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Abstract: In this paper, we studied the scandium adsorption from aqueous solutions on the sur-
face of low-temperature-activated alumina products (GDAH). The GDAH samples are industrially
manufactured, coming from the Bayer production cycle of the Sierra Leone bauxite as aluminium
hydroxide, and further, by drying, milling, classifying and thermally treating up to dehydroxilated
alumina products at low temperature. All experiments related to hydroxide aluminium activation
were conducted at temperature values of 260, 300 and 400 ◦C on samples having the following particle
sizes: <10 µm, 20 µm, <45 µm and <150 µm, respectively. The low-temperature-activated alumina
products were characterised, and the results were published in our previous papers. In this paper, we
studied the scandium adsorption process on the above materials and related thermodynamic and
kinetic studies.

Keywords: scandium; activated alumina; adsorption; kinetic and thermodynamic studies

1. Introduction

The continuous growth of industries based on limiting the consumption of materials
and energy has imposed accelerated demands for specific raw materials, especially for the
production of new rare metal elements. Most economically advanced countries consider
rare metals resources and their production technologies as “critical”, based on their supply
risks and economic importance. So far, rare metals’ unique physical and chemical proper-
ties have made them indispensable for growing new technologies, critical for the evolution
of the new digital and green industry. Thus, rare metals’ importance in the production of
electronics, regenerable energy equipment, lightweight electric vehicles and other applica-
tions has produced an increased demand for new raw materials and secondary resources
obtained by the low cost of rare metal recovery. Some systematic reviews on this subject
may be found in the recent literature [1]. However, in addition to the benefits of industrial
use of lanthanides, there are many negative environmental impacts associated with both the
mining of raw material and rare metals production, as well as with rare metal conversion to
finished products. Moreover, these problems are related to a huge accumulation of wastes,
debris, residues and garbage, but also by increasing other environmental hazards. Studies
and technical reports indicate that the chemicals used in the refining process of rare metals
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have been responsible for the occupational diseases and contamination of local residential
areas, water pollution and agricultural land destruction. Occupational safety and public
health risks related to rare metals must be addressed and analysed for every metal in all
the process stages: mining, transportation, processing and disposal, storage of waste and
decommissioning of the equipment and production units. Many research papers targeting
these issues recommend recovery instead of opening new mining operation units and the
rapid return, as much as possible, toward a circular economy [1–40]. Scandium is one of the
most valuable metals in the rare metals category. Therefore, all the above recommendations
refer especially to this metal. Besides the specific properties and applications similar to
other rare metal groups, scandium has some particularly significant properties, such as
low density, high hardness and tensile strengths and low elasticity modulus, which makes
scandium a good alloy with aluminium to produce the alloys aluminium-scandium, used
in the production of minor components. In this type of alloy, the content of 0.1% and
0.5% of scandium improves mechanical strength, corrosion resistance and weldability.
Other application developments of scandium are: (a) stabiliser of electrolyte (zirconia) in
SOFCs (solid oxide fuel cells) in combination with yttrium, having an effect of lowering
the working temperature, as well as increasing the operating time of the cell and its power;
(b) adjuvant for increasing the mechanical strength of titanium-scandium ceramics, used to
enlarge the weldability and the mechanical strength of Al-Sc alloys; (c) basic components in
the preparation of the laser material Gd3Sc2Ga3O12 (gadolinium scandium gallium garnet,
GSGG), which is a more efficient material than Nd-doped yttrium aluminium garnet laser
in ferrites and garnets containing scandium, and is used primarily in magnetically con-
trolled switches in computers by modulating the light passing through the garnet, as well
as though microwave equipment; (d) main component in mercury vapour high-intensity
lights to create natural light, due to its broad emission spectrum that generates a “daylight”
effect, suitable for camera lighting, movie and television studio lights; (e) ionic activator
in TV or computer monitors as part of the typical host materials Sc2O3 and ScVO4, while
ZnCdS2, activated with a mixture of silver and scandium, are creating a red phosphorescent
colour fitted for use in television displays [41]. Due to scandium scarcity and its limited
production, this metal is from far away and is one of the most expensive rare metals. In
the last years, prices for 99.99% pure scandium fluctuated between USD 15,000 and USD
20,000 per kilogram. However, because of the global availability of limited amounts of this
material and also due to the limited market for scandium, an impact of increasing prices
might be possible at any given time.

The technical literature provides an overview of various possibilities for intensifying
the scandium recovery process to achieve higher scandium production than conventional
mineral processing technology. In recent years, published papers contain valuable ideas
for new ways of approaching the intensive development of scandium recovery processes.
Common topics such as absorption, precipitation and crystallisation of scandium com-
pounds [42–44], liquid–liquid extraction with organic solvents [45,46], over-refined recov-
ering technologies [23,47,48], biotechnologies [49] and advanced technologies (nanotube,
carbon materials, composite materials and ionic liquids) [50–57] are predicting accelerated
progress in the early future of scandium recovery processes from secondary sources.

The present paper studies scandium adsorption from pure scandium nitrate solutions
in low-temperature-activated alumina products, whose properties have been largely pre-
sented in our previous papers [54,58,59]. The precursor of the low-temperature-activated
alumina product is the aluminium hydroxide dried, milled and classified, and manu-
factured at Vimetco Alum SA Tulcea, Romania, after the implementation of the project
“Endow the Research and Development Department of SC ALUM SA Tulcea with inde-
pendent, efficient research facilities to support the economic competitiveness and business
development”, a project co-funded by the European Regional Development Fund through
the Competitiveness Operational Program 2014–2020. The samples of low-temperature-
activated alumina products used in this paper are from the same batch as the ones used
in our last paper [60]. The goals are similar in both studies, to determine the maximum
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adsorption capacity of low-temperature-activated alumina products, to identify the best
adsorbent performances and to evaluate correlations between adsorbent properties and
adsorbent performances. The only difference is that, in our previous paper, the adsorbate
was silver, and in this paper, the adsorbate was scandium. Moreover, it will be interesting
to compare the kinetics data for the adsorption of two ions with distinct mass differences
on the same adsorbents.

2. Results and Discussions
2.1. Low-Temperature-Activated Alumina Products Characterisation

The most important characteristic properties of low-temperature-activated alumina
products are BET specific surface, Langmuir specific surface, average pore width, miner-
alogical phases: Gibbsite, Bayerite, Boehmite, Gamma-Al2O3 and their crystallinity (or
amorphous phase content) and the particle size distribution (naming each product). Previ-
ous studies [54,58] show that all of these characteristics are controlled by two parameters
(calcination temperature and particle size), which act throughout the thermal program of
each group of samples. All these characteristic properties are given in Tables 1 and 2.

Table 1. Specific surface area and pore width measurements for the initial samples and after thermal
treatment at 260 ◦C, 300 ◦C and 400 ◦C for 2 h.

Samples BET Specific Area (m2/g) Langmuir Specific Area (m2/g) Average Pore Width (nm)

GDAH-01 3.5419 5.7029 4.68861

GDAH-01_260 ◦C 2.8412 4.2435 4.67366

GDAH-01-300 ◦C 41.9800 61.0822 2.70180

GDAH-01-400 ◦C 3.1220 270.002 3.15536

GDAH-02 5.9596 8.9199 10.9876

GDAH-02-260 ◦C 10.6208 15.5593 5.7378

GDAH-02-300 ◦C 36.3853 52.7869 3.7164

GDAH-02-400 ◦C 234.4518 345.6202 3.2249

GDAH-03 10.3375 16.0231 7.1186

GDAH-03_260 ◦C 10.3094 15.5083 5.9023

GDAH-03_300 ◦C 65.5179 95.2101 3.1337

GDAH-03_400 ◦C 241.9623 356.6276 3.3867

GDAH-04 9.4725 14.0771 7.4804

GDAH-04_260 ◦C 19.4569 28.2606 5.4720

GDAH-04_300 ◦C 6.9195 10.0146 3.7566

GDAH-04_400 ◦C 238.6443 350.5961 3.2303

GDAH-05 2.2240 7.3240 4.3304

GDAH-05_260 ◦C 2.2964 3.7623 6.1816

GDAH-05_300 ◦C 20.8556 30.3694 3.8894

GDAH-05_400 ◦C 181.5672 267.8954 3.5443

Sample reactivity is expressed in Tables 1 and 2 by specific surface, average pore width
and crystalline/amorphous phase ratios. From these tables, it is easily observable that sam-
ple activation started at a significant rate at 300 ◦C and 400 ◦C when only 1–10% gibbsite
remained unconverted into other crystalline or amorphous phases. Therefore, the thermal
program changes the crystalline/amorphous ratio in the samples and the changes in the
crystalline/amorphous ratio cause, in turn, deep modifications in the specific properties
of all low-temperature-activated alumina products, presented in Tables 1 and 2, including
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some more efficient scandium adsorption processes. Therefore, the scandium adsorption
process and its kinetics should always be related to the parameters from Tables 1 and 2.
In this paper, the representative samples of low-temperature-activated alumina prod-
ucts (GDAH-03-300, GDAH-03-400, GDAH-04-300 and GDAH-04-400, according to their
specific properties) were selected for a trial concerning the scandium adsorption from
aqueous solutions.

Table 2. Effect of the calcination temperature on the phase composition and crystallinity.

Mineral Name Gibbsite (%) Boehmite (%) Gamma-Al2O3 (%)
Crystallinity (%)

Formula Al(OH)3 γ-AlOOH γ-Al2O3

GDAH-01 41.65 0 0 58.35

GDAH-02 62.54 0 0 37.46

GDAH-03 61.67 0 0 38.33

GDAH-04 62.59 0 0 37.41

GDAH-02 90 0 1.6 62.54

GDAH-02-260 91.8 8 0.1 50.57

GDAH-02-300 78.8 13.1 1.5 41

GDAH-02-400 15.7 35.7 48.3 21.4

GDAH-03 97.2 0 0 61.67

GDAH-03-260 93.2 6.2 0.5 48.21

GDAH-03-300 80 11 1.3 43.75

GDAH-03-400 0.2 26.3 57.7 18.30

GDAH-04 88.9 0 0.8 62.59

GDAH-04-260 89.3 4.9 1.4 55.85

GDAH-04-300 76.7 10.4 2.5 49.38

GDAH-04-400 8.7 30.4 57.1 22.12

GDAH-05 99.9 0 0 55.56

GDAH-05-260 84.1 15.9 0 51.76

GDAH-05-300 73.8 26.2 0 45.75

GDAH-05-400 0.2 48.8 50.9 26.68

2.2. Zero Charge Point, pHpZc

The zero charge point (pZc) defines a solution in which the surface density of positive
charges (contribution of cations) equals that of negative charges (contribution of anions),
particularly in terms of pH values [61–63]. Actually, this indicates the trend of the pos-
itive or negative charge surface depending on the pH. The pZc was determined using
a potentiometric method [64] and a graphical representation of pHfinal vs. pHinitial. For
determination of this parameter, an amount of 0.1 g of adsorbent material, GDAH-3-300,
was mixed with 25 mL of 0.1 N KCl solution at 200 rpm and 298 K temperature, using a
water bath with thermosetting and stirring, Julabo SW23 type. The pH of the KCl solutions
was adjusted in the range of 2–12, using NaOH solutions with the concentrations 0.05 N
and 2 N (obtained from pellets Merck Sigma Aldrich) and HNO3 63% solutions (Carl Roth,
Karlsruhe, Germany) diluted up to concentrations between 0.05 N and 2 N. The samples
were filtered, and the pH of the resulting solution was then determined using a pH meter
(METTLER TOLEDO, SevenCompact, S 210). The pH value reaches the pZc point when the
pH does not change when some supplementary reactants are added (Figure 1). Applying
this method, the pZc value = 6.7 was calculated, which is the experimental pZc point. This
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pH value has to be considered as a border in the adsorption/desorption process: absorption
below this pH and desorption above this pH limit.
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Figure 1. pHpzc experimental determination.

2.3. Preliminary Sc(III) Adsorption Studies

To select the best category of the low-temperature-activated alumina products from
Table 1, with the ability to perform well in scandium recovery processes, a preliminary
experimental study was performed, targeting the adsorption from 10 g Sc(III)/L solutions.
Thus, 0.1 g of each material (20 samples from Table 1) was weighed and added over 25 mL
of Sc(III) solution of 10 mg/L concentration (using Sc(NO3)3 standard, Merck). The samples
were stirred in a JULABO SW 23 thermostatic bath for 60 min at 298 K. The residual Sc(III)
concentration was determined with the ICP-MS equipment (Plasma Quant 9100 Analytic
Jena), and the adsorption capacity was calculated with the relation:

q =
(Ci − Crez) ∗ V

m
[mg/g]

where Ci is initial concentration, mg/L; Crez is residual concentration, mg/L; V is volume
of solution, L; m is sample mass, g.

The experimental data obtained from the preliminary scandium adsorption test on the
low-temperature-activated alumina samples are presented in Figure 2. From these data,
it can be observed that the 0–10 µm fraction (GDAH-4-300, the smallest size dimension
of all GDAH samples) has the highest adsorption capacity for Sc(III). Even if the differ-
ences in sample adsorption capacity—when compared to the other samples—are not quite
significant. It should be noted that in all experiments, the fractions under 10 and under
20 microns are more reactive than the others. Maybe, for other equilibrium concentrations
of scandium, these differences might be more evident. However, this peculiarity is always
noted for other proprieties of low-temperature-activated alumina products.
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Figure 2. Preliminary scandium adsorption test on low-temperature-activated alumina products.

Sample GDAH-04-300 (fraction 0–10 µm), highlighted for the increased thermal sta-
bility and good adsorption capacity of the low-temperature-activated alumina products,
was selected as a working model for all measurements included in previous papers con-
cerning adsorption [60]. Actually, the absorption capacities of these samples represent the
maximum capacities for all the low-temperature-activated alumina products saturated
with Sc(III) from a Sc(III) solution with a concentration of 10 mg/L at 298 K. Moreover,
the higher adsorbent capacity, assumed for samples GDAH-03-300 and GDAH-04-300,
is a direct effect of both mechanical activation (milling and classification) and thermal
activation as driving factors in the conversion process of the aluminium hydroxide into
low-temperature-activated alumina products [54,58–60,64,65].

2.4. Effect of the pH on Scandium Absorption Process

In order to establish the optimum pH of the Sc(III) adsorption process, the pH was
varied in the range of 1 to 5. Studies cannot be conducted at pH > 5 because scandium
precipitates as hydroxide. For this study, 0.1 g of each adsorbent sample was prepared for
contact with 25 mL solutions of Sc(III) 10 mg/L. Each prepared sample was transferred
in a shaking bottle and mixed for 60 min at 298 K in a thermostating bath. The pH of the
solutions was set by using HNO3 and NaOH solutions, which had concentrations in the
range of 0.1–1 N. These solutions were also obtained by the dilution of HNO3 63% (Carl
Roth) and dissolution of NaOH pellets (Merck Sigma Aldrich). From the experimental data
presented in Figure 3, it was concluded that increasing the pH improved the adsorption
capacity of GDAH-04-300. The maximum adsorption capacity was found at pH = 3, i.e.,
~2 mg Sc(III)/g adsorbent.

2.5. Effect of Contact Time and Temperature on the Scandium Adsorption on Sample GDAH-04-300

Contact time and temperature are common parameters in all adsorption studies. To
perform the experiment, 0.1 g samples of GDAH-04-300 were accurately weighed and
mixed with 25 mL of 10 g/L Sc(III) solution. The samples were successively placed in a
thermostatic water bath at temperatures of 298 K, 308 K, 318 K and 328 K, time periods
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varying in the order of 15, 30, 45, 60, 90 and 120 min with stirring at 200 rpm. After reaching
any point in the temperature and time program, the samples were quickly filtered. After
homogenisation, the samples were analysed quickly, and then the residual concentrations
and the amounts of scandium retained on the surface of the GDAH-04-300 product were
calculated. The influence of the contact time at four temperature values (298 K, 308 K, 318 K
and 328 K) on the adsorption capacity of the GDAH-04-300 material is shown in Figure 4.
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From these experimental data, significant increases in adsorption capacity with the
duration of contact time can be seen. After 90 min, the adsorption capacity reaches maxi-
mum equilibrium values, which are about 2 mg/g of GDAH-04-300. Furthermore, it was
observed that as the temperature increases, the adsorption capacity of the GDAH-04-300
material increases. The increase is insignificant, so the adsorption process is recommended
to be performed at 298 K.

2.6. Kinetic Studies

The efficiency of the adsorption process depends on how the material with adsorbent
properties behaves kinetically and thermodynamically. A solid material with a high adsorp-
tion capacity, but a low reaction rate, is not a suitable choice because it requires a longer
time for the adsorbed molecules to penetrate into the adsorbent particles. On the other
hand, an adsorbent with a high reaction rate, but low adsorption capacity, is not beneficial
either as it requires a large amount of adsorbent, which would lead to additional costs. An
adsorbent with a high adsorption capacity and a high reaction rate is the ideal material for
the adsorption process [66].

Kinetic studies provide information about the optimum conditions, the adsorption mech-
anism and the rate of the adsorption process (mass transfer processes and chemical reactions).

The most commonly used kinetic models to describe the adsorption process are
the pseudo-first-order kinetic model (Lagergren model) and the pseudo-second-order
kinetic model (Ho and McKay model) [67]. These kinetic models are described by the
following equations:

- Pseudo-first-order kinetic equation (Lagergren model) [68]:

ln
(
qe − qt

)
= ln qe − k1t

where qe is the equilibrium adsorption capacity (mg/g); qt is the adsorption capacity at
a specific time, t (mg/g); k1 is the pseudo-first-order rate constant (1/min); t is contact
time (min).

- Pseudo-second-order kinetic equation (Ho and McKay model) [69]:

t
qt

=
1

k2q2
e
+

1
qe

where qe is the equilibrium absorption capacity (mg/g); qt is the adsorption capacity at a
specific time, t (mg/g); k2 is the pseudo-second-order rate constant (g/mg·min); t is contact
time (min).

By plotting the linear dependence ln(qe − qt) = f(t), a line is obtained, from whose slope
the pseudo-first-order rate constant, k1, and the adsorption capacity, qe,calc are calculated.

In the case of the pseudo-second-order kinetic model, the linear dependence between
t/qt and t is plotted. From the slope of the line obtained, the adsorption capacity, qe,calc,
and the pseudo-second-order rate constant, k2, are calculated.

With the help of the calculated kinetic parameters, it is possible to establish the model
that best describes the adsorption process of the adsorbate on the material with adsorbent
properties depending on the value of the correlation coefficients, R2. The value of the
correlation coefficient should be as close as possible to 1 for a certain model to be assigned
to the studied adsorption process. This correlation is influenced by pH, temperature and
the reactions taking place during the adsorption process [70–72].

The adsorption process on porous materials can be described by a mechanism of three
consecutive steps: (i) mass transfer of the ions to be adsorbed (the adsorbate) by diffusion
from the bulk fluid phase to the adsorbent/solution interface (film diffusion); (ii) mass
transfer of the adsorbate from the interface into its pores (intraparticle diffusion); and
(iii) adsorption of the adsorbate inside the adsorbent pores by physical or physicochemical
adsorption [73,74].



Int. J. Mol. Sci. 2022, 23, 10142 9 of 20

To distinguish whether film diffusion or intraparticle diffusion is the rate-controlling
step, the experimental data obtained from kinetic adsorption studies are interpreted using
the Weber and Morris model [75]:

qt = kdif·t0.5 + C

where qt is the adsorption capacity at time t, mg/g; kdiff is the rate constant for intraparticle
diffusion, mg/g·min1/2; C is the constant correlated with the thickness of the liquid film
surrounding the adsorbent particles.

However, for intraparticle diffusion processes to be the only rate-controlling step, it is
necessary that the plot of dependence of qt and t0.5 be a linear curve, or with as good of
linearity as possible, which passes through the origin (C = 0). Otherwise, both intraparticle
diffusion and film diffusion influence the adsorption kinetics. Moreover, a negative value
of C indicates that film diffusion influences kinetics.

The experimental data obtained were modelled using the equations of pseudo-first-
order and pseudo-second-order kinetic models (Figure 5a,b).

In order to determine whether film diffusion or intraparticle diffusion is the rate-
controlling step, kinetic parameters were calculated using the Weber and Morris kinetic
model, investigating intraparticle diffusion (Figure 5c).

It can be concluded that the experimental data fit very well with the pseudo-second-
order kinetic model. This is sustained by the value of the regression coefficient, R2~1.
Moreover, qe,calc on the basis of the pseudo-second-order isotherm has close values to
qe,exp. The temperature influences parameter values, k2, qe,calc, but not significant enough
to consider it required to be treated at temperatures higher than 298 K.

At the same time, it was noticed that the adsorption mechanism of Sc(III) is carried out
in several steps because the lines obtained by graphing the linear dependence of qt = f(t1/2)
at different temperatures do not pass through the origin (C = 0). Therefore, we can say that
both intraparticle diffusion and film diffusion influence the kinetics of adsorption.

From the data presented in Table 3, one can observe that as the temperature rises, the
Kdiff value increases. It can also be noticed that the diffusion constants specific to stage 1 are
higher than the diffusion constants specific to stage 2, which allows us to state that the
speed determinant is stage 1, and the process is slower in stage 2 [74].

Table 3. Kinetic parameters for the adsorption of Sc(III) onto GDAH-04-300.

Pseudo-First-Order

Temperature (K)
qe,exp

(mg g−1)
k1

(min−1)
qe,calc

(mg g−1) R2

298 1.91 0.0077 1.00 0.7889

308 1.97 0.0089 1.04 0.8941

318 2.06 0.0246 1.13 0.921

328 2.09 0.0304 1.24 0.9127

Pseudo-Second-Order

Temperature (K)
qe,exp

(mg g−1)
k2

(g mg−1·min−1)
qe,calc

(mg g−1) R2

298 1.91 0.83 2.14 0.9950

308 1.97 1.02 2.25 0.9988

318 2.06 1.21 2.29 0.9993

328 2.09 1.37 2.33 0.9991

Intraparticle Diffusion Model (IPD)

Temperature (K) Kdiff (mg·g−1 min−1/2) C R2

298 2.51 12.52 0.8797

308 3.92 12.89 0.8860

318 4.04 13.02 0.8835

328 4.36 13.56 0.7848
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For Sc(III) adsorption on GDAH-04-300 material, the activation energy, Ea, was calcu-
lated using the Arrhenius equation and the rate constant, k2, using the pseudo-second-order
kinetic model (Figure 6).
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Further, it can be observed that the activation energy (1.4 kJ/mol) is <40 kJ/mol, which
indicates that the adsorption process is physical in nature [76].

2.7. Thermodynamic Studies

The evaluation of the activation energy value (Ea) gives us information about how the
adsorption process takes place, which can be physical or chemical [77].

Ea is determined by the Arrhenius equation, using the rate constant k2 obtained from
the kinetic model describing the adsorption process in this study:

ln k2 = ln A − Ea

RT

where k2 is the rate constant, g/min·mg; A is Arrhenius constant, g·min/mg; Ea is activation
energy, kJ/mol; T is absolute temperature, K; R is the ideal gas constant, 8.314 J/mol·K.
By graphing the linear dependence between ln k2 and 1/T, the activation energy of the
adsorbent was calculated using the slope of the line obtained. To explain the adsorption
mechanism, the Gibbs free energy (∆G◦) value was calculated using the Gibbs–Helmholtz
equation [78]:

∆G◦ = ∆H◦ − T∆S◦

where ∆G◦ is the Gibbs free energy variation (kJ/mol); ∆H◦ is enthalpy standard variation
(kJ/mol) ∆S◦ is entropy standard variation (J/mol·k); T is absolute temperature (K).

Using the van’t Hoff equation, the standard enthalpy and standard entropy values
associated with the adsorption process are determined. The two parameters are obtained
from the slope of the line, more exactly from the ordinate at the inference of the linear
dependence between ln Kd s, i 1/T (as can be seen from the following equation).

ln Kd =
∆S◦

R
− ∆H◦

RT

where Kd is the equilibrium constant; ∆S◦ is the entropy standard variation (J/mol·k);
∆H◦ is the enthalpy standard variation (kJ/mol); T is absolute temperature (K); R is the
ideal gas constant (8.314 J/mol·K)
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The equilibrium constant of the adsorption process is the ratio of the equilibrium
adsorption capacity, qe, to the equilibrium concentration, Ce.

Kd =
qe
Ce

The energy required to bring the adsorbate into contact with the surface of the sorbent
is given by the positive value of the standard enthalpy (∆H◦). The affinity manifested by
adsorbates toward sorbent is evidenced by the occurrence of electrostatic or complexation
interactions in an endothermic process (∆H◦ < 50 kJ/mol, physical-sorption) or by the occur-
rence of chemical bonds in an exothermic process (∆H◦ > 50 kJ/mol, chemosorption) [79].

The negative value of the Gibbs free energy variation, ∆G◦, obtained from the ex-
perimental data indicates that the adsorption process is spontaneous at all temperatures
and natural. Otherwise, if the ∆G is positive, nonspontaneous or if ∆G = 0, the process is
reversible (at equilibrium). It is relevant to know that the spontaneity of a process may de-
pend upon the temperature of the system. The adsorption speed at the adsorbent/solution
interface is indicated by the positive value of the standard entropy variation, ∆S◦. All
molecules possess a certain amount of energy, which can be in the form of kinetic/potential
energy. The activation energy can be interpreted as the minimum amount of kinetic energy
that the reactants must have in order for chemical transformations to take place so that
adsorption at the liquid/solid interface becomes possible. In order to understand the
adsorption mechanism, it is necessary to determine the intermolecular forces that drive the
process [79].

Using the van’t Hoff equation and from the equation of the line obtained by plotting
the linear dependence ln Kd = f(1/T), as shown in Figure 7, standard entropy variation ∆S◦

and standard enthalpy variation ∆H◦ can be calculated.
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Figure 7. Thermodynamic studies.

In Table 4, we present the measured thermodynamic parameters at three
different temperatures.

From the output data, we can observe that ∆H◦ has a positive value, which means that
the adsorption process is endothermic. We can also notice that ∆G◦ has negative values
and grows in absolute value with temperature increase, which indicates that the adsorption
process is spontaneous and influenced by temperature.
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Table 4. Thermodynamic parameters for adsorption of Sc(III) onto GDAH-04-300.

∆H◦

(kJ/mol)
∆S◦

(J/mol·K)
∆G◦

(kJ/mol) R2

12.32 39.66
298 K 308 K 318 K 328 K

0.9856
−11.80 −12.20 −12.60 −12.99

The fact that the ∆S◦ value was positive indicates that the adsorption process is enhanced,
taking place at the interface of the GDAH-04-300/solution material with Sc(III) content.

2.8. Equilibrium Adsorption

The adsorption capacity at equilibrium is an important parameter for proper analysis
and design of the adsorbent–adsorbate system [80]. The adsorption isotherm defines
the relationship between adsorbent adsorption capacity and adsorbate concentration at
equilibrium at a constant temperature, which explains the interactions between adsorbate
and adsorbent. This way, the adsorption isotherm models can provide information about
the mechanism of the adsorption process and also about the maximum adsorption capacity
of the adsorbent material.

Lately, linear regression analysis has been one of the most applied analytical tech-
niques to define the best adsorption models because it measures the adsorbate distribution,
analyses the adsorption system and tests the consistency of the theoretical assumptions
of the adsorption isotherm model. The isotherm models used in the present study are:
one-parameter isotherms (Henry), two-parameter isotherms (Langmuir, Freudlich, Dubinin-
Radushkevich, Temkin, Flory-Huggins, Halsey, Hill, Jovanovich, Elovich, Kiselev, Hill-
Deboer, Fowler-Guggenheim, Harkin-Jura), three-parameter isotherms (Redlich-Peterson,
Toth, Sips, Khan, Koble-Carrigan, Langmuir-Freundlich, Radke-Prausniiz, Jossens), four-
parameter isotherms (Fritz-Schlunder, Baudu, Weber-Van Vliet, Marczewski-Jaroniec) and
five-parameter isotherms (Fritz-Schlunder) [81]. The determination of the Langmuir
isotherm was based on the argument that: (i) the active centres on the surface of the
solid adsorbent are constant in number, identical and uniformly distributed on the surface;
(ii) each active centre can adsorb only one molecule so that the adsorption layer must be
precisely monomolecular and the adsorption aims at a limit matching the occupancy of all
the active centres on the surface; (iii) the adsorption temperature of the active centres is
assumed to be equal and independent of the degree of surface coverage, and no interactions
occur between the neighbouring molecules [82].

The nonlinear form of the Langmuir equation is [83]:

qe =
qLKLCe

1 + KLCe

where qe is the maximum adsorption capacity (mg/g); Ce is the equilibrium concentration
of a metallic ion in solution (mg/L); qL is the Langmuir maximum adsorption capacity
(mg/g); KL is the Langmuir constant. RL is the characteristics of the Langmuir isotherm and
can be expressed by a dimensional constant called the separation factor. RL, also known as
the equilibrium parameter, is calculated using the equation:

RL =
1

1 + KLCo

where RL is the separation factor; KL is the Langmuir constant (L/mg); Co is the initial
concentration of adsorbate (mg/L).

The Freundlich isotherm is relevant to the adsorption process, which takes place on a
heterogeneous surface. The equation defines the heterogeneous surface of the adsorbent
and the energy and exponential distribution of the active centres [84].
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The nonlinear form of the equation is [85]:

qe = KFC1/nF
e

where qe is the maximum adsorption capacity (mg/g); Ce is the equilibrium concentration
of a metallic ion in solution (mg/g); KF s, i nF are the characteristic constants that can be
associated with the relative adsorption capacity of the adsorbent and the intensity of the
adsorption process.

The value of n indicates the degree of non-linearity between the solution concentration
and the adsorption process, thus:

- If n = 1, then adsorption is linear;
- If n < 1, then adsorption is a chemical process;
- If n > 1, then adsorption is a physical process.

Furthermore, it has been established that for n between 1 and 10, the adsorption
process is very good [86,87].

The Sips isotherm is a combination of the Langmuir and Freundlich isotherms, which
is expressed by the nonlinear form of the equation [88]:

qe =
qSKSC1/nS

e

1 + KSC1/nS
e

where qS is the maximum adsorption capacity (mg/g); Ce is the concentration of adsorbate
at equilibrium (mg/L); KS is a constant related to the adsorption capacity of the adsorbent;
nS is a heterogeneity factor.

In the case of low adsorbate concentrations, the adsorption process can be assumed to
be modelled by the Freundlich isotherm, and at higher adsorbate concentrations, it can be
modelled by the Langmuir isotherm [84].

Using the parameters of the Sips isotherm, a separation factor, RS, which is a dimen-
sionless equilibrium parameter, is calculated using the equation:

RS =
1

1 + KSC1/nS
o

where: RS—separation factor; KS—Sips constant; nS—heterogeneity factor; Co—initial
concentration (mg/L).

The value of RS allows the assessment of the type of adsorption and is an important
characteristic of the Sips isotherm.

If RS >1, the adsorption process is unfavourable, the isotherm has a concave shape;
if RS = 1, the isotherm is linear; if 0 < RS < 1, the isotherm has a convex shape and the
adsorption process is favourable; and if RS = 0, the adsorption is irreversible.

The isotherms are represented as linearised equations qe = f(Ce), and the specific
parameters of each isotherm, used to model the experimental data, are calculated from the
slopes and based on the intersection of the lines (the origin).

In Figure 8, the modelled data are shown.
From these data, it can be observed that as the initial Sc(III) concentration increases,

the adsorption capacity of the GDAH-04-300 material also increases, reaching equilibrium
at 80 mg/L Sc(III), when the maximum adsorption capacity is ~9.4 mg Sc(III)/g material.
From a previous study, this value is comparable to that obtained in the case of silver
adsorption (10.2 mg Ag(I)/g), which suggests that the GDAH-04-300 material behaves in a
similar way [60]. The specific parameters of each isotherm used to model the experimental
data were calculated from the straight-line slopes using the y-intercept ordinate (Table 5).

The correlation between the equilibrium concentration (Ce) of Sc(III) and the adsorp-
tion capacity indicates that as the equilibrium concentration increases, the adsorption
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capacity also increases until equilibrium is achieved, setting the maximum adsorption
capacity experimentally determined, qe,exp (~9.8 mg Sc(III)/g).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 16 of 22 
 

 

0 20 40 60 80

0

2

4

6

8

10

 experimental data

 Langmuir isotherm

 Freundlich isotherm

 Sips isotherm

A
d
s
o

rp
ti
o

n
 c

a
p

a
c
it
y
 (

m
g

/g
)

Equilibrium concentration (mg/L)

 

Figure 8. Equilibrium studies. 

From these data, it can be observed that as the initial Sc(III) concentration increases, 

the adsorption capacity of the GDAH-04-300 material also increases, reaching equilibrium 

at 80 mg/L Sc(III), when the maximum adsorption capacity is ~9.4 mg Sc(III)/g material. 

From a previous study, this value is comparable to that obtained in the case of silver ad-

sorption (10.2 mg Ag(I)/g), which suggests that the GDAH-04-300 material behaves in a 

similar way [60]. The specific parameters of each isotherm used to model the experimental 

data were calculated from the straight-line slopes using the y-intercept ordinate (Table 5). 

Table 5. Parameters of isotherm model for adsorption Sc(III) onto GDAH-04-300. 

Langmuir isotherm 

qm,exp (mg/g) KL (L/mg) qL (mg/g) R2 

9.82 0.044 12.91 0.9856 

Freundlich isotherm 

KF (mg/g) 1/nF R2 

1.46 0.45 0.9802 

Sips isotherm 

KS qS (mg/g) 1/nS R2 

0.26 10.1 0.06 0.9915 

The correlation between the equilibrium concentration (Ce) of Sc(III) and the adsorp-

tion capacity indicates that as the equilibrium concentration increases, the adsorption ca-

pacity also increases until equilibrium is achieved, setting the maximum adsorption ca-

pacity experimentally determined, qe,exp (~9.8 mg Sc(III)/g). 

According to the data in Table 3, it is concluded that the most accurate model to de-

scribe the adsorption process is the Sips isotherm since the regression coefficient, R2, is 

closest to 1 (R2 = 0.9915) and the theoretical adsorption capacity is ~10.1 mg Sc(III)/g. 

3. Materials and Methods 

Figure 8. Equilibrium studies.

According to the data in Table 3, it is concluded that the most accurate model to
describe the adsorption process is the Sips isotherm since the regression coefficient, R2, is
closest to 1 (R2 = 0.9915) and the theoretical adsorption capacity is ~10.1 mg Sc(III)/g.

Table 5. Parameters of isotherm model for adsorption Sc(III) onto GDAH-04-300.

Langmuir isotherm

qm,exp (mg/g) KL (L/mg) qL (mg/g) R2

9.82 0.044 12.91 0.9856

Freundlich isotherm

KF (mg/g) 1/nF R2

1.46 0.45 0.9802

Sips isotherm

KS qS (mg/g) 1/nS R2

0.26 10.1 0.06 0.9915

3. Materials and Methods
3.1. Samples Materials

The samples of aluminium hydroxide were collected from the last test of the new
production line at Alum SA Tulcea, Romania, which was built up by the implementation of
the project “Endow the Research and Development Department of SC ALUM SA Tulcea
with independent and efficient research facilities to support the economic competitiveness
and business development”, a project co-funded by the European Regional Development
Fund through the Competitiveness Operational Program 2014–2020. This line of produc-
tion can deliver new grades of aluminium hydroxide dried, milled and classified with
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variable particle size distribution. The representative samples of the above precursor were
carefully selected for adequate thermal treatments in order to convert the precursor into
low-temperature-activated alumina products with significant adsorption properties. The
particle size and temperatures of calcination samples are presented in Table 6. The tem-
perature and thermal process have been chosen with a defined purpose to promote some
specific properties of adsorbents: low-temperature transitional phases, amorphous phases
with a large specific surface, etc. Actually, the samples were first dried at 60 ◦C for 24 h,
then heated in an electric furnace (in air atmosphere) at 260 ◦C, 300 ◦C and 400 ◦C, with
a heating rate of 5 ◦C/min, and subsequently held for thermal stabilisation for 2 h at the
above-mentioned temperature values. Afterwards, the samples were slowly cooled in the
oven until reaching room temperature.

Table 6. Low-temperature aluminium hydroxide sample grades.

Sample GDAH-01 GDAH-02 GDAH-03 GDAH-04 GDAH-05

Particle
size

<45 µm = 5.7%
>150 mm 6.4%

<45 µm
98.29%

<20 µm
92.13%

<10 µm
76.28%

<45 µm = 5.0%
>150 = 3.42%

LOI 34.62 34.62 34.61 34.62 34.58

Moisture 0.082 0158 0.134 0180 0.081

Temperature 1 GDAH-0 GDAH-01 GDAH-01 GDAH-01 GDAH-01

Temperature 2 GDAH-01
260

GDAH-01
260

GDAH-01
260

GDAH-01
260

GDAH-01
260

Temperature 4 GDAH-01
300

GDAH-01
300

GDAH-01
300

GDAH-01
300

GDAH-01
300

Temperature 5 GDAH-01
400

GDAH-01
400

GDAH-01
400

GDAH-01
400

GDAH-01
400

Concerning the particle size and thermal treatment, physical and technical properties
of the samples from Table 6, it should be noted that all the analysed proprieties of these
materials are controlled by two driving factors: particle size distribution and calcination
temperature. The dependence is so evident that the data for samples GDAH-03 (under
20 µm) and GDAH-04 (under 10 µm) are completely different from the same parameters
for samples GDAH-01 and GDAH-02. The particular properties of these low-temperature-
activated alumina products have been studied in our previous papers [54,58–60,65]. There-
fore, all the scandium adsorption data can be analysed on the basis of rigorous knowledge
about the sample mineralogy and chemistry, as well as about all other sample properties.

3.2. Scandium Adsorption Capacity of the Low-Temperature-Activated Alumina Products

In this study, the scandium adsorption capacity was the most important parameter
of low-temperature-activated alumina products as adsorbents. The method was applied
in several ways depending on the purpose of its measurement. The maximum values are
used to compare the different adsorption performances, but under restricted circumstances
(as multiple ionic concentrations and the solutions pH, multiple component liquid phases,
etc.), some partial values are also admitted. Besides, in this study, there was admitted, as a
term of comparison, the adsorbent capacity values of different low-temperature-activated
alumina products determined using 10 mg/L scandium nitrate solution for the selection
of the best adsorbent from all the low-temperature-activated alumina products. In other
instances, the measurements consist of mixing for 60 min at 298 K, appropriate quantities
of any of the alumina product samples from Table 6 in 25 mL Sc(III) solution of 10 mg/L
concentration (standard Sc(NO3)3, Merck). Finally, the residual concentration of Sc(III)
was measured by the ICP-MS (PlasmaQuant 9100 Analytic Jena – Analytik Jena GmBH,
Jena, Germany) method and the computations were made with the formula given in our
previous paper [60]. This method has been used in several variants throughout this paper.
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3.3. Analysis Equipment

Data procurement in all categories of measurements required by this work is similar
to the one used in our previous papers, including the analysis equipment [54,58–60].

4. Conclusions

From the experimental data presented in this study, it was concluded that the 0–10 µm
particle size (the smallest) GDAH samples possess good adsorption capacity for scan-
dium. This was an expected result because the same GDAH sample exhibited particularly
improved physical and technical properties due to its small size dimension and crys-
talline/amorphous ratio, as was shown in our previous papers. Its special properties are
related to the effects of three dynamic factors acting during the low-temperature activation:
temperature (300 ◦C), rate of heating and advanced grinding. In order to achieve the
highest adsorption capacity for the recovery of Sc(III), adsorption studies were carried out
following the influence of specific parameters such as S:L ratio, pH, contact time, temper-
ature and initial Sc(III) concentration. Therefore, the working conditions were: pH = 3,
contact time = 45 min, temperature = 298 K, initial concentration = 80 mg Sc(III)/L. In these
conditions, the maximum adsorption capacity was ~9.8 mg Sc(III)/g material.

The adsorption capacity of the material obtained by experimental measurements and
confirmed by modelling (~9.8 mg Sc(III)/g) is comparable to the adsorption capacity of
other metal ions, e.g., Ag I (~10.2 mg/g).

Scandium recovery by adsorption onto GDAH-04-300 material is a spontaneous, en-
dothermic physical process occurring at the interface of GDAH-04-300/solution containing
scandium and whose kinetics are influenced by both interpacticle diffusion and film diffusion.
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