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A characteristic trait of plants living in harsh environments is their association with
fungal endophytes, which enable them to survive under extreme stress. Abiotic stress
resistance in agro-ecosystems, particularly in arid and semi-arid regions, can be
increased by inoculating these fungal endophytes on plants other than their original
hosts. The present study is therefore focused on the possible role of three halotolerant
endophytic fungi, i.e., Periconia macrospinosa, Neocamarosporium goegapense, and
N. chichastianum, isolated from roots of salt lake plants growing in the central
desert of Iran, in alleviating the adverse effects of salinity and drought stresses on
barley under greenhouse conditions. To perform this experiment, a randomized block
design was applied with three factors: fungi (four levels including three halotolerant
endophytic species and control), salinity (three levels including 8, 12, and 16 dS/m),
and drought (four levels including 100, 80, 60, 40 percent field capacity). All plants
were measured for growth characteristics, chlorophyll concentration, proline content,
and antioxidant enzyme activities. A three-way analysis of variance indicated that all
three fungal endophytes, to varying extents, induced the barley plants’ resistance to
salinity and drought, and their combined effects. Additionally, we found that fungal
endophytes were more effective when the barley plants were subjected to higher levels
of salinity and drought. Under the stress of salinity and drought, a strong relationship
between inoculation of fungal endophytes and enhancement of biomass, shoot length,
chlorophyll concentration, proline content, and activity of catalase, peroxidase, and
superoxide dismutase was indicated. We discussed that increased root growth, proline
content, and antioxidant enzyme activity are the main physiological and biochemical
mechanisms causing stress resistance in barley plants inoculated with endophytes.
Our research findings illustrate that fungal endophytes have a substantial potential
for increasing abiotic stress tolerance in barley plants, which can be applied in
agricultural ecosystems.

Keywords: crop production, environmental stress, halotolerant fungal endophytes, growth promotion, reactive
oxygen species, stress tolerance
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INTRODUCTION

Environmental challenges such as drought and salinity impose
the greatest threat to plants growing on irrigated land which
generates about 40% of the world’s food (Chaves et al., 2003;
Pimentel et al., 2004; Omar et al., 2009; Alikhani et al., 2013).
Morphological changes, restriction of photosynthesis, growth
reduction, disruption in the activities of the various enzymes,
influence on the formation of reactive oxygen species (ROS),
and performance imperfection are significant adverse effects
of such environmental stress on crops (Yildirim et al., 2015;
Sahin et al., 2018). Scientists around the world are searching
for innovative methods to maintain crop yields in stressful
conditions. Numerous studies have shown that plant-associated
microorganisms increase plant resistance to environmental stress
(Soussi et al., 2016; Bonatelli et al., 2021). The research to date
has mainly focused on fungal and bacterial symbionts, such
as mycorrhiza and nitrogen-fixing bacteria, and little is known
about the potential benefits of other free-living endophytic
microorganisms. However, some researchers have reported
endophytes as one of the key plant-associated microorganisms
involved in helping their hosts to increase growth and overcome
biotic and abiotic stress (Khan et al., 2011; Piernik et al., 2017;
Fouda et al., 2019; El-Sersawy et al., 2021).

Recent studies have indicated that endophytic
microorganisms associated with plant species growing in
harsh environments could induce significant abiotic stress
tolerance in plants other than their original hosts (Redman
et al., 2011; Moghaddam et al., 2021). These microorganisms
increase environmental stress tolerance in their host plants
by several mechanisms, such as raising water-use efficiency,
enhancing antioxidant enzyme activity, the adjustment
in ion transport and metabolic changes, modulation of
phytohormones, etc. (Baltruschat et al., 2008; Lata et al.,
2018). Bacterial endophytes associated with halophytic plants,
i.e., Arthrocnemum macrostachyum and Spergularia marina,
ameliorate salinity tolerance of Vicia faba by improvement
of enzymatic and non-enzymatic antioxidant accumulation
(Mahgoub et al., 2021). Endophytic ascomycete Curvularia
sp. isolated from halophytic Suaeda salsa conveys salinity
stress tolerance to poplar trees Populus tomentosa (Pan et al.,
2018). Poplar trees inoculated with Curvularia sp. indicated
higher levels of antioxidant enzymes and proline than non-
inoculated plants. Thermomyces fungal endophyte isolated
from extreme hot desert-adapted plants eliminates the adverse
effects of heat stress on cucumber plants by increasing root
length, improving photosystem II efficiency, photosynthesis
rate, and water use efficiency relative to endophyte-free plants
(Ali et al., 2018). In light of these studies isolating endophytic
microorganisms associated with desert plants and studying
their role in inducing tolerance to abiotic stress are of great
biotechnological importance, especially in barren lands and
saline environments.

Barley (Hordeum vulgare), as a monocotyledonous plant
species, is the fourth most commonly produced cereal after
maize, rice, and wheat. Therefore, studies on the methods
of how to increase barley plants’ resistance to abiotic stress

are crucial for agricultural research. During the last decade,
several studies have investigated the effect of fungal endophytes
on barley plants’ increasing resistance to salinity and drought
stresses (Alikhani et al., 2013; Bagheri et al., 2013; Chen et al.,
2018). Inoculation of Epichloë, an asexual endophytic fungus,
significantly alleviated adverse effects of salinity stress on barley
plants by promoting nutrient absorption and adjusting the
ionic balance (Song et al., 2015). Improvement of ascorbic acid
levels and antioxidant enzyme activity were observed in barley
plants inoculated with Piriformospora indica under salinity stress
(Baltruschat et al., 2008). Ghabooli et al. (2013) reported that
P. indica, as a mutualistic root endophytic fungus, increases
growth and salinity tolerance in barley plants by enhancing the
K+/Na+ and Ca2+/Na+ ratios, sugars, and free amino acids.
Endophytic fungus Epichloë bromicola significantly increased
salinity stress in H. brevisubulatum by increasing the conversion
of putrescine to spermidine and spermine as well as improving
shift ability of free and soluble conjugated forms of polyamines to
insoluble forms (Prema Sundara Valli and Muthukumar, 2018).

We previously indicated that three halotolerant endophytic
fungal species, i.e., Periconia macrospinosa, Neocamarosporium
goegapense, and N. chichastianum, isolated from the roots of Salt
Lake plants growing in the central desert of Iran increase dicot
plants’ resistance to salinity and drought stresses (Moghaddam
et al., 2021). This study aimed to investigate the potential benefits
of these endophytic fungi in inducing the same abiotic stress
tolerance in monocots. Fungal treatments including the three
mentioned species and control plants (lacking endophytes) –
under different salinity, drought, and their combination stress
levels were applied to barley plants in a greenhouse experiment.
For understanding the barley plant’s reaction to different levels
of salinity and drought stress, several important physiological
and biochemical markers such as proline content of leaf
and antioxidant enzymatic activities in the presence/absence
of endophytic fungi were measured. Furthermore, growth
parameters and leaf chlorophyll concentration were measured.

MATERIALS AND METHODS

Greenhouse Experimental Design
Hordeum vulgare L. (barley) was used as a model plant for
salinity and drought stress tolerance assays. Salt-sensitive barley
seeds (Reyhan 03, Iran) were surface-sterilized for 10 min in
0.25 percent sodium hypochlorite, followed by rinsing with
water (Baltruschat et al., 2008). The surface-sterilized seeds were
germinated at 24◦C on sheets of Whatman filter paper, which
were soaked in distilled water in sterile Petri dishes. After two
days, the germinated seeds were transferred to pots containing
200 g of 2:1 autoclaved mixture of soil and peat (v/v) (pH = 6.7;
EC= 1.1 dS/m). This experiment was conducted using a random
block design, with 144 pots divided up into 36 pots for each fungal
species treatment, and 36 pots for control treatments.

Three halotolerant fungal endophyte species, i.e.,
Periconia macrospinosa, Neocamarosporium goegapense, and
N. chichastianum, isolated in our previous study (Moghaddam
et al., 2021) were propagated in Potato Dextrose Broth (PDB;
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Merck, Germany) for about ten days at 28◦C, shaking at 180 rpm,
in dark conditions. The pots were inoculated with fungal
endophytes by mixing 200 g of the potting substrate with 2 g
of fresh mycelium. The pots were maintained in a greenhouse
at 27:19◦C day: night cycle, 45–55% relative humidity, and a
photoperiod of 16 h.

Barley plants were exposed to salinity and drought 10 days
after inoculation. Salt lake water (31.4% Na+; 0.3% K; 0.9% Mg;
0.3% Ca, 12.7% Cl; 0.8% SO4; and 1.29% CO3) from Hoz-e
Soltan (35.00083333, 50.99250000) was used to induce salinity
stress on endophyte-colonized plants as well as on the endophyte-
free control plants. Salinity stress was applied at three levels
of Electrical conductivity to the barley pots, including S1 = 8
dS/m (without yield reduction), S2 = 12 dS/m (25 percent yield
reduction), and S3 = 16 dS/m (50 percent yield reduction).
In order to attain different salinity levels, the salt lake water
was diluted with distilled water. Barley plants were exposed to
drought stress at four different levels, including D1 = 100%,
D2 = 80%, D3 = 60%, and D4 = 40% of field capacity (FC).
In order to determine the field capacity, soil samples of 200 g
were taken at the time of filling plastic pots, stored in plastic
bags, and transported to the laboratory. A 24-hour incubation at
105◦C was then performed on these soil samples. By weighing
and averaging these oven-dried samples, we determined the soil
moisture content at the time of sowing the barley seeds. In
order to estimate the saturation percentage of the oven-dried
soil samples, distilled water was used to make a paste that was
completely saturated.

The following equation was used to determine the field
capacity:

Field capacity = Saturation percentage/2

A drought treatment was calculated as 100, 80, 60, and 40
percent field capacities. By using a balance, pots were weighed to
determine the soil’s field capacity. Plants were only watered if the
capacity of the field decreased (Saeed et al., 2016). All experiments
were applied in triplicates.

Confirmation of the Colonization of
Barley Roots by Fungal Endophyte
We examined the roots and confirmed the internal plant
colonization by the inoculated endophytic fungi as follows. Root
samples were washed under tap water for 10 minutes and cut into
0.5-1 cm pieces. Root fragments were subjected to a three-step
surface sterilization process including dipping in ethanol/water
(70:30) for 2 min, followed by sodium hypochlorite/water (4:96)
for 90 s, ethanol/water (70:30) for 2 min, and a final rinse in sterile
distilled water for three times (1 min each). The inner layers
of disinfected roots were cultured on PDA (Merck, Darmstadt,
Germany), and incubated at 28◦C (Hosseyni-Moghaddam and
Soltani, 2014). A small amount of water from the final step was
also spread on the same media. The control plants were treated in
the same way. The isolated fungal species were identified either
morphologically (Supplementary Figure 1) or by sequencing the
ITS-rDNA region.

Measurements of Growth Parameters
and Chlorophyll Concentration
Six weeks after planting the seeds, the root wet and dry weight
and shoot length of the plants were measured. Using a SPAD-502
Chlorophyll meter, we measured the chlorophyll content of all
leaf samples (Coste et al., 2010).

Antioxidant Enzymatic Activity and
Proline Content of Leaf Measurements
Two weeks after the pots were stressed by salinity and drought,
leaf samples were collected. Liquid nitrogen was used to
crush 0.2 g of each leaf sample for homogenization. Then,
3 mL of HEPES-KOH buffer (pH 7.8) containing 0.1 mM
EDTA was added to the leaf powder. Supernatants (enzyme
extracts) were used for chemical analysis once the final solutions
had been centrifuged at 4◦C at 16,000 rpm for 15 min
(Sahebjamei et al., 2007). A photochemical method was applied to
measure superoxide dismutase (SOD) activity in the supernatant
(Giannopolitis and Ries, 1977). First, a reaction mixture (3 ml)
containing 300 µL enzyme extract, 75 µM nitroblue tetrazollium
chloride (NBT), 1 µM riboflavin, 0.1 mM EDTA, 50 mM
MHEPES-KOH buffer (pH 7.8), 12 mM L-methionine, and
50 mM Na2CO3 (pH 10.2), was prepared. Then, using a
spectrophotometer (Cintra 6, GBC, Dandenong, Australia), one
unit of superoxide dismutase activity was determined as the
amount of enzyme needed to inhibit the 50% rate of NBT
reduction measured at 560 nm. In a reaction mixture consisting
of 500 µl of 10 mM H2O2, 1400 µl of 25 mM sodium
phosphate buffer, and 100 µl of crude enzyme extract, catalase
activity was measured. Following the decomposition of H2O2,
absorbance at 240 nm declined. Catalase activity of the extract
was expressed as CAT unit: min−1 mg−1 protein (Cakmak
and Horst, 1991). A spectrophotometric measurement of the
peroxidase activity was done by following the oxidation of
guaiacol (2-methoxyphenol) to tetraguaiacol at 470 nm (Plewa
et al., 1991). The reaction mixture (3 mL) contained 500 µl
28 mM guaiacol, 1900 µl 60 mM potassium phosphate buffer (pH
6.1), 500 µl 5 mm H2O2, and 100 µl crude extract. The enzyme
activity was expressed as POX unit: min−1 mg−1 protein.

For the estimation of proline content, each leaf sample (0.2 g)
was homogenized in 3 ml sulphosalicylic acid (3% w/v), and
then centrifuged at 10,000 rpm for 15 min. A reaction mixture
consisted of 2 ml supernatant, 2 ml freshly prepared acid
ninhydrin solution, and 2 ml glacial acetic acid which was boiled
at 100◦C for 1 h. After completion of the reaction in an ice
bath, the reaction mixture was extracted with 4 ml of toluene;
absorbance was read at 520 nm (Bates et al., 1973).

Statistical Analyses
For each measured biological parameter of the barley plants, a
three-way ANOVA was used to determine the effects of three
factors, i.e., fungus, salinity, and drought. LSD tests were used to
assess the significance of group differences at a p ≤ 0.05 level.
Analyses were conducted using statistical packages in R version
3.6.2 (R Core Team, 2021).
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RESULTS

Colonization of Barley Roots by
Halotolerant Endophytic Fungi
By using the same isolation technique, the isolated halotolerant
fungal endophytes, i.e., P. macrospinosa, N. goegapense, and
N. chichastianum, were re-isolated from the inoculated barley
roots. However, these fungal species were not isolated from
the control plants. The confirmation of colonization of barley
roots by halotolerant endophytic fungi validated our results from
this experiment.

Growth Promotion of Barley Plants
Under Salinity and Drought Stress
A three-way analysis of variance revealed that halotolerant
endophytic fungi significantly increased the tolerance of
barley plants to salinity, drought, and their combined effects
(Tables 1, 2). Compared to the endophyte-free control plants, the
barley plants’ growth parameters were all improved (p ≤ 0.01;
Table 1). Six weeks after planting the seeds, inoculated barley
plants indicated 27.6, 30.5, and 24.7% more biomass, root
wet weight, and shoot length than their control counterparts,
respectively. The results also indicated that the increasing
drought or salinity levels negatively affect barley plants’ growth
characteristics (p ≤ 0.01); however, the interaction effect of these
abiotic stress was not significant (Table 1).

Barley plants’ growth parameters were affected by the
interaction between halotolerant endophytic fungi and drought
stress (P ≤ 0.01; Table 1). Under D1, D2, D3, D4 drought
levels, the biomass of the inoculated barley plants was observed
to be increased by 9.2, 23.1, 42, and 61.1 percent compared
to the endophyte-free controls (Figure 1). Shoot length also
increased by 7.2, 26.5, 34.7, and 41 percent compared to the
control plants under D1, D2, D3, D4 drought levels (p ≤ 0.05;
Figure 1). In total, plants inoculated with N. chichastianum
indicated greater biomass and shoot length than those inoculated
with P. macrospinosa, and N. goegapense across all levels of
drought stress (p ≤ 0.05; Figure 1). Additionally, endophyte-
colonized barley showed 7.4, 34.1, 47.1, and 50.9 percent greater

TABLE 2 | Three-way analysis of variance (ANOVA) of the effects of the
halotolerant fungal endophytes, P. macropinosa, N. goegapense, and
N. chichastianum on the activity of antioxidant enzymes including POX, CAT, and
SOD, and leaf proline content of Hordeum vulgare L. (barley) under different levels
of salinity and drought stresses.

Variables DFa POX CAT SOD Leaf
Proline
content

Fungi 3 0.09*** 0.10*** 0.42*** 1033***

Drought 3 1.20*** 0.59*** 2.65*** 8044***

Salinity 2 0.10*** 0.01*** 0.24*** 917***

Fungi:Drought 9 0.03*** 0.01*** 0.11*** 464***

Fungi:Salinity 6 0.001*** 0.001*** 0.03*** 49***

Drought:Salinity 6 0.001*** 0.0006*** 0.003*** 4***

Fungi:Drought:
Salinity

18 0.0003*** 0.001*** 0.01*** 17***

Residuals 96 0 0.0001 0.0001 3

Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1.
a Degree of freedom.
The numbers presented in the table are the sum of squares of the fitted model.

root wet weight compared to endophyte-free controls, under D1,
D2, D3, D4 drought levels, respectively (Figure 1). Overall, plants
inoculated with Neocamarosporium species showed greater root
wet weight than those inoculated with P. macrospinosa (p≤ 0.05;
Figure 1).

Growth parameters of barley plants were affected by
interactions between halotolerant endophytic fungi and salinity
stress (Table 1). Under salinity levels of S1, S2, and S3, the
biomass of inoculated barley plants was increased by 17, 31.7,
and 42.9 percent in comparison with endophyte-free control
plants (Figure 2). The shoot length of the barley plants was
observed to be increased by 17, 25.9, and 32.9 percent compared
to the endophyte lacking controls under S1, S2, and S3 salinity
levels (Figure 2). Overall, N. chichastianum-inoculated plants
indicated greater biomass and shoot length compared to the
plants associated with P. macrospinosa, and N. goegapense,
across all salinity stress levels (p ≤ 0.05; Figure 2). Under
salinities of S1, S2, and S3, the endophyte-colonized barley plants
indicated 18.9, 33.4, and 42.8 percent greater root wet weight

TABLE 1 | Three-way analysis of variance (ANOVA) of the effects of the halotolerant fungal endophytes, P. macropinosa, N. goegapense, and N. chichastianum on the
growth parameters and leaf chlorophyll concentration of Hordeum vulgare L. (barley) under different levels of salinity and drought stresses.

Variables DFa Biomass Root wet weight Leaf chlorophyll concentration length shoot

Fungi 3 32.16*** 58.03*** 2325*** 7013***

Drought 3 46.07*** 109.83*** 5349*** 13187***

Salinity 2 12.30*** 17.45*** 389*** 1844***

Fungi:Drought 9 4.60*** 8.34*** 391*** 928***

Fungi:Salinity 6 1.60* 2.66*** 45 226***

Drought:Salinity 6 0.02 0.02 0 2

Fungi:Drought:Salinity 18 0.06 0.10 0 6

Residuals 96 4.11 5.89 328 496

Significant codes: 0 ‘***’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1.
a Degree of freedom.
The numbers presented in the table are the sum of squares of the fitted model.
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FIGURE 1 | The positive effects of halotolerant endophytic fungi species on drought stress resistance abilities of barley plants. Different levels of drought stress and
different fungal treatment are shown on the horizontal axis and colorful boxes, respectively. Various letters on the top of bars display significant differences between
mean values of different fungal treatments under the different levels of drought stress at p ≤ 0.05.

than the endophyte-free plants, respectively (p ≤ 0.05; Figure 2).
The barley plants inoculated with Neocamarosporium species
indicated greater root wet weight than those inoculated with
P. macrospinosa at all levels of salinity stress (p≤ 0.05; Figure 2).

The outcomes indicated that a three-way interaction between
drought, salinity, and fungus failed to significantly influence the
growth characteristics of barley plants (Table 1). However, higher
growth parameters were recorded in inoculated barley plants
compared to the control plants. Additionally, the halotolerant
endophytic fungi were more effective at improving barley plants’
growth parameters when the plants were exposed to high levels
of drought or salinity stress (Figures 1, 2).

Effects of Halotolerant Endophytic Fungi
on Leaf Chlorophyll Concentration of
Barley Plants Under Salinity and Drought
Stress
A three-way ANOVA study demonstrated that halotolerant
endophytic fungi species significantly increased leaf chlorophyll
concentration compared to the control plants lacking fungal
endophytes (P≤ 0.01; Table 1). Six weeks after planting the seeds,
plants colonized with halotolerant endophytic fungi indicated

greater chlorophyll content in comparison with endophyte-free
plants. The results also showed that increasing drought or salinity
levels negatively affect barley plants’ chlorophyll concentration
(p ≤ 0.01); however, the interaction effect of these abiotic stress
was not significant (Table 1).

Chlorophyll content of leaves was positively affected by
halotolerant endophytic fungi under different levels of drought
stress (p ≤ 0.01; Table 1). Compared to the endophyte-free
barley plants, plants colonized with endophytes showed 10, 23,
42.8, and 110.4 percent higher chlorophyll contents at D1, D2,
D3, D4 drought levels (p ≤ 0.05; Figure 1). Contrary to our
expectations, the presence of halotolerant endophytic fungi did
not significantly affect chlorophyll concentrations in the leaves
under salinity stress (Table 1). Nevertheless, plants inoculated
with Neocamarosporium species had higher chlorophyll content
than plants inoculated with P. macrospinosa, irrespective of the
degree of drought stress (p≤ 0.05; Figure 1). Furthermore, results
indicated that halotolerant fungal endophytes were more effective
at improving leaf chlorophyll content when barley plants were
subjected to a higher level of drought stress (Figure 1).

The effects of the three-way interactions between drought,
salinity, and fungus on leaf chlorophyll concentration of
barley plants were not significant (Table 1). However,
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FIGURE 2 | The positive effects of halotolerant endophytic fungi species on salinity stress resistance abilities of barley plants. Different levels of drought stress and
different fungal treatment are shown on the horizontal axis and colorful boxes, respectively. Various letters on the top of bars display significant differences between
mean values of different fungal treatments under the different levels of salinity stress at p ≤ 0.05.

endophyte-colonized plants had higher chlorophyll levels
than endophyte-free plants.

Effects of Halotolerant Fungal
Endophytes on Leaf Proline Content of
Barley Plants Under Salinity and Drought
Stress
Variance partitioning analysis indicated that halotolerant fungal
endophytes significantly affected proline content of barley plants
(p≤ 0.01, Table 2). Barley plants associated with P. macrospinosa,
N. goegapense, and N. chichastianum showed 47.8, 35.9, and
32.8 percent higher proline levels than their endophyte-free
counterparts (Figure 3). Moreover, increasing salinity increased
leaf proline content of barley plants across the experiment.
Similar patterns were observed in plants subjected to drought
stress (Table 2 and Figure 3).

Increasing salinity or drought stress levels significantly
increased leaf proline content of barley plants across the
experiment. Moreover, the interaction effects of salinity and
drought stress had significant effects on proline content (p≤ 0.01,
Table 2). Under S1, S2, and S3 salinity levels, the proline content
of inoculated barley plants was observed to be increased by 34.9,

36, and 43.9 percent compared to endophyte lacking controls,
respectively. Further, interaction between halotolerant fungal
endophytes and drought stress significantly affected the proline
content of barley plants (p≤ 0.01, Table 2). When the endophyte-
colonized barley plants were subjected to D1, D2, D3, D4 drought
levels, their proline content was 17.8, 33.5, 43.2, and 46.7 percent
higher than the endophyte-free controls, respectively (p ≤ 0.05;
Figure 3).

Outcomes indicated that the three-way interactions between
salinity, drought, and fungus significantly impacted proline
content (p≤ 0.01; Table 2). With increasing salinity and drought
levels, the halotolerant fungal species were more effective on
leaf proline content. Under the lowest levels of salinity and
drought stress, inoculation of P. macrospinosa, N. goegapense,
and N. chichastianum increased the proline content of leaf
by 2.3, 15.9, and 14.3 percent, respectively, compared to the
control plants (p ≤ 0.05; Figure 3). While under the highest
levels of drought and salinity, the barley plants colonized
by P. macrospinosa, N. goegapense, and N. chichastianum
showed a significant increase of proline content of leaf, by
48.4, 50.9, and 44.8 percent, respectively, compared to the
control plants (p ≤ 0.05, Figure 3). Overall, plants colonized
with N. goegapense expressed the highest proline content of
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FIGURE 3 | The effects of halotolerant endophytic fungi species on leaf proline content of barley plants, under salinity and drought stress. Different levels of drought
stress and different fungal treatment are shown on the horizontal axis and colorful bars, respectively. Various letters on the top of bars display significant differences
between mean values of different fungal treatments under the different levels of salinity and drought stress at p ≤ 0.05.

leaf under the lowest and highest salinity levels and drought
stresses (Figure 3).

Effects of Halotolerant Fungal
Endophytes on Antioxidant Enzymatic
Activities of Barley Plants Under Salinity
and Drought Stress
In barley plants, fungus, salinity, and drought treatments, and
their interactions, significantly affected the activity of antioxidant
enzymes including SOD, CAT, and POX (p ≤ 0.01, Table 2).

As compared to the endophyte-free controls, plants inoculated
with P. macrospinosa, N. goegapense, and N. chichastianum
demonstrated 38.2, 25, and 22.6 percent greater CAT activity
(Figure 4). The inoculations of P. macrospinosa, N. goegapense,
and N. chichastianum also enhanced POX activity by 35,
25.8, and 25.9 percent, respectively (Figure 5). In addition,
enhancement of SOD activity by 38.6, 29.9, and 35.4 percent,
was observed in plants colonized with P. macrospinosa,
N. goegapense, and N. chichastianum (Figure 6). The results
also showed that increasing salinity or drought stress levels,
as well as their interaction effects, significantly increased the
SOD, CAT, and POX activities of barley plants (p ≤ 0.01,
Table 2).

Salinity and fungus interaction significantly affected SOD,
CAT, and POX activities (p ≤ 0.01; Table 2). Under S1, S2,

and S3 salinity levels, we respectively observed a 25.6, 30.9, and
46.4 percent increase in SOD activity among inoculated barley
plants compared to endophyte-free control plants (Figure 6).
Barley plants colonized with endophytes also showed 20.6, 25.9,
and 33.2 percent greater CAT activity than those not colonized
with endophytes, under S1, S2, and S3 salinity levels (p ≤ 0.05;
Figure 3). Furthermore, under S1, S2, and S3 salinity levels,
endophyte-inoculated barley plants respectively indicated 24.9,
28.6, and 33.9 percent higher POX activities compared to the
control plants (p ≤ 0.05; Figure 5).

Drought and fungus interaction significantly affected SOD,
CAT, and POX activities (p ≤ 0.01, Table 2). Under D1, D2, D3,
D4 drought levels, we respectively observed a 21.2, 32.1, 37.1, and
41.6 percent increase in SOD activity among inoculated barley
plants compared to the endophyte-free control plants (Figure 6).
Barley plants colonized with endophytes also indicated 18.6,
25.5, 30.3, and 34.6 percent greater CAT activity than those not
colonized with endophytes, under D1, D2, D3, D4 drought levels
(p ≤ 0.05; Figure 3). Moreover, under D1, D2, D3, D4 drought
levels, endophyte-inoculated barley plants respectively indicated
39.3, 31.9, 16.9, and 34.2 percent higher POX activities compared
to the control plants (p ≤ 0.05; Figure 5).

Three-way interactions between drought, salinity, and fungus
had significant effects on SOD, CAT, and POX enzymes activity
(p ≤ 0.01, Table 2). Moreover, fungal endophytes were more
influential on barley plants’ antioxidant enzyme activities as
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FIGURE 4 | The effects of halotolerant endophytic fungi species on CAT activity of barley plants, under salinity and drought stress. Different levels of drought stress
and different fungal treatment are shown on the horizontal axis and colorful bars, respectively. Various letters on the top of bars display significant differences
between mean values of different fungal treatments under the different levels of salinity and drought stress at p ≤ 0.05.

salinity and drought increased (Figures 4–6). Under the lowest
and highest levels of drought and salinity, barley plants colonized
by P. macrospinosa, N. goegapense, and N. chichastianum showed
higher SOD, CAT, and POX enzymatic activity than their
control counterparts (p ≤ 0.05). Under the lowest levels of
salinity and drought stresses, P. macrospinosa, N. goegapense, and
N. chichastianum increased the CAT activity by 28.9, 30.9, and
28.8 percent, SOD activity by 1.7, 1.2, and 4.9 percent as well
as POX activity by 48.2, 64, and 73.5 percent compared to the
controls, respectively (p ≤ 0.05; Figures 4–6).

Under the highest levels of salinity and drought,
P. macrospinosa, N. goegapense, and N. chichastianum
significantly increased the CAT activity by 51.1, 32, and
30.9 percent, and SOD activity by 51.8, 40.2, 44 percent as well
as POX activity by 34, 34.5, and 33.3 percent compared to the
control plants, respectively (p ≤ 0.05; Figures 4–6).

DISCUSSION

Drought and salinity threaten agricultural production, especially
in arid and saline environments. Increasing food demand
requires finding non-chemical ways to enhance plants’ tolerance
to salinity and drought. The evidence for endophytes as beneficial
microbes has been growing in recent years, confirming their
ability to confer certain benefits to their host plants under abiotic

stress, such as persistent drought, extreme temperatures, high
salinity, and heavy metal toxicity (Singh et al., 2011; Shahabivand
et al., 2017; Lata et al., 2018; Alkahtani et al., 2020). In the
meantime, the study of endophytes associated with plants living
in harsh environments has gained increasing attention, with
the hypothesis that these microorganisms are responsible for
their host’s tolerance of such conditions (Alkahtani et al., 2020;
Mahgoub et al., 2021). Here we indicated that three halotolerant
fungal endophytes, i.e., P. macrospinosa, N. goegapense, and
N. chichastianum, isolated from roots of Salt Lake plants growing
in the central desert of Iran, increase barley plant’s tolerance
to salinity, drought, and their combined effects. Furthermore,
we found that these three fungal endophytes are more effective
under high levels of drought and salinity stresses. This suggests
that endophytic fungi might benefit plants more in adverse
conditions. A similar result was observed when dicotyledonous
plants inoculated with fungal endophytes were subjected to
drought and salinity stress (Moghaddam et al., 2021).

Aiming to find out how these three halotolerant fungal
endophytes impacted the establishment of salinity and drought
stress tolerance, physiological and biochemical markers, such
as biomass, root wet weight, shoot length, leaf chlorophyll
concentration, proline content, and antioxidant enzymes activity
were assessed. Under salinity and drought stress, barley plants
inoculated with three studied fungal endophytes showed greater
biomass, root wet weight and shoot length than endophyte-free
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FIGURE 5 | The effects of halotolerant endophytic fungi species on POX activity of barley plants under salinity and drought stress. Different levels of drought stress
and different fungal treatment are shown on the horizontal axis and colorful bars, respectively. Various letters on the top of bars display significant differences
between mean values of different fungal treatments under the different levels of salinity and drought stress at p ≤ 0.05.

barley plants. It may be consistent with endophyte-mediated
habitat adaptive tolerance (Redman et al., 2011; Moghaddam
et al., 2021). One of the main mechanisms of fungal endophytes
for decreasing the adverse effects of salinity and drought stress on
their host plants is increasing water absorption by increasing root
growth (Lata et al., 2018).

Plants’ ability to cope with abiotic stress can be assessed
by evaluating leaf chlorophyll levels (Naumann et al., 2008).
Salinity and drought stress by inhibiting chlorophyll biosynthesis
cause nutritional starvation and suppressed enzyme activities.
Under salinity and drought stress, a strong relationship
between inoculation of fungal endophytes and enhancement of
plant chlorophyll concentration has been indicated (Ghorbani
et al., 2018). Here, under salinity and drought stress, barley
plants associated with P. macrospinosa, N. goegapense, and N.
chichastianum indicated more chlorophyll concentration than
endophyte-free controls (Figures 1, 2), suggesting that fungal
endophytes have increased barley plants’ tolerance to salinity
and drought stress. Similar results were observed in tomato
and cucumber plants inoculated with these fungal species
(Moghaddam et al., 2021).

Under non-stressed conditions, ROS (Reactive Oxygen
Species) are constantly produced in plants but maintained
at a non-toxic level. However, ROS accumulation in plants
exposed to abiotic stress, such as salinity, drought, high UV
radiation, and extreme temperatures can cause significant

damage to cell membranes, DNA molecules, and proteins
(Elstner, 1991; Tsugane et al., 1999; Apel and Hirt, 2004).
To prevent ROS accumulation and suppress their destructive
effects, plants produce various anti-oxidative enzymes, such
as superoxide dismutase, catalase, peroxidase, and ascorbate
peroxidase (Foyer and Noctor, 2000; Bharti et al., 2016).
Under environmental stress, endophytic fungi can increase
the plant’s antioxidant enzymatic activity to mitigate oxidative
damage (Rodriguez and Redman, 2008; Jogawat et al., 2013;
Sadeghi et al., 2020; Mahgoub et al., 2021). These compounds,
combined with osmotic adjustment, stabilize cell components
and eliminate free radicals. The current results show that
halotolerant endophytic fungal species P. macrospinosa improved
the antioxidant enzyme activity in barley under all levels of
salinity and drought stress (Figures 4–6). These observations
are in accordance with our previous study, indicating that
P. macrospinosa is capable of increasing the activity of SOD, CAT,
and POX enzymes in cucumber and tomato plants (Moghaddam
et al., 2021). Barley plants inoculated with N. goegapense and,
N. chichastianum indicated higher levels of antioxidant enzyme
activity in comparison to endophyte-free plants under all levels
of salinity and drought stress (Figures 4–6). However, these
two fungal endophytes increased the activity of SOD, CAT, and
POX enzymes of cucumber and tomato plants only in high
levels of salinity and drought stress (Moghaddam et al., 2021).
This finding suggests that although fungal endophytes improve
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FIGURE 6 | The effects of halotolerant endophytic fungi species on SOD activity of barley plants under salinity and drought stress. Different levels of drought stress
and different fungal treatment are shown on the horizontal axis and colorful bars, respectively. Various letters on the top of bars display significant differences
between mean values of different fungal treatments under the different levels of salinity and drought stress at p ≤ 0.05.

salinity and drought stress tolerance by increasing the POD,
CAT, and POX enzymes activity in their host plant, the potential
benefits of these microorganisms are dependent on the host
plant’s identity.

Different levels of abiotic stress increase the accumulation
of proline in plant tissues (Fahramand et al., 2014; Hashem
et al., 2015). Although the molecular role of proline in plant
osmotolerance has not yet been demonstrated, it is believed
that proline accumulation plays a significant role in plant
abiotic stress tolerance via different mechanisms, including
detoxification of ROS, osmotic adjustment, and conservation of
membrane integrity (Heuer, 2010). Many studies have indicated
that endophytic microorganisms can mitigate the destructive
effects of salinity and drought stresses by increasing their host
plant’s proline content (Waller et al., 2005; Prasad et al., 2013;
Mahgoub et al., 2021). In the current investigation, we observed a
striking increase of leaf proline content in barley plant inoculated
with P.macrospinosa under all levels of salinity and drought stress
(Figure 3). An increase in proline content infers ionic influx
reduction inside the cells and preserves plants by sustaining
their osmotic balance. While our previous reports show that
Neocamarosporium species increase the proline content of
cucumber and tomato plants only in higher levels of salinity and
drought stress (Moghaddam et al., 2021), here we observe that
two halotolerant endophytic fungal species, N. goegapense, and
N. chichastianum, improved the proline content of leaf under all
levels of salinity and drought stress.

Overall, the current study and our previous study
(Moghaddam et al., 2021) indicated that these three halotolerant
endophytic fungi increase both monocot and dicot plant’s
resistance to salinity and drought stress across all levels. While
Periconia macrospinosa increased the activity of antioxidant
enzymes and proline content in both monocot and dicot
plants under all levels of salinity and drought stress, two
Neocamarosporiun species did not increase the levels of these
biochemical markers in dicot plants under lower levels of the
drought and salinity stress. It appears that identical fungal
endophytes function differently in different plant species.

CONCLUSION

In the present study, three halotolerant endophytic fungal species,
P. macrospinosa, N. goegapense, and N. chichastianum, increased
several physiological and biochemical markers, including plant
growth parameters, chlorophyll concentrations, antioxidant
enzymes activity, and proline content in barley plants exposed to
salinity and drought stress. Overall, we observed that these fungi
significantly improved plant performance under these abiotic
stresses. Such endophytic fungi associated with desert plants have
developed some strategies to thrive in the harsh environment
of the desert and play a fundamental role in conferring
resistance to their host plants against extreme environmental
stress. The results of our study show that fungal endophytes
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might have the ability to increase the abiotic stress tolerance in
plants other than their original hosts, which can be utilized in
agricultural ecosystems. Different reactions were observed in two
Neocamarosporium species in inducing tolerance to abiotic stress
in dicotyledonous and monocotyledonous plants, highlighting
the role of plant identity in such plant-microbe associations. We
suggest studying the effects of endophytic fungal species on other
major crops, especially in natural agricultural fields. Further in-
depth studies are required to understand the molecular changes
in the host plants induced by fungi under stressful conditions.
Such studies are important regarding the future development
of biofertilizers to reduce the excessive utilization of chemical
compounds in agricultural fields.
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