg/mL 169 £ 79 177 + 94 247 £135 295 +110*"

Inflammatory and nutritional

hsCRP (mg/dL) 0.78 (0.12-4.56) 0.82 (0.17-9.30) 1.90 (0.66-36.16)*" 722 (1.49-44.31)*™
Albumin (g/dL) 39405 39405 3.7+0.6 31+0.7
Prealbumin, mg/dL 29.5+5.3 29.8 +6.3 265+ 77 20.2 +8.1*F
Total cholesterol (mg/dL) 194 + 20 216 + 34 210 + 42 202 + 36

Data are reported as mean + SD or median (range) depending on the distribution of data; BNP: B type natriuretic peptide; hsCRP: high sensitivity C-reactive
protein; PRA: plasma renin activity; MPO: Myeloperoxidase-related chlorinating activity; FeO,I: ferroxidase I activity; * indicates P less than 0.05 versus

Controls, T versus NYHA II, and # versus NYHA III.

0.363, P < 0.001, and n = 81) whereas no correlation
was found between plasma MPO chlorinating activity and
FeO,I activity (r = 0.129 and P = 0.190, Figure 3(a)).
A positive linear relationship was observed between MPO-
related chlorinating activity and nitrated protein (r = 0.365
and P < 0.001, Figure 3(b)), hsCRP (r = 0.351 and P < 0.001,
Figure 3(c)). The strongest positive relationship was found
between chlorinating activity and BNP (r = 0.496 and P <
0.001, Figure 4(a)), and no correlation was observed between
MPO-related chlorinating activity and eGRF (r = 0.149 and
P = 0.123, Figure 4(b)). A borderline negative correlation
was found between MPO-related chlorinating activity and
albumin (r = —0.201 and P = 0.047, Figure 4(c)).

4. Discussion

There are several results arising from this study on a cohort
of chronic HF patients with both reduced and preserved EF.
First plasma MPO-related chlorinating activity is elevated in
elderly HF patients, with increasing levels linked to the wors-
ening of NYHA class, compared with age-matched Controls.
We measured plasma MPO-related chlorinating activity and
not MPO mass and we observed that no differences were evi-
dent between reduced and preserved EF HF patients. Second,
we reported a positive correlation between plasma MPO-
related chlorinating activity and Cp levels in HF patients.
This finding in part contrasts with what was expected. Cp
binding to MPO should represent a protective shield against
increased oxidant production by MPO, also in HF patients.
Third, plasma MPO-related chlorinating activity is positively
associated with several systemic inflammatory, neurohor-
monal, and oxidative/nitrosative parameters expressing the
activation of these pathways in HF patients while progressing

the disease. Fourth, a negative relationship has been found
between with the MPO-related chlorinating activity and
nutritional parameters. All these findings deserve specific
comments.

First, we confirm what is already known that MPO-
related chlorinating activity in HF patients is increased even
if we do not have information on MPO enzyme mass levels.
Circulating MPO enzyme levels are largely derived from
the secretion of this enzyme from leukocytes in the blood
stream after inflammatory activation. The process that leads
to hypochlorous acid from hydrogen peroxide and chloride
ions was always thought to be a unique characteristic of MPO
excluding from this the other mammalian hemoperoxidases
(eosinophil peroxidase, lactoperoxidase, and thyroid perox-
idase) [4]. However, in a recent study, Li et al. identified
the vascular peroxidase 1 as a new member of the family
of heme peroxidase capable of producing small amounts
of hypochlorous acid starting from chloride and hydrogen
peroxide [22]. The majority of commercially available assays
do not directly measure MPO enzymatic activity in plasma
but the amount of the enzyme mass by enzyme-linked
immunosorbent or chemiluminescent automated assay [24].
In the present study, we report the MPO-related chlorination
activity of plasma from HF patients and found its activity
increased while the severity of HF progresses.

We also investigated the relationship between MPO-
related chlorinating activity and Cp levels and found a close
positive association (Spearman’s r 0.363, P < 0.001). As
recently shown, Cp is considered a strong inhibitor of MPO
activity, with a marked reduction of chlorination activity even
at low concentration [12]. In our study, we were expecting
a possible inverse association between MPO chlorinating
activity and Cp circulating levels but the opposite was
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FIGURE 2: (a) Boxplots of serum MPO activity in Controls (n = 17) and heart failure patients (NYHA class Il n = 26, Ill n = 29, and IV
n = 26). One way ANOVA (P < 0.001) showed a significant difference among the groups (Classes II, II, and IV versus Controls, 'P < 0.01).
(b) Boxplots of serum Ceruloplasmin in Controls (1 = 17) and heart failure patients (NYHA Classes Il n = 26, IIlI n = 29, and IV n = 26).
One way ANOVA (P < 0.001) showed a significant difference among the groups (Classes IV and III versus Controls, "P < 0.01; Class IV
versus Class II, “P < 0.05). (c) Scatterplots of Myeloperoxidase chlorinating activity against Ceruloplasmin in HF patients and age-matched

Controls. r = Spearman correlation coefficient.

observed in HF patients. In addition, no correlation was
found between Cp-related FeO,I activity and MPO-related
chlorinating activity. It has recently been reported in litera-
ture that Cp levels are increased while increasing the severity
of HF and probably reflecting the inflammatory status of
these patients. Some evidences have also shown a strong
independent prognostic value of high Cp circulating levels in
stable patients undergoing elective coronarography and in a
group of patients without HF or cardiovascular disease taken
from the Atherosclerosis Risk in Communities Study [25, 26].
In our recent study, Cp circulating levels were not able to
predict mortality, while it was Cp-related FeO, I activity [11].

In the present paper, we showed the increased levels
of circulating nitrated proteins in HF patients compared
to Controls. A close positive association has been found

between MPO-related chlorinating activity and circulating
nitrated proteins. Our results agree with other studies report-
ing that severely diseased HF patients express the highest
levels of plasma nitrated proteins [11, 27]. Protein nitrotyro-
sine formation has been claimed as a “footprint” for ONOO™
generation [1, 28-31] but recently alternative mechanisms of
nitration have been shown to take place in vivo, involving the
generation of the NO," radical by MPO and also eosinophil
peroxidase [10, 13, 27, 30].

In our study, we reported a strong association between
MPO-related chlorinating activity and hsCRP. This finding
underlines the participation of a systemic inflammatory
process in HF progression. Such observation agrees with a
series of studies in different cohorts of patients where the
associations between MPO and inflammation in acute and
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chronic setting of coronary heart disease and in chronic
systolic HF patients as well in other populations of patients
such as hemodialysis patients were demonstrated [32-35].

However, in a recent and well-performed study in chronic
systolic heart failure patients, Wilson Tang et al. did not
observe the association between MPO (measured as mass
and not chlorinating activity) and hsCRP [36]. The lack
of association was somewhat unexpected and the authors
suggested that MPO levels allow the differentiation of the
leukocyte-based pathophysiologic contribution to cardio-
vascular disease from a generalized systemic inflammatory
process that was more mirrored with hsCRP [36]. Some dif-
ferences were detectable in their cohort of patients from the
patients included in our study: their patients were younger
(mean 57 years) and had systolic HF whereas in our group
also preserved HF patients were included and they have better
renal function.

In our study, we also showed a direct relationship
between chlorinating activity and neurohormonal activation

parameters, in particular BNP and norepinephrine. The
closest association was with BNP in a Spearman coefficient
r close to 0.5. In our study, renal function does not correlate
with plasma MPO-related chlorinating activity in patients
with HF: patients in NYHA Classes III and IV showed a
reduction of 25-30% of the eGFR compared to Controls.

An interesting finding of our study is the observation of
reduced levels of albumin and prealbumin in the advanced
HF patients (Class NYHA IV versus the other Class and
Controls) suggesting a poorer nutritional status. It has never
been reported before in HF patients of an inverse relationship
between MPO-related chlorinating activity and circulating
levels of albumin. Protein malnutrition is a phenomenon that
could be observed in HF when patients develop a state of
cachexia and represents a serious negative prognostic factor.
Both albumin and prealbumin values could be lowered while
aging. In addition, albumin that can reflect the nutritional
status can also be influenced by the chronic low inflammatory
status accompanying the time course of HF disease.
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FIGURE 4: Scatterplots of Myeloperoxidase chlorinating activity against BNP (a), eGFR estimated glomerular filtration rate (b), and albumin
(¢) in pooled subjects patients (pooled HF patients (n = 81) and age-matched Controls (n = 17)). r = Spearman correlation coeflicient.

The present study did not investigate the prognostic role
of MPO-related chlorinating activity, which has already been
suggested in various clinical cardiovascular conditions to
identify patients at increased risk for progressive cardiac
deterioration [32-36], but we explore the association with
known mechanisms of progression of disease severity. Our
cross-sectional study limits the interpretation of our findings.
Although the association between increasing plasma MPO-
related chlorinating activity and increasing HF severity does
not prove a cause-and-effect relation, thinking of chlori-
nating activity as a disease marker without pathophysio-
logical properties is reductive and it is still intriguing to
note that MPO chlorinating activity appears to be involved
in the increased nitration observed in HF patients and
therefore an active contributor to disease progression. In
conclusion, our findings provide insight into the interaction
between MPO-related chlorinating activity, Cp, and other
biomarkers, expressing different domains such as neurohor-
monal, inflammatory, metabolic-nutritional, and oxidative
domains, all potentially involved in the prognosis of HF
patients.
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