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Abstract: Chronic infections are one of the most serious adverse outcomes of prosthetic surgery.
Prosthetic revision surgery using a bone cement loaded with antibiotics between the two stages
of the surgery is commonly performed. However, this method often fails to reach the minimum
inhibitory concentration and promotes antibiotic resistance, thus emphasizing the need for improving
the current available therapies. Materials and methods: In this study, we performed a study of the
in vivo response of a polymer-based construct of poly (lactic-co-glycolic acid) (PLGA) in the solid
phase of Palacos R® in combination with vancomycin, daptomycin, and/or linezolid. To test its effec-
tiveness, we applied an in vivo model, using both histological and immunohistochemical analyses
to study the bone tissue. Results: The presence of PLGA in the combination of vancomycin with
daptomycin showed the most promising results regarding the preservation of bone cytoarchitecture
and S. aureus elimination. Conversely, the combination of vancomycin plus linezolid was associated
with a loss of bone cytoarchitecture, probably related to an increased macrophage response and
inefficient antimicrobial activity. Conclusions: The modification of Palacos R® bone cement with
PLGA microspheres and its doping with the antibiotic daptomycin in combination with vancomycin
improve the tissue response to bone infection.

Keywords: preclinical model; bone; polymer-based construct of poly (lactic-co-glycolic acid)
(PLGA); infection

1. Introduction

Chronic infection is one of the most serious complications of prosthetic surgery, with a
prevalence of 0.3–2.2% in primary surgery [1] and 3–4% in revision surgery [2]. Prosthetic
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infection is a therapeutic challenge due to the appearance of biofilms, made by microor-
ganisms that are enveloped and protected in them, which strongly adhere to the surface
of the implant [3]. Several strategies can be applied to treat prosthetic infections, mainly
depending on the time of onset of the infection. For chronic infections, prosthetic revision
surgery performed in two stages has been the most commonly used method, using a bone
cement spacer between the first and second stages [4,5]. This bone cement spacer is loaded
with antibiotics, whose release results in much higher local concentrations than can be
achieved through intravenous injection. This release is higher in the first few days but
persists up to several weeks, in many cases at concentrations below the minimum inhibitory
concentration (MIC) of the microbe, which has been associated with the development of
antibiotic resistance, the colonization of spacers, and, therefore, therapeutic failure [6,7].

Approximately 20% of Staphylococcus aureus and 80% of Staphylococcus epidermidis
isolated from prosthetic infections are resistant to methicillin [8]. The antibiotic of choice
for the treatment of methicillin-resistant staphylococcal infections is vancomycin [9]. The
growing abundance of multidrug-resistant bacteria makes it necessary to incorporate new
antibiotics into bone cement. Daptomycin and linezolid are the two main alternatives to
vancomycin in cases of bacterial resistance [10], having demonstrated good release kinetics
and antibacterial properties in in vitro cement [11]. Daptomycin is a calcium-dependent
cyclic lipopeptide. It was the first in class of a new group of calcium-dependent membrane-
binding lipopeptides [12]. Linezolid is the first member of the class of oxazolidinones.
The compound is a synthetic antibiotic that inhibits bacterial protein synthesis by binding
to rRNA [13].

Prosthetic infection affects the surrounding bone tissue and its remodeling capacity,
which are difficult to evaluate in clinical practice. Experimental animal models are necessary
to investigate these issues. There are widely used histological scales created by different
authors [14,15], but they evaluate very specific aspects of the bone histoarchitecture and
exhibit great variability depending on the strain of the bacteria, the inoculum, and the
selected animal model. For this reason, we developed a new histological staging system that
can assess bone tissue in a complete way, providing a global picture of the conservation and
remodeling of bone histoarchitecture in the presence of infection and under the influence
of bone cement [16,17].

Our study group managed to increase the release of vancomycin, daptomycin, and
linezolid in vitro, significantly improving the kinetics of their temporary release by in-
corporating biodegradable microparticles of poly(lactic-co-glycolic acid) (PLGA) in the
solid phase of Palacos R cement ® [11]. Using these developed cements and applying the
new histological staging system that we developed [16], in this paper, we conducted the
present study to (1) assess the histological behavior of the modified cement loaded with
vancomycin, daptomycin, and/or linezolid in a rabbit model of osteomyelitis; (2) assess
the tissue distribution of bacteria; and (3) analyze the presence of macrophages around the
different formulations.

2. Materials and Methods
2.1. Formulations of Bone Cement

The formulations of acrylic bone cements were loaded with two new-generation
antibiotics, linezolid (Pfizer, Peapack, NJ, USA) and daptomycin (Cubist Pharmaceutical
Incorporation, Kenilworth, NJ, USA), individually or in combination with vancomycin. The
composition of the solid phase of commercial bone cement Palacos R® (Heraeus Medical,
Wehrheim, Germany) was modified by incorporating microspheres of a biodegradable
copolymer, PLGA, as described in our previous study [11].

2.2. Titanium Rods Coated with Hydroxyapatite Contaminated with S. aureus

The rods used in the experimental model were made of grade 4 titanium and measured
3 mm in diameter and 10 mm in length. They had a coating with a thickness less than
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150 microns, made with a solution of poly(methyl methacrylate) (PMMA) in acetone (10%)
and crude hydroxyapatite (HA) in suspension at a ratio of PMMA:HA of 1:1.2 [16].

A clinical strain of Staphylococcus aureus was selected, which was sensitive to van-
comycin (MIC: 1 µg/mL), linezolid (MIC: 2 µg/mL), daptomycin (MIC: 0.5 µg/mL),
gentamicin (MIC: 0.5 µg/mL), rifampicin (MIC: 0.5 µg/mL), and clindamycin (MIC:
0.25 µg/mL) and resistant to other antibiotics, including cloxacillin, cephalosporins, and
quinolones. A suspension was prepared with an inoculum of the germ equivalent to
1.2 × 109 colony-forming units/mL. In each tube with this suspension, a titanium rod
coated with PMMA:HA was introduced for 24 h to achieve contamination. The presence of
many cocci adhering to the rod after extraction from the suspension was observed by scan-
ning electron microscopy [16]. This rod became the implant contaminated with methicillin-
resistant S. aureus (MRSA) that we introduced into the bone tissue of the rabbit [16,17].

2.3. Animal Experimental Model

As the experimental animal, we used rabbits (Oryctolagus cuniculus) of the New
Zealand variety, male, with a weight between 2.5 and 3.2 kg and an age of 12 weeks
at the beginning of the study. They had physeal cartilage in the distal femur, as they were
not skeletally mature [17]. The animals were divided into six study groups (1–6) according
to the use of the commercial cement Palacos R® or the experimental cement Palacos
R + PLGA and the presence of the antibiotics under study (vancomycin, daptomycin,
and/or linezolid). Each group had five rabbits (Table 1).

Table 1. Compositions of the experimental formulations.

Group Cement Antibiotic

1 Palacos R Daptomycin

2 Palacos R + PLGA Daptomycin

3 Palacos R VancomycinDaptomycin

4 Palacos R VancomycinLinezolid

5 Palacos R+PLGA VancomycinDaptomycin

6 Palacos R+PLGA VancomycinLinezolid

Two surgeries were performed, namely, the initial surgery and the final surgery,
separated by 3 weeks (20–22 days). The surgical technique is described in an article by our
study group, Azuara et al. [17]

Animals were managed in accordance with the current International Regulations on
Experimental Animals (609/86/EEC and ETS 123) at the Animal Research Center of the
University of Alcala. The study protocol received approval from the Committee on the
Ethics of Animal Experiments of the University of Alcala (CEI UAH 2011017). The diet of
the animals was available ad libitum.

2.4. Sample Processing: Histological and Immunohistochemical Techniques

After fixation and decalcification of the samples by Osteosoft®, the inclusion and cut-
ting process was performed. Different histological techniques were performed: hematoxylin–
eosin (HE) for the staining of bone and cartilage tissue, Gram staining for the staining of
bacteria, and immunohistochemistry. The monoclonal antibody used to detect macrophages
in rabbits was RAM-11 (DAKO ref. M633 dilution 1:50). Immunohistochemical detection
of the antigen of interest was performed using the avidin–biotin complex method, using
alkaline phosphatase as a tracer and Fast Red as a revealing solution. In all cases, the same
biological material without primary antibody was used as a negative control. Staining was
visualized under a Zeiss Axiophot optical microscope (Carl Zeiss, Oberkochen, Germany).
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2.5. Histological Staging Methods
2.5.1. Destructuring of Bone Histoarchitecture

To quantify the histological results, a new histological staging method was used,
as described in the previous work by Ibarra et al. [16]. In this preliminary study, the
experimental cement Palacos R + PLGA was evaluated in vivo in comparison with the
commercial cement Palacos R® and in the presence or absence of bacteria.

2.5.2. Presence of Bacteria and the Macrophage Response

To measure the presence of bacteria and the macrophage response, we used a semi-
quantitative measurement method similar to that described by Remmele et al. [18]. This
grading method is based on the assignment of a value estimating the percentage of the area
occupied by the cells under study out of the total tissue sample. In our case, we measured
the area occupied by bacteria stained with Gram stain and macrophages labeled with the
monoclonal antibody RAM-11. With these percentages, we formed categories that covered
the different ranges: 0 = negative, 1 = up to 25%, 2 = from 25 to 75%, and 3 = more than
75% of the total number of cells.

2.6. Statistical Analysis

In the evaluation of bone structure, two blinded evaluators applied the histoarchi-
tectural staging model to five samples per rabbit, obtaining means per rabbit (n = 5) and
per group (n = 6). Lin’s agreement index (Lin’s rho = 0.91, with a confidence interval of
95% (0.8–1.0)) was analyzed between the two evaluators. The semiquantitative assess-
ments were performed in 15 microscopic fields per sample, obtaining the means per animal
and per group. The normality of the averages obtained was verified by statistical tests
and graphs. Given that they did not have a normal distribution, bivariate analyses were
performed using the Mann–Whitney U test. All these analyses were carried out in the
statistical program Prism® 6.0 (GraphPad Software Incorporation, San Diego, CA, USA).
The significance values are represented in the graphs as follows: * p < 0.05, ** p < 0.01,
and *** p < 0.001.

3. Results
3.1. Evaluation of Bone Histoarchitecture: Quantitative Analysis of the Degree of Destruction

In the comparative analysis between groups with Palacos R® cement and with Pala-
cos R cement + PLGA, the presence of PLGA significantly improved the preservation
of bone architecture when the combination of antibiotics used was vancomycin with
daptomycin (Group 5). However, Palacos R + PLGA bone cement loaded with van-
comycin and linezolid (Group 6) induced severe destruction of the bone architecture,
so treatment with linezolid in combination with vancomycin did not preserve the bone
histoarchitecture (Figures 1 and 2).

3.2. Analysis of the Tissue Distribution of Bacteria

The distribution of S. aureus followed a fairly homogeneous pattern across all groups
studied. The bacteria colonized the peripheral soft tissues and moved from the im-
plant site to the physeal cartilage, subsequently occupying the epiphyseal bone and
articular cartilage.

The distribution of S. aureus was not modified by the use of Palacos R® bone cement,
regardless of the combination of antibiotics used (Groups 1, 3, and 4). S. aureus was
less abundant in the presence of PLGA in all groups studied except the vancomycin +
linezolid group (Group 6). This reduction was very significant when the combination of
antibiotics was vancomycin + daptomycin (Group 5) (Figures 3 and 4). Treatment with
linezolid + vancomycin failed to control bacterial dispersion (Figure 5).
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Figure 1. Histograms corresponding to the means and standard deviations of Groups 1 to 6. * p < 0.05.
Degree of disruption: light (from 1 to 3), moderate (from 4 to 6), severe (from 7 to 9).

Figure 2. Representative panoramic images of groups of rabbits carrying contaminated rods. HE
(5×). Group 1: Palacos R® and daptomycin. Group 2: Palacos R + PLGA and daptomycin. Group 3:
Palacos R®, vancomycin, and daptomycin. Group 4: Palacos R®, vancomycin, and linezolid. Group 5:
Palacos R + PLGA, vancomycin, and daptomycin. Group 6: Palacos R + PLGA, vancomycin, and
linezolid. * Location of the rod.
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Figure 3. Gram staining. Histograms corresponding to the means and standard deviations of the
Groups 1 to 6. * p < 0.05. *** p < 0.001.

Figure 4. Gram-stained samples (dyed purple) of Groups 3 and 5 (5×). Note the smaller amount and
smaller distribution area of bacteria in the sample of Group 5 with respect to Group 3.

Figure 5. Gram staining shows the intense presence of S. aureus in the entire region studied in
the presence of linezolid. Image corresponding to the control group (commercial cement and only
linezolid). Magnification: 5×. * Imprint of contaminated rod.
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3.3. Assessment of the Presence of Macrophages

We found macrophagic cells in all groups in the capsular areas surrounding the
implant, as well as in the areas with more bacteria (Figure 6). In the Palacos R + PLGA with
vancomycin + linezolid group (Group 6), a greater macrophage response was associated
with a greater degree of bone destruction and a high presence of bacteria (Figure 6).

Figure 6. RAM 11 staining. Histograms corresponding to the means and standard deviations of
Groups 1 to 6. * p < 0.05.

4. Discussion

The increase in prosthetic infections caused by multiresistant bacteria has made it
necessary to use new antibiotics, such as daptomycin and linezolid [7,19]. Their incor-
poration into bone cement has been studied in vitro [11], where they have demonstrated
similar efficacy to the available gentamicin–vancomycin spacers [20]. However, there are no
in vivo studies that show the behavior of the combination of these new antibiotics against
bone tissue. We have published in vivo experimental studies in which we have studied
the response of bone tissue to the presence of cements loaded only with linezolid [17].
In vitro studies with linezolid seem to show good antibacterial activity [11,20]. In our
in vivo model [16,17], linezolid did not control bacterial growth or dispersion, showing
large colonies of bacteria in the sheet extending from the implantation site to the articular
cartilage under the microscope. This phenomenon was correlated with the loss of the
structure of bone tissue observed in the groups that incorporated linezolid, where the tissue
was so affected that, in many cases, it did not resist the action of the usual decalcifiers
and routine manipulation during the processing of tissues to obtain histological samples.
This observed response is in line with the toxicity that linezolid seems to exert locally and
with the results of previous in vitro studies, since linezolid has been the antibiotic with the
highest cytotoxicity of those studied [11]. This bone toxicity may be in line with the adverse
effects observed in systemic treatment with linezolid, which include thrombocytopenia,
anemia, lactic acidosis, and peripheral neuropathy [21].

However, it has been shown in vitro that daptomycin retains antibacterial properties
against S. aureus after 5 days of incorporation into PMMA [22]. Its release is significantly
higher in combination with gentamicin and tobramycin due to a synergistic effect [23].
Our working group has also previously demonstrated the synergy of daptomycin with
vancomycin added to modified experimental cement (Palacos R + PLGA), where there is
greater release of the combination of antibiotics than of the isolated antibiotics, as well as a
biphasic release [11].

Taking into account these results, we considered it necessary to investigate the in vivo
behavior of daptomycin and linezolid in combination with vancomycin, as well as the
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behavior of daptomycin individually loaded both in the commercial cement Palacos R®

and in our modified experimental cement (Palacos R + PLGA). The good bacterial control
results obtained with daptomycin in our experimental model seem to be related to its
ability to inhibit the formation of new biofilms [24], although it has no activity against
already established biofilms [25]. In our model, the presence of S. aureus in the groups
treated with Palacos R + PLGA cement and daptomycin was reduced to small colonies
most often located in the physeal cartilage or in the peripheral soft tissues near the cartilage.
Unlike the bone treated with the formulations loaded with linezolid, the bone treated
with daptomycin had a well-preserved structure, and the macrophages showed a wide
dispersion throughout the bone tissue, helping to reduce the presence of bacteria. This
behavior may be explained by the lipid nature of daptomycin, which, as has been proven in
recent studies, facilitates tissue penetration [26,27], in contrast to vancomycin, which exerts
its action more locally because it has greater difficulty diffusing through bone tissue [28].

We found only one experimental study of animals treated with cement loaded with
daptomycin. Rouse et al. [29] published a study in 2006 in which they treated a rat
model of tibial osteomyelitis with 7.5% daptomycin, among other options, concluding that
daptomycin loaded in cement is a valid option for the treatment of osteomyelitis caused
by MRSA.

Our results show that Palacos R® cement modified with PLGA microspheres and
loaded with daptomycin allows significant preservation of the tissue structure against
S. aureus infection. Daptomycin controls bacterial dispersion such that, in our study, at
3 weeks, there were barely any bacteria in the rabbits’ soft tissues or bone tissues, only small
colonies in the physeal cartilage. Similar results were obtained with PLGA-modified Palacos
R® cement loaded with the synergistic combination of daptomycin and vancomycin. One
of the advantages of our experimental model is that it revealed the existence of a common
pattern of bacterial dispersion, which had not been described before. In the absence of bone
cement loaded with antibiotics or when the antibiotic used was linezolid, at 3 weeks, the
bacteria occupied the entire femoral condyle, producing extreme degradation of the bone
histoarchitecture [17]. As the bacterial control by the antibiotic increased, as happened
with daptomycin, the bacterial colonies were reduced to small clusters in the dispersion
routes through the peripheral soft tissues to the physeal cartilage. This experimental model
confirms the great affinity of S. aureus for peripheral soft tissues and for physeal cartilage,
areas that have a concentration of many bacteria in cases of uncontrolled infection.

Our experimental model also allowed us to assess the immune response at 3 weeks
after implant placement by visualizing the location of macrophages. This is because,
in recent years, specific cell markers have been developed to count specific cell types in
histological preparations, such as the monoclonal antibody RAM-11 for rabbit macrophages,
as we have used in our model [30]. The incorporation of PLGA microspheres in commercial
Palacos R® cement induces changes in the behavior of macrophages. The results suggest
that, although the quantitative assessments may be similar, the macrophages present a
different localization depending on the type of cement used. Thus, in the groups with PLGA,
these cells appeared to accumulate in the fibrous capsule without forming granulomas,
remaining as macrophages, while in the groups with commercial cement Palacos R®,
these cells, in addition to being found in the vascular lagoons, which are their natural
niche, were observed in cartilage territories, a preferred place for the accumulation of
bacteria. This fact is related to the lesser control of bacterial dispersion in the groups that
had the commercial cement Palacos R®. In the presence of vancomycin, macrophages
preferentially accumulated in the capsular territories around the contaminated implant and
in the peripheral soft tissues, through which the bacterial migration routes are established.
In contrast, in the presence of daptomycin, macrophages were dispersed throughout all
tissues studied, including bone marrow and trabecular bone. This observation could be
explained by the greater ease with which daptomycin penetrates tissues, given its lipophilic
nature, allowing it to achieve greater bacterial control [26]. This reasoning could explain
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the good results obtained by the Palacos R + PLGA cement + daptomycin group, in which
the two mechanisms of antibacterial action described complemented each other [11].

Due to the use of these new antibiotics, one of the concerns in the scientific community
is the emergence of resistance. Although there is a clear link between the use of linezolid
and the appearance of resistance despite its reduced use [31], after more than 10 years
of clinical use, more than 99% of bacterial strains are still susceptible to linezolid [32].
Similarly, a recent international daptomycin surveillance program reported susceptibility
rates of methicillin-sensitive S. aureus and MRSA of 99.9% [33].

Therefore, we can state that formulations of bone cements with the introduction of
PLGA microspheres can improve the release of antibiotics, especially daptomycin, indi-
vidually or in combination with vancomycin, and that these formulations loaded with
daptomycin preserve the bone structure that surrounds them to a greater extent, as demon-
strated in our experimental model. This may have clinical implications for the treatment of
prosthetic infections caused by bacteria resistant to conventional antibiotics through the
use of spacers made with these formulations of bone cement loaded with daptomycin.

5. Conclusions

The modification of Palacos R® bone cement with PLGA microspheres and its doping
with the antibiotic daptomycin in combination with vancomycin improve the tissue re-
sponse to bone infection. However, the antibiotic linezolid in combination with vancomycin
did not obtain good results in our model, regardless of the type of cement used.
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