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Simple Summary: Pollen comprises many organic substances (sugars, lipids, proteins, amino acids,
vitamins, etc.), all of which are built from elements such as carbon, hydrogen, oxygen, nitrogen,
phosphorus, sodium, potassium, zinc, and approximately twenty others. These special nutritional
elements compose the cells, tissues, and bodies of all the life forms on our planet and are needed by
bee larvae for healthy growth. However, not all plants produce pollen containing these elements
in proportions needed specifically by bees, meaning that not all pollens are nutritionally balanced
for bees. Moreover, the decrease in plant diversity is thought to be among the main causes of the
dwindling numbers of pollinators worldwide. Currently, governments and societies are attempting
to combat this pollinator decline by providing nutritionally balanced and diverse food plants to
pollinators. Knowing which nutritional elements are crucial for the bee diet and understanding why
are prerequisites for tailoring conservation efforts for this group of insects, which are substantially
important for human nutrition and ecosystem functioning. Basic information obtained from feeding
experiments is important for synergistically understanding how plant diversity within certain species
that produce pollens with rich or scarce amounts of certain nutritional elements influences bee health
and prosperity.

Abstract: Bee nutrition studies have focused on food quantity rather than quality, and on details of
bee biology rather than on the functioning of bees in ecosystems. Ecological stoichiometry has been
proposed for studies on bee nutritional ecology as an ecosystem-oriented approach complementary to
traditional approaches. It uses atomic ratios of chemical elements in foods and organisms as metrics
to ask ecological questions. However, information is needed on the fitness effects of nutritional
mismatches between bee demand and the supply of specific elements in food. We performed the
first laboratory feeding experiment on the wild bee Osmia bicornis, investigating the impact of Na,
K, and Zn scarcity in larval food on fitness-related life history traits (mortality, cocoon development,
and imago body mass). We showed that bee fitness is shaped by chemical element availability in
larval food; this effect may be sex-specific, where Na might influence female body mass, while Zn
influences male mortality and body mass, and the trade-off between K allocation in cocoons and adults
may influence cocoon and body development. These results elucidate the nutritional mechanisms
underlying the nutritional ecology, behavioral ecology, and population functioning of bees within the
context of nutrient cycling in the food web.
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1. Introduction

Diminished floral nutritional resources are among the most important factors causing declines in
bee species richness and abundance [1,2], and knowledge about their nutrition is needed for accurate
and targeted measures for the protection and restoration of bee species [3,4]. Most information
concerning the nutrition of bees comes from studies on managed honeybees (Apis mellifera) [5,6]
and wild bumblebees (e.g., Bombus terrestris) ([7] and references therein). However, their life history
traits are different from those of solitary bees, representing more than 75% of all bees on Earth [8].
One main difference between eusocial (living in colonies, e.g., the western honeybee) and solitary bees
is associated with the provision of food to progeny; for the former, food is steadily provided to progeny,
whereas females of solitary bees supply their offspring only once. The quantity and, most importantly,
the quality of pollen is of great importance for the survival, development, and maturation of solitary
bees, and thus for individual fitness and population persistence [7,9]. Information about the nutritional
demand of solitary bees and the relationships among larval food quality, adult fitness and population
prosperity is limited [1,7,10]; therefore, novel approaches for studying this topic are required [2,4,10].

To date, studies considering the nutritional quality of bee food have focused mainly on the
total contents or ratios of proteins, lipids, and carbohydrates (e.g., [11–13]); individual amino
acids [5,14]; species composition and the proportions of different species in pollen diets [15,16];
and bee cognition and behaviors related to the preference for particular plant species [17–19].
The elucidation of biochemical and behavioral properties greatly enhances our knowledge of the
feeding behaviors of bees, and knowledge about such organism-level phenomena is important for bee
conservation efforts. However, a broader context is needed for understanding ecosystem functioning,
where not only the biology of individual bees but also the functioning of bees in ecosystems and their
involvement in complicated sets of ecological interactions are considered [20]. Taking this into account,
ecological stoichiometry was proposed as a complementary viewpoint on wild bee nutrition [9,10] that
not only allows us to study the nutritional preferences of individuals but also considers the organism
as part of the ecosystem [21].

According to the ecological stoichiometry framework, nutritional supply is available in the
environment in the form of foods composed of organic molecules, and every molecule is composed
of a specific set of atoms of chemical elements, which are utilized by organisms [20]. The immutable
atoms cycle in food webs in endless loops and are ceaselessly incorporated into molecules that
are constantly degraded through the biogeochemical cycle [22–24]. Therefore, we herein adopt the
biochemistry-oriented approach in which digested molecules are processed and the immutable atoms
that they comprise are allocated to specific functions playing specific roles in the fitness and life
histories of organisms. The element-based approach is considered evolutionary [25] and ecologically
relevant [26], especially for soil–plant–pollinator interactions under anthropogenic changes where
the input (e.g., fertilization) or removal (e.g., harvest) of elements to/from the environment can be
observed. To understand the roles of atoms of chemical elements in the biology and ecology of
the considered organisms and relate the concentrations of specific elements in food to specific life
history traits that shape bee fitness, basic knowledge about the nutritional values of those elements for
organisms is needed.

The goal of this study was to determine the impact of Na, K, and Zn deficiencies on the fitness
and life history traits of the generalist solitary bee Osmia bicornis L. In their review, Filipiak and
Weiner [9] indicated that the growth and development of O. bicornis may be limited by the scarcity of
K, Na, and N in pollen, whereas cocoon development may be limited by P, Mg, K, Na, Zn, Ca, and N
deficiencies. The importance of Na (and K via Na:K ratio) for the functioning of ecosystems in general
was emphasized by Kaspari [27]. Moreover, the scarcity of K, Na, and Zn in O. bicornis larval food
was indicated as being potentially limiting for bee growth and development [28]. Both K and Na are
essential for life, with a gradient generated by Na-K-ATPase, which is critical for the maintenance of
osmotic balance and the resting membrane potential of most tissues as well as for muscle and nerve cell
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excitability [29,30]. Zinc, in turn, is a catalytic component of more than 300 enzymes and a structural
component of many proteins and enzymes [31,32].

Using a feeding experiment, we determined the fitness-related life history traits (mortality,
developmental cocoon stage, and dry mass of the developed adult body) of O. bicornis after exposure
to control and nutrient-deficient pollen from the juvenile (three-day larvae) to the adult (imago) stage.
In addition, individuals were exposed to pollen supplemented with K, Na, or Zn to confirm or exclude
the effects of scarcity of a given element.

2. Materials and Methods

2.1. Model Organism

Osmia bicornis (O. rufa, Hymenoptera: Megachilidae) wild bees were obtained from a nest trap
assembled with ca. 500 empty Phragmites sp. stems (250–300 mm in length; 6–10 mm in diameter)
in the form of a case. The nest was located in the vicinity of the Institute of Environmental Sciences,
Jagiellonian University, Kraków, Poland (50◦01′35” N; 19◦54′05” E). Female O. bicornis constructed
their nests in the cane stems.

The nesting biology of the bee is shown in Figure 1 and was previously described in detail by
Filipiak [10]. Usually, female eggs are laid first; therefore, they are located in the rear part of the
nest, whereas male eggs can be found near the entrance [8,33]. In early spring, once females started
to construct their nests, the stems were checked daily for the presence of closed brood cells. Firstly,
stems (N = ca. 250) with ca. 1–3 closed brood cells were collected to obtain female larvae, and when
the bees closed the tubes with mud, more stems (N = ca. 250) were collected to obtain male larvae.
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Figure 1. Nesting biology of solitary Osmia bees.

All stems were kept at 21 ◦C and 60% relative humidity (RH) under a 12:12 (L:D)-h photoperiod.
Only specimens from the first (females) and last (males) brood cells within each stem were collected
for the experiment. Due to the fragility and sensitivity of eggs and possible mechanical damage to the
eggs during transfer to experimental containers, 3-day-old larvae were used for the experiment.



Biology 2020, 9, 462 4 of 17

2.2. Experimental Design

A feeding experiment was designed to determine fitness-related life history traits (mortality,
developmental stage of the cocoon, and dry mass of the developed adult body) of solitary bee (O. bicornis)
larvae fed food (pollen) nutritionally balanced or scarce in specific nutrients (physiologically important
chemical elements: K, Na, and Zn). Fitness-related life history traits were chosen for study because:
(1) mortality is an evident and relevant trait; (2) cocoons are fitness-enhancing secretions that protect
bees for approximately ten months of pre- and overwintering [34,35]; and (3) body mass is positively
related to fitness in O. bicornis and other solitary bee females but not males [36,37]. The three studied life
history traits are considered separate and competing “sinks” into which organisms allocate resources
from the available pool (see, e.g., [38] for more information). For ecological relevance and to make
our experimental results relatable to the natural world, we analyzed and discussed the data obtained,
focusing on the relevance of the studied traits for bee fitness.

Fifteen replicates (Eppendorf tubes, 2 mL) were prepared per treatment and sex and filled with
homogenized pollen of specific nutritional quality. The amount of pollen corresponded to the dry
masses of pollen provisions found in nature, i.e., 195 ± 5 mg dm for females and 140 ± 5 mg dm for
males. Dry pollen loads were complemented with either demineralized water or salt solutions (to reach
concentrations of the studied elements found in Osmia-collected pollen) in an amount reflecting ca. 25%
of the dry pollen mass. Before starting the experiment, the Eppendorf tubes were left for 24 h to allow
the water and salt solutions (KCl, NaCl, and ZnCl2) to penetrate the pollen loads. The three-day-old
larvae were assigned to treatments with one individual per Eppendorf tube. All experimental tubes
were kept at 21 ◦C and 60% RH under a 12:12 (L:D)-h photoperiod for 3 months. The exposure period
was long enough to ensure that all larvae had reached the adulthood stage of the life cycle, i.e., the stage
where fully developed individuals hibernated in their cocoons [8,35]. At the end of the exposure periods,
cocoons were collected to determine the degree of cocoon development (in the case of undeveloped
individuals who died as larvae and did not reach maturity, cocoons were not available). Then, the bees
were extracted from cocoons, and the mortality rate was assessed. Afterwards, the individuals and
cocoons were dried using a vacuum dryer (80 ◦C, 48 h) to obtain the dry mass.

2.3. Pollen Diets

Polyfloral pollen mixtures characterized by differing nutritional qualities expressed using the
concentrations of the studied elements were used for the feeding experiment. Pollen mixtures
were obtained from either O. bicornis provisions collected manually from brood cells or derived
from commercially available polyfloral pollen pellets collected by honeybees (Apis mellifera) in
central Europe. The pollen collected by O. bicornis in the field was considered a balanced diet,
providing the needed amounts and proportions of nutrients to the bee larvae during development,
and was used as a control diet in the experiment (Control-Osmia as described below). For practical
reasons, only honeybee-collected pollen pellets could be used as diets depleted of certain nutrients
in the experiments; therefore, we used an additional control diet (Control-Apis as described
below), i.e., a diet similar to Control-Osmia in nutritional quality but composed of honeybee-collected
pollen pellets.

Five packs of honeybee pollen pellets were purchased from different manufacturers and were
composed of pollen of various botanical origins. According to the method proposed by Filipiak and
colleagues [39], pollen from each pack was divided according to color by the naked eye to obtain pollen
pellet pools with specific elemental compositions. Additionally, unsorted pools of pollen pellets were
retained from each pack. In total, we obtained 15 different pollen pools from all packs: 5 unsorted and
10 sorted pools.

The concentrations of K, Na, and Zn were determined in all purchased pollen pools (unsorted and
sorted) and in O. bicornis provisions. From all pollen pools, we chose the following pools for use in the
feeding experiment (their nutritional qualities are given in the “Results” section): (1) control pollen from
O. bicornis provisions, i.e., natural larval food, designated Control-Osmia; (2) control honeybee pollen,
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i.e., the unsorted pollen pellets obtained from one of the packs, which had a chemical composition
similar to that of the O. bicornis provisions, designated Control-Apis; (3) three sorted honeybee
pollen pellets pools with the lowest concentration of one of the studied elements (Na, K, or Zn),
designated Na-deficient, K-deficient, and Zn-deficient; and (4) the same three sorted honeybee
pollen pellets pools with the lowest concentration of one of the studied elements (Na, K, or Zn) and
supplemented with salt containing the deficient element to reach the same concentration found
in Control-Osmia, designated Na + supplemented, K + supplemented, and Zn + supplemented.
The pollen pools from each treatment were homogenized manually to obtain a homogenous powder
and then freeze dried to obtain the dry mass (dm).

2.4. Chemical Analysis

To analyze the K, Na, and Zn concentrations, freeze-dried pollen homogenates (five per treatment)
were digested on a hotplate in a 4:1 mixture of nitric acid (70%) and hydrogen peroxide (30%). The K, Na,
and Zn concentrations were measured using atomic absorption spectrometry (PerkinElmer AAnalyst
200 and PerkinElmer AAnalyst 800) and expressed in ppm dm. To determine the analytical precision,
certified reference materials (bush, NCS DC 73349; chicken, NCS ZC 73016; and bovine muscle powder,
RM8415) were examined with the samples.

2.5. Data Handling and Statistical Analysis

Differences in mortality between the nutritionally deficient and supplemented groups for each
element separately, i.e., K-deficient vs. K + supplemented, Na-deficient vs. Na + supplemented,
and Zn-deficient vs. Zn + supplemented, as well as between Control-Apis and the other groups were
assessed using the Chi-squared test, with Yates’s correction for one degree of freedom.

The distribution of body mass was checked for normality with Shapiro–Wilk’s W test, and the
homogeneity of variances was checked with Levene’s test. If the criteria were not met, the data were
either log- or square root-transformed, and if these steps failed, a nonparametric (Kruskal–Wallis)
test was used. Only individuals who survived until the end of the experiment, i.e., those that had
undergone the entire metamorphosis to the imago form, were considered in the analyses of body mass
and cocoons. The effects of the treatments on body mass were tested using the Kruskal–Wallis test.

For adult (imago) bees, the degree of cocoon development was assessed by qualitative analysis,
and two stages of cocoon development were distinguished. (1) The first stage was an underdeveloped
cocoon that covered only part of the bee or not at all, and the cocoon consisted almost exclusively
of soft (“wooly”) fragments; the cocoon tore easily with bare hands but was impossible to cut using
a knife because it was too soft. (2) The second stage was an almost fully or fully developed cocoon
that covered the whole bee body and mainly consisted of a hard material; the cocoon was difficult
or impossible to tear by bare hands but was possible to cut using a knife because it was sufficiently
hard (Figure 2). The second stage of cocoon development might have the greatest probability of
allowing an adult individual to overwinter until the next season and protecting the bee from external
factors (e.g., parasites or pathogens). The differences in reaching the second cocoon developmental
stage between the deficient and supplemented treatments (each element separately), and between
Control-Apis and the other groups were assessed using the Chi-squared test, with Yates’s correction
for one degree of freedom. All analyses were performed separately for females and males.
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To calculate the percentages of each type of cocoon developed by the bees we considered all
15 bee specimens as 100%, constituting every treatment and control. Therefore, this 100% consisted
of the sum of (1) specimens that reached the adult stage and developed to the first cocoon stage,
(2) specimens that reached the adult stage and developed to the second cocoon stage and (3) specimens
that died before reaching the adult stage (the majority of which did not reach the last larval stage,
i.e., spinning larvae that start to produce the cocoon). Organismal death before reaching maturity has
obvious negative consequences for fitness, therefore we separated these specimens in our analysis from
those that successfully reached maturity and developed cocoons to make our analysis ecologically
relevant. In this way, we treated the cocoon developmental stage as an ecologically meaningful trait
that influences the fitness of living and mature bees.

This analysis was complemented by a simultaneous redundancy analysis (RDA) of the datasets on
body mass and cocoon stages performed in Canoco 5 [40], which helped us to determine whether the
negative effects of nutrient scarcity on these two life history traits (1) were correlated and (2) differed
in strength.

3. Results

3.1. Pollen

The concentrations of the studied elements in the control and deficient pollen are presented in
Table 1. The potassium concentrations in the Control-Apis, Na-deficient and Zn-deficient pollen loads
corresponded to 97–101% of that in Control-Osmia, whereas the K concentration in the K-deficient
treatment was ca. 26% lower than that in both control treatments. Sodium concentrations were ca.
1–16% higher in the Control-Apis, K-deficient, and Zn-deficient treatments and 39% lower in the
Na-deficient treatment than in Control-Osmia. The zinc concentration in the Zn-deficient treatment was
39% lower than that in Control-Osmia, while the Zn concentrations in the Control-Apis, K-deficient,
and Na-deficient treatments were ca. 2–7% lower than that in Control-Osmia.
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Table 1. Potassium, sodium, and zinc concentrations (average ± standard deviation; n = 5) measured
in pollen pools chosen for the feeding experiment.

Treatment K Na Zn
Concentration

(ppm) % Concentration
(ppm) % Concentration

(ppm) %

Control-Osmia 6086.2 ± 177.6 100 100.2 ± 47.6 100 57.0 ± 3.3 100
Control-Apis 6144.2 ± 111.0 101 116.4 ± 45.1 116 55.6 ± 2.1 98
K-deficient 4481.2 ± 131.1 74 100.8 ± 27.3 101 53.8 ± 2.6 94

Na-deficient 6127.4 ± 174.2 101 61.4 ± 26.0 61 52.8 ± 3.4 93
Zn-deficient 5914.8 ± 376.1 97 101.0 ± 28.2 101 34.6 ± 1.1 61

The pollen pools corresponded to: (1) control (balanced) diets of O. bicornis derived from pollen
provisions; (2) a control (balanced) diet derived from commercially available A. mellifera-collected pollen;
and (3) element-deficient diets sorted from commercially available A. mellifera-collected pollen. Percentage—the
elemental concentration relative to that in Control-Osmia pollen.

3.2. Mortality

The highest mortality among females was observed in the Na-deficient treatment (80%), while
the lowest mortality was observed in the Control-Apis and Zn + supplemented treatments (7%)
(Table 2). For males, the highest mortality was observed in both Na treatments (73%) (Na-deficient and
Na + supplemented), while the lowest mortality was observed in the Zn + supplemented treatment
(0%). Significantly lower female mortality was observed for Control-Apis than for the K-deficient
(χ2 = 4.26; p = 0.04), Na-deficient (χ2 = 13.57; p = 0.0002), and Na + supplemented (χ2 = 9.19; p = 0.002)
treatments. For the other treatments, no differences in mortality were observed in comparison with
Control-Apis (p > 0.3). Similarly, the mortality rates of male individuals in the Control-Apis treatment
were significantly lower than those of male individuals in the K-deficient (χ2 = 7.35; p = 0.0007),
Na-deficient (χ2 = 11.25; p = 0.0008), and Na + supplemented (χ2 = 11.25; p = 0.0008) treatments.
In addition, significantly lower mortality was observed in the Zn + supplemented treatment compared
with the Zn-deficient treatment (χ2 = 5.21; p = 0.02), with a nearly significant difference between
Control-Apis and Zn-deficient (χ2 = 2.98; p = 0.08) and no difference between the Control-Apis and Zn
+ supplemented treatments (χ2 = 0; p = 1.0).

3.3. Cocoon Development

The percentages of each type of cocoon developed by bees are presented in Figure 3. In general,
73–74% and 66–73% of female and male bees, respectively, developed almost fully or fully formed
cocoons (second stage) when reared on Control-Apis and Control-Osmia pollen.

The comparisons of cocoon status at the second developmental stage revealed that, for females,
significantly fewer fully developed cocoons were observed in the K-deficient (χ2 = 11.25; p = 0.0008),
Na-deficient (χ2 = 14.35; p = 0.0002) and Na + supplemented (χ2 = 4.80; p = 0.03) treatments than
in Control-Apis. Similarly, significantly fewer fully developed male cocoons were observed in the
K-deficient (χ2 = 12.15; p = 0.0005), Na-deficient (χ2 = 6.80; p = 0.009) and Na + supplemented (χ2 = 6.80;
p = 0.009) treatments than in Control-Apis. In addition, significantly more developed cocoons were
observed in the K + supplemented treatment than in the K-deficient treatment for both females
(χ2 = 5.71; p = 0.02) and males (χ2 = 6.71; p = 0.01).
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Table 2. Percentages of mortality and cocoons at the second stage of development in O. bicornis female and male bees reared on pollen characterized by different
elemental compositions from the 3-day larva to the imago stage. Note that letters and asterisks denote significant differences always within a single sex and between
only two treatments (letters: element-deficient vs element + supplemented; asterisks: single treatment vs Control-Apis).

Parameter Sex Control-Apis Control-Osmia K-Deficient K+ Supplemented Na-Deficient Na+ Supplemented Zn-Deficient Zn+ Supplemented

Mortality (%)
Female 7 13 47 * A 27 A 80 * A 67 * A 27 A 7 A

Male 7 7 60 * A 47 A 73 * A 73 * A 40 A 0 B

2nd cocoon stage
(%)

Female 73 74 7 * A 53 B 0 * A 27 * A 53 A 73 A

Male 66 73 0 * A 46 B 13 * A 13 * A 47 A 73 A

Asterisks denote significant differences in parameters between Control-Apis and the other treatments; A,B—different uppercase letters indicate significant differences between the
element-deficient and element + supplemented treatments; Chi-squared test with Yates correction (df = 1, p ≤ 0.05) performed separately for females and males.
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Figure 3. Overall patterns of cocoon developmental stages and mortality (percentage) of Osmia bicornis
bees (females and males) reared on control pollen pools (Osmia and Apis); pollen pools with scarce
levels of K, Na, and Zn; or pollen pools supplemented with certain elements (K, Na, and Zn) to the
levels found in the control (Osmia) pollen pools. Cocoon development was distinguished by stage:
first stage for undeveloped cocoons and second stage for almost fully or fully developed cocoons.
Considering that mortality has the most important and preliminary effect on bee fitness, dead specimens
were also included in the graphic to emphasize the overall survival and development patterns for all of
the studied individuals. Therefore, all of the percentages were calculated for N = 15 specimens.

3.4. Imago Body Mass

The effect of treatment on body mass was significant for both females (p = 0.00002) and males
(p ≤ 0.0001). In total, 78 females were included in the analysis, for which significantly lower body
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masses were observed for individuals in the K-deficiency, K + supplemented, and Na-deficiency
treatments compared with Control-Osmia, and no differences were observed between the other
treatments (Figure 4). For males, 75 individuals were included in the analysis. The body masses of
male individuals in both the K-deficient and K + supplemented treatments were lower than those in the
Control-Osmia and Zn + supplemented treatments. Moreover, significantly higher body masses were
observed for males exposed to Zn + supplemented pollen than for males exposed to Zn-deficient pollen.
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Figure 4. Body masses (mg) of Osmia bicornis imagines (females and males) reared on control pollen
pools (Osmia and Apis); pollen pools with scarce levels of K, Na, and Zn; or pollen pools supplemented
with certain elements (K, Na, and Zn) to the levels found in the control (Osmia) pollen pools.
Boxes—lower and upper quartiles, whiskers—minimum and maximum values, plus sign—mean value,
centerline—median, and triangles—raw data. (a–c)—different lowercase letters indicate significant
differences between treatments; Kruskal–Wallis (p ≤ 0.05) test with a Bonferroni 95.0% confidence level.

3.5. Simultaneous Redundancy Analysis (Body Mass Plus Cocoon Stage)

The RDA of the imago body mass and cocoon stage (Figure 5) suggested that the negative effects
of nutrient scarcity in the diet on these two traits were not correlated. For females and males, the first
two axes explained 36.82% and 45.36% of the total variance, respectively. Relationships between
adult mass/cocoon stage and the experimental diets are denoted by vectors. For both sexes, a vector
symbolizing the cocoon stage positioned between the axes was situated perpendicular to the vector
symbolizing adult mass, with the number of well-developed cocoons in a treatment increasing from
the right-lower to the left-upper corner of the graphs and the adult mass increasing contrarily from the
right-upper to left-lower corner of the graphs. For both sexes, the vector symbolizing adult mass was
larger than the vector symbolizing the cocoon stage, suggesting a stronger effect of nutrient scarcity
on mass than on cocoon development. Similar to previous analyses, the strongest negative effect of
nutrient scarcity on cocoon development was observed for K in both sexes; additionally, the RDA
suggested a similar effect for Na in females. For males, a positive effect of Zn supplementation on
body mass was revealed, similar to previous analyses.
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p = 0.002; males pseudo-F = 7.8, p = 0.002.

4. Discussion

The comparative experimental approach presented in this study provides evidence that deficiencies
in specific elements in larval food impose constraints on certain life history traits and on the fitness of
wild bee Osmia bicornis.

An important but understudied component of bee nutritional ecology is the relationship between K
and Na concentrations in food [27]. In our study, K deficiency had similar effects on both sexes as follows:
reduced survivability, reduced body mass, and underdevelopment of cocoons. K supplementation
improved survivability and increased the proportion of well-developed cocoons, but had no effect
on body mass. This effect is in line with that suggested by a theoretical study demonstrating that the
trade-off for K may occur between allocation to the adult bee body and allocation to its cocoon [9].
Such a phenomenon was observed in our study, where the allocation of K to cocoons resulted in a
smaller body size.

In the current study, Na scarcity strongly reduced survivability for both sexes; however,
Na supplementation had a slight positive effect on female fitness, which manifested as increases in
adult body mass. Among female larvae fed Na-deficient and Na + supplemented pollen, only three
and five individuals, respectively, survived, whereas for male larvae, four individuals survived on
both Na-deficient and Na + supplemented pollen. The facts that only a small number of specimens
survived and even fewer of them developed cocoons suggest that something other than sodium might
have affected the bees. A possible explanation is the scarcity of other colimiting nutrients (apart from
Na) or the presence of poisonous substances; for example, bees may be negatively affected if their food
consists of a large proportion of pollen having unfavorable chemical properties [41]. Additionally,
the digestibility of pollen from specific species might affect bee fitness [42]. The pollen pools used
in our experiment were hand-sorted based on color, therefore species composition was not assessed
for the pollen pools, and no nutrients other than K, Na, and Zn were analyzed in the pools. Thus,
we cannot conclude with 100% certainty that Na scarcity was the sole driver of such low survival
and poor development in bees fed Na-deficient pollen. Nevertheless, a slight but significant effect of
Na supplementation on female body mass was observed irrespective of any factors that might have
affected the outcome of our study. Importantly, body size positively influences the fitness of females
but not males [36,37]; therefore, the observed effect has ecological relevance.
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The levels of potassium and sodium are essential for homeostasis in living cells. Both elements are
maintained in gradients that are involved in the maintenance of transmembrane electrochemical
potential differences, which are essential for cell signaling and secondary transport [29].
Conversely, disruption of potassium and sodium cation gradients can result in paralysis or death.
Regarding potassium, its homeostasis in insects is associated with adaptation to extreme cold
and heat [30]. For example, studies on adults of the true bug Pyrrhocoris apterus and the beetle
Alphitobius diaperinus revealed that during a seven-day exposure at low temperatures (−5 ◦C and 4 ◦C,
respectively), a gradual increase in potassium cations was observed within the hemolymph of both
species, whereas for the other studied elements, i.e., magnesium and sodium, almost no changes were
observed, indicating the importance of potassium homeostasis in response to cold stress [43]. Overall,
it is not surprising that potassium had such a strong influence on the survival and development of
cocoons in our experiment. However, because plant tissues in general contain high levels of K and low
levels of Na, the K:Na ratio in herbivores’ foods strongly influences their fitness and must therefore
be adequately balanced [27]. For example, acute bee paralysis may be caused by an excessively high
K:Na ratio in their food [27,44]. Although, in diverse floras, K is not expected to have a limiting
effect on herbivorous insects, including wild bees; nonetheless, low levels of potassium can be found
in the pollens of several plant species [9]. Therefore, in the case of monocultures or habitats with
low species richness, such a phenomenon might occur. For instance, based on data available from
the literature, stoichiometric mismatches were calculated for different pollen species, showing that
Silybum marianum, Olea europaea, and Lavandula sp. produce stoichiometrically unbalanced pollen for
O. bicornis bees in terms of the potassium content [28]. Importantly, these plants are usually grown in
large agricultural areas.

Regarding sodium, its gradient maintains the secondary transport system, which mediates
the transport of other ions, substrates (e.g., glucose), and neurotransmitters across the plasma
membrane [29]. Most importantly, Na is one of the most limiting elements for herbivores [27],
including bees [39,45], and strong preferences of different bee species for sodium have been
shown [27,45–47]. The sodium concentration in pollen depends on the species and is the most
variable among all the elemental concentrations studied, differing fivefold between the pollens of
species with the minimum and maximum concentrations [9]. Therefore, considering the availability of
Na for developing bees, the occurrence of plant species producing Na-rich pollen in bee habitats may be
important for both females and males, potentially influencing the growth of the entire bee population.

Females and males differed in their responses to Zn levels. Supplementation with Zn had the
strongest effect on males, with lower mortality rates and higher body masses being observed upon
exposure to Zn + supplemented pollen in comparison with Zn-deficient pollen. Although the percentage
of Zn in the body is estimated to not exceed 0.02%, Zn is the most important trace element for the proper
functioning of various tissues, organs and systems [31]. For instance, Beanland and colleagues [48]
showed that the proportion of Zn in relation to two other minerals (Fe, B) in soybean (Glycine max)
affected the development of three herbivorous insects (Pseudoplusia includens, Epilachna varivestis,
and Anticarsia gemmatalis). A study on Zn supplementation in the sucrose diet of the honeybee
A. mellifera ligustica revealed that 30 mg Zn kg-1 in food was sufficient to maintain the antioxidative
(Cu/Zn-SOD activity) status of bees and to increase the survival of worker bees in comparison to those
of bees exposed to lower (0–15 mg Zn kg-1) and higher (>45 mg Zn kg-1) Zn levels [49].

Interestingly, it has been shown for various bees that adults of different sexes use different plant
species as food resources [50]. In O. bicornis, larval diets composed of pollen gathered by a female for her
daughters and sons differed in nutritional quality, and this difference reflected sex-specific nutritional
optima [28]. Moreover, female O. bicornis bees have a higher demand for Zn than males [28]. In general,
in our study, zinc was the diet element to which females were the least sensitive (in terms of mortality,
cocoon development and body mass). The explanation for these results might be associated with the
function of zinc in female bee reproduction. For example, Cane [51] showed that after emergence
from the cocoon, adult female Osmia californica bees require access to pollen to mature their oocytes
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and reproduce. Wasielewski and colleagues [52] observed that the first oocytes and ovaries of O. rufa
(bicornis) bees developed gradually during wintering, and the authors linked the development to the
vitellogenin content, whereas Lee and colleagues [53] found that after diapause, the length of the ovary
and first oocytes as well as the number of oocytes were correlated with the vitellogenin secretion level
in Osmia cornifrons. Vitellogenic proteins are female-specific egg-yolk precursors transferred to oocytes,
where they provide nourishment for embryos [54]. Interestingly, the vitellogenin content was found to
be closely related to Zn levels in female honeybees, because this protein acts as a Zn carrier [55,56].
Thus, we hypothesize that bee mothers provide both female and male eggs with pollen that contains a
sufficient Zn level for development and functioning, but at later stages (i.e., after emergence from the
nest), females can replenish zinc levels for continued functioning, e.g., vitellogenin and egg production,
by eating pollen [51]. Importantly, similar supplementation strategies for other nutritional elements are
impossible because adequate amounts and ratios of these elements are needed during larval growth
and pupation. Therefore, Zn deficiency might exert constraints on developing males, manifesting as
reduced survivability and body mass, whereas in females, Zn scarcity during the larval stage might
negatively affect the reproductive system (not studied in our experiment). The reproductive system
might be further rebuilt by adult females to ameliorate this negative effect.

Various bees, even those feeding on a variety of plant species, show preferences for particular
plant species as food sources, especially considering pollen food for larvae [3,57,58]. Moreover,
these preferences may be driven by specific nutritional needs reflected in the chemistries of the
gathered food [13,59–61]. However, the biochemical metrics commonly used in bee nutrition studies,
although ideal when focusing on bee biology, seem to be insufficient when considering the bee as
part of the ecosystem and biogeochemical cycle—an organism involved in nutrient cycling. Therefore,
adopting approaches complementary to traditional approaches, such as the biochemistry-oriented view,
and focusing on nutrient flow through ecosystems allow for a better understanding of interactions
between pollinators and other food web components (e.g., soil–plant–pollinator interactions) [62–64].
According to Paseka and colleagues [26], the frequency of element colimitation in terrestrial ecosystems
suggests that stoichiometric effects on plant productivity may, in turn, affect pollen production and
thus pollinators, although no studies on the relationships between elemental ratios in the environment
and pollen production have been performed.

5. Conclusions

Bee conservation efforts are often based on simplistic assumptions, considering the nutritional
ecology of only one life stage (usually adults) or sex (usually females). However, bee populations
consist of individuals of various life stages and different sexes. Effective management strategies for
maintaining populations of wild bees may be achieved only by obtaining and understanding the
relationships between the complex nutritional demands of the whole bee population and the nutritional
supply of pollen produced by different plants, including sex and life-stage differences in bee nutritional
needs. Within this context, the current study provides the first insight into the effects of specific-atom
scarcity in larval food on the life history traits and fitness of bees, thereby revealing the nutritional
mechanisms underlying the nutritional ecology, behavioral ecology and population functioning of
bees within an ecosystem context.

In this study, we confirmed earlier theoretical predictions, showing the following:

1. O. bicornis life history traits and fitness are shaped by the availability of atoms of specific chemical
elements in larval food.

2. Some of these traits might be shaped by the availability of specific elements in a sex-specific
manner: Na might influence female body mass, whereas Zn might influence the mortality and
body mass of males.

3. A trade-off between the K allocation to cocoons and the adult body may exist and might influence
the development of cocoons and the body mass of adult bees.
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