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Sponge-associated microorganisms are essential for sponge survival. They play an
important role in recycling nutrients and, therefore, in the maintenance of the ecosystem.
These microorganisms are diverse, species-specific, and different from those in the
surrounding seawater. Bacterial sponge symbionts have been extensively studied in the
tropics; however, little is known about these microorganisms in sponges from high-
latitude environments. Sponges can cover up to 80% of the benthos in Antarctica
and are crucial architects for the marine food web. In this study, we present analyses
of the bacterial symbionts of three sponges: Haliclona (Rhizoniera) sp., Hymeniacidon
torquata, and Isodictya kerguelenensis from the Western Antarctic Peninsula (WAP) with
the aim to determine variations on the specificity of the bacteria–sponge interactions
and potential signatures on their predicted functional profiles. We use high-throughput
16S rRNA gene sequencing of 30 sponge individuals inhabiting South Bay (Palmer
Archipelago, WAP) to describe their microbiome taxonomy and diversity and predict
potential functional profiles based on this marker gene. Our work shows similar
bacterial community composition profiles among the same sponge species, although
the symbiotic relationship is not equally conserved among the three Antarctic sponges.
The number of species-specific core operational taxonomic units (OTUs) of these
Antarctic sponges was low, with important differences between the total abundance
accounted for these OTUs. Only eight OTUs were shared between the three sponge
species. Analyses of the functional potential revealed that despite the high host–
symbiont specificity, the inferred functions are conserved among these microbiomes,
although with differences in the abundance of specific functions. H. torquata showed
the highest level of intra-specificity and a higher potential of pathways related to
energy metabolism, metabolisms of terpenoids and polyketides, and biosynthesis of
other secondary metabolites. Overall, this work shows variations in the specificity of
the sponge-associated bacterial communities, differences in how hosts and symbionts
establish their relations, and in their potential functional capabilities.

Keywords: Antarctic sponges, symbiosis, high-throughput sequencing, 16S rRNA gene, microbiome, host
specificity, functional potential, secondary metabolites
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INTRODUCTION

Sponges are sessile and filter-feeding metazoan, which host a
great number and diversity of microorganisms from the three
domains of life in a symbiotic relation. These microorganisms
enhance the host fitness and survival; they contribute to the
sponge energy requirements through nitrogen fixation and
photosynthesis and defend against predators and epibionts by
synthesizing secondary metabolites (Webster and Taylor, 2012;
Webster and Thomas, 2016). Sponges and their associated
microorganisms are considered holobionts, which give the
sponge the characteristic of an ecosystem capable of resilience
to environmental perturbations (Pita et al., 2018). Sponge
holobionts are fundamental for the maintenance of the food web,
and they circulate dissolved organic matter through the sponge
loop, participate in the nitrogen and phosphorus biogeochemical
cycling, and fulfill important roles for the benthopelagic coupling
due to their high filtering capacity (Bell, 2008; Fiore et al., 2010,
2015; De Goeij et al., 2013; Zhang et al., 2015).

Sponges are classified as “high microbial abundance” (HMA),
which can host up to 109 cells/cm3, or “low microbial abundance”
(LMA), hosting 105 to 106 cells/cm3, based on the number of
bacterial cells associated with them (Webster and Thomas, 2016).
Despite this binary classification, the symbiotic relation is not
equally complex across sponge species and is mainly shaped by
environmental factors and the host phylogeny (Thomas et al.,
2016). Moreover, multiple ecological and evolutionary processes
acting both within host and among microbes could also modulate
host–microbiome interactions (Adair and Douglas, 2017). The
relationship between sponges and their bacterial symbionts is
species specific and acquired via vertical transmission (Hentschel
et al., 2002; Schmitt et al., 2008). However, sponges contain a
common set of functional genes even in distantly related sponges
(Burke et al., 2011; Ribes et al., 2012). The high degree of host
specificity (Taylor et al., 2004; Thiel et al., 2007; Hardoim and
Costa, 2014; Reveillaud et al., 2014) relies on molecular signatures
that allow symbiotic lifestyle (Gao et al., 2014; Zhang et al., 2019).
However, recent studies have shown that HMA sponges host
more similar bacterial symbionts and a higher degree of diversity
and evenness in their composition than LMA sponges (Erwin
et al., 2015; Turon et al., 2018).

Furthermore, it has been observed that the processes behind
vertical transmission in sponges are both neutral and selective
(Björk et al., 2019). This means that a set of symbionts is
transmitted from parents to larvae and that there is also
a selection over this transmission. Altogether, these studies
demonstrate that the acquisition process of bacterial symbionts
by sponges is more complex than initially thought and that
the establishment of the symbiotic relationship depends on
multiple factors.

Despite the great importance of sponges in the Antarctic
benthos, with ∼390 species described (Downey et al., 2012),
and the pivotal role sponge microorganisms play for sponges,
there are only a few studies about microbial symbionts
in Antarctic sponges using high-throughput molecular
approaches (Rodríguez-Marconi et al., 2015; Cárdenas
et al., 2018, 2019; Savoca et al., 2019; Steinert et al., 2019;
Sacristán-Soriano et al., 2020; Moreno-Pino et al., 2021). These

studies revealed some particularities of sponge symbionts in
this environment, such as the absence of Cyanobacteria and
Poribacteria, bacterial phyla typically identified in tropical
sponges, and the dominance of Proteobacteria (mainly
alpha and gamma) and Bacteroidetes (Rodríguez-Marconi
et al., 2015; Cárdenas et al., 2018, 2019). In addition, it
also confirmed the high degree of host specificity in this
environment (Sacristán-Soriano et al., 2020). Studies using
culture-dependent approaches in sponges from the Ross Sea and
the Western Antarctic Peninsula (WAP) confirmed the presence
of Gammaproteobacteria as the dominant bacterial class while
also supporting the hypothesis of microbial selection through
filtering in these sponges (Savoca et al., 2019; Moreno-Pino et al.,
2021). Furthermore, carbon, nitrogen, sulfur, and phosphorus
cycling was detected in two abundant sponges from the WAP—
Leucetta antarctica and Myxilla sp.—including the presence of
pathways for light-independent carbon fixation mediated by
chemoautotrophic microorganisms (Moreno-Pino et al., 2020).
These findings suggest that the sponge microbiome plays an
essential role in the host survival in this environment.

In this study, we present the analysis of the bacterial
symbionts of three sponge species (Haliclona (Rhizoniera)
sp., Hymeniacidon torquata, and Isodictya kerguelenensis)
from the WAP to understand their intra- and inter-species
microbiome variability. To determine whether variability
in community composition within and between the sponge
species is maintained at the functional level, we infer their
functional potential profiles, focusing on energy metabolism
and biosynthesis of secondary metabolites. We included several
replicates of each sponge species to prove that the relationship
between the sponge microbiome and host species is not equally
conserved among different Antarctic sponges.

METHODOLOGY

Sample Collection
Sponge individuals of three Demospongiae species were collected
from Cape Kemp at Doumer Island, Western Antarctic Peninsula
(64◦51′58.6′′S, 63◦37′46.7′′W) during the Austral summer of
2016. Ten individuals of Haliclona (Rhizoniera) sp. (order
Haplosclerida, family Chalinidae), 15 individuals of H. torquata
(order Suberitida, family Halichondriida), and five individuals
of I. kerguelenensis (order Poecilosclerida, family Isodictyidae)
were selected for the analyses. All three are common sponge
species in this study area (Fernandez et al., 2020). Sponge
samples were collected by SCUBA divers between 10 and 20 m
depth. Seawater temperature ranged from 0.6 to 1.1◦C. See
Supplementary Table 1 for detailed sponge sample information,
each sponge individual used in this study was identified with an R
(for replicate) followed by a number. Sponge samples were kept
individually in plastic bags containing natural seawater at 4◦C
until processing within a few hours after the collection.

Sponge Treatment and DNA Extraction
Each sponge individual was rinsed three times with sterilized
seawater, carefully cleaned under a stereomicroscope to remove
dirt and ectoparasites, and stored with RNA later at 4◦C for 24 h
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and then at −20◦C until processing. Triplicate tissue samples of
∼0.5 cm2 were extracted with a sterile scalpel blade from each
sponge sample. The microbial community associated with the
sponge was separated according to the protocol of Rodríguez-
Marconi et al. (2015). DNA from the microbial community was
extracted using the PowerSoil DNA Isolation Kit (MOBIO).

High-Throughput Ribosomal Gene
Sequencing
We amplify the hypervariable region V4 of 16S rRNA
for high-throughput ribosomal gene sequencing, using
F515 (GTGYCAGCMGCCGCGGTAA) and R806
(GGACTACHVGGGTWTCTAAT) primer pair (Caporaso
et al., 2011). Three independent PCR amplicons were generated
for each sponge individual. PCR reactions were performed in
35-µl final volume with Taq buffer 1 × final concentration,
2 nM of MgCl2, 0.3 nM of dNTPs, 0.3 µM of each primer, 2.5
units of GoTaq Flexi DNA Polymerase (Promega), and 1–6 ng of
template DNA. Amplification conditions were 10 min of initial
denaturation at 94◦C, 28 cycles of 94◦C for 30 s, 55◦C for 1 min,
and 72◦C for 1.5 min, followed by a final extension of 72◦C for
10 min. Illumina primer constructs were obtained from the Earth
Microbiome Project (Gilbert et al., 2014). The three amplicons
generated from the same sponge sample were combined and
quantified using a standard qPCR assay using a Library Quant
Kit Illumina (Kapa) according to manufacturer instructions.
Finally, these combined amplicons were equimolarly pooled
and sequenced using Illumina MiSeq following the protocol of
Caporaso et al. (2011) and a 300-cycle Illumina MiSeq kit.

Sequencing Data Analysis
Data analysis was performed using Mothur software v.1.38.1
(Schloss et al., 2009). Initial reads were assembled using the
function make.contigs. Reads were cleaned by removing primer
sequences using Cutadapt software. Sequences less than 252 bp
and with homopolymers longer than 8 and maximum ambiguous
longer than 0 were removed using screen.seqs. Singleton reads
were removed using split.abund with a cutoff of 1. The alignment
was performed using a customized database from the recreated
SILVA SEED database v132 for archaea and bacteria using a
threshold of 0.8. Chimera detection and removal were carried out
using chimera.uchime. Sequences with <10 reads were discarded
from further analysis. Operational taxonomic units (OTUs) were
built at 97% similarity with the furthest neighbor algorithm
implemented by Mothur and assigned using Greengenes database
gg_13_5_99. Sequences were filtered using remove.lineage for
chloroplast, mitochondria, and unknown and unclassified taxa at
the class level. Taxonomic assignments of OTUs representing 70%
of relative abundance were confirmed using the NCBI database
version 231 (March 05, 2019).

Microbiome analysis was conducted using Phyloseq
(McMurdie and Holmes, 2013). Reads by sample were
normalized using median sequencing depth. Taxonomy
plots and unconstrained principal component analysis (PCA)
were done at the order level using MicroViz (Barnett et al.,
2021), and taxa were center log-transformed using the function

clr. Shannon diversity index was determined using Mothur.
Sponge core OTUs were determined based on a 100% threshold,
meaning that only OTUs present in all individuals from the
same sponge species were considered core. “Species-specific core
OTUs” were defined as OTUs present in all individuals of the
same sponge species, while “shared core OTUs” are core OTUs
present in all individuals of all sponge species. Upset plots were
done in R using the UpSetR package. To determine differences
among community composition between sponge species, a
non-parametric PERMANOVA (NPMANOVA) was performed
using PAST version 2.17c with OTUs that represent 90% of
the abundance as variable and 9,999 permutations. In addition,
one-way ANOVA and Tukey’s honestly significant difference
(HSD) were done in R using the function aov and TukeyHSD.

Prediction of Sponge Microbiome
Functional Potential
The functional potential in the sponge microbiomes was
predicted using Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt) according to
Hutlab Galaxy version 1.0.0 (Langille et al., 2013). PICRUSt
analysis determines predicted KEGG functional categories using
the 16S rRNA gene abundances among microbial communities
and representative public genome information. In addition, the
nearest sequenced taxon index (NSTI), a value that expresses
the availability of representative genomes for each sample, was
determined as quality control.

Functions were predicted until KEGG pathway hierarchy
level 3, corresponding to 326 KEGG orthologs distributed in
five categories: cellular processes, environmental information
processing, genetic information processing, organismal systems,
and metabolism. We focus on the metabolism category, which
has 12 sub-categories. We look deeper into energy metabolism,
metabolisms of terpenoids and polyketides, and biosynthesis of
other secondary metabolites.

RESULTS

Diversity Patterns in Antarctic Sponge
Microbiomes
The analysis of the sponge microbiomes yielded an average of
8,211 ± 7,508 sequences per sponge individual and a total of 359
different OTUs. Among observed OTUs per sponge individual,
I. kerguelenensis had an average of 145 ± 64. H. torquata had
an average of 126 ± 50, while Haliclona (Rhizoniera) sp. had an
average of 111± 50 OTUs (Figure 1).

Mean Shannon index values were 2.1 ± 0.7 in H. torquata,
2.4 ± 1.2 in Haliclona (Rhizoniera) sp., and 3.43 ± 0.5
in I. kerguelenensis. ANOVA based on the Shannon index
showed significant differences between sponge species (F = 3.48,
p < 0.05). Differences between sponge species using the Tukey’s
HSD test showed the only two species with significant differences
for the Shannon index were H. torquata and I. kerguelenensis
(confidence interval: 0.07–2.33, p = 0.04).
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FIGURE 1 | Richness and diversity patterns of Antarctic sponge-associated bacteria. Histograms at the top and right-hand side of the plot show the distribution of
observed operational taxonomic units (OTUs) and Shannon index, respectively, for the individuals of the three sponge species.

Community Composition Patterns in
Antarctic Sponge Microbiomes
The taxonomic characterization of the Antarctic sponge
bacterial symbionts revealed the presence of 11 different
phyla (Supplementary Table 2), with Gammaproteobacteria,
Flavobacteriia, and Cytophagia as dominant classes. Individuals
R1, R3, and R9 of Haliclona (Rhizoniera) sp. showed a higher
abundance of Oceanospirillales (more than 75%). At the
same time, R10, R2, R4, R5, and R8 had a higher presence of
Flavobacteriales and, in the case of R10, a higher dominance
of Thiotrichales (Figure 2). R5 and R12 showed ∼25% of
Vibrionales, while R4 was the only individual with a high
abundance of Actinomycetales. Among the 15 individuals of
H. torquata, the microbial community was overall dominated
by Cytophagales with R5 and R10 also presenting a high
abundance of Oceanospirillales, while R4 had a higher presence
of Alteromonadales. Individuals of I. kerguelenensis showed
a taxonomic composition characterized by Flavobacteriales
and Alteromonadales in similar abundance across individuals.
Cytophagales were higher in R4, while other main taxa
(Rhodobacterales, Vibrionales, and Oceanospirillales) were
overall even across individuals.

Unconstrained PCA showed that the bacterial community
composition of I. kerguelenensiswas similar with bothH. torquata
and Haliclona (Rhizoniera) sp., while individuals of H. torquata
showed the highest similarity between them (Figure 3). Among
the main bacterial orders shaping differences in the community,
Cytophagales and Bdellovibrionales were the main taxa for
H. torquata. Individuals of H. torquata, R1, R2, R3, and R4 were
more similar to R1, R3, R9, and R12 of Haliclona (Rhizoniera) sp.

due to the presence of Bacillales. Individuals of I. kerguelenensis
cluster with H. torquata (R3 and R4) and with Haliclona
(Rhizoniera) sp. (R1, R2, and R5), and their community is
defined by a broader range of taxa. A detailed community
composition at family and genus levels showed Polaribacter sp.
and Rhodobacteraceae were similarly present among the three
sponge species. At the same time, rare taxa (less than 1% of
relative abundance) represent 28% of the microbiome of I.
kerguelenensis, 19% of Haliclona (Rhizoniera) sp., and 12% of
H. torquata (Supplementary Figure 1).

Differences in community composition of bacterial symbionts
from these Antarctic sponges, determined by NPMANOVA
(Supplementary Table 3), indicated H. torquata as the only
species with a significant difference in OTU abundance profiles
(p-value = 0.0001 for H. torquata–Haliclona (Rhizoniera) sp. and
p-value = 0.0004 for H. torquata–I. kerguelenensis).

Sponge Core Bacterial Community
The “sponge core” microbiome was composed of 18 OTUs
for Haliclona (Rhizoniera) sp., 15 for H. torquata, and 23
for I. kerguelenensis (Figure 4), representing 63, 80, and 46%
of the total abundance, respectively. Among the sponge core
OTUs, we identified eight OTUs shared across all sponge
species (shared core OTUs). These OTUs corresponded to the
orders Thiotrichales (OTU0008), Oceanospirillales (OTU0011
and OTU0027), Flavobacteriales (OTU0012), Rhodobacterales
(OTU0016, OTU0020, and OTU0026), and Alteromonadales
(OTU0028). However, the total abundance of these shared core
OTUs was different between the three sponge species, with
I. kerguelenensis showing the more abundant “shared core”
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FIGURE 2 | Bacterial composition of the microbiome of the Antarctic sponges Haliclona (Rhizoniera) sp., Hymeniacidon torquata, and Isodictya kerguelenensis, at
order level. R followed by a number represents the individual from each sponge species. The color legend shows the 12 most abundant bacterial orders.

community (28%) in comparison with Haliclona (Rhizoniera) sp.
(22%) and H. torquata (11%).

Isodictya kerguelenensis had the higher number of species-
specific core OTUs, with seven OTUs present across all
individuals but representing only 7% of the symbionts’ relative
abundance, while H. torquata had five OTUs representing 69%
and Haliclona (Rhizoniera) sp. three OTUs corresponding to 34%
of the sponge microbial community (details on Supplementary
Table 4). The species-specific core bacterial community of
Haliclona (Rhizoniera) sp. was composed of Oceanospirillales
(OTU003), Actinomycetales (OTU0023), and Alteromonadales
(OTU0077). In the case of H. torquata, it consisted of
Cytophagales (OTU0001), Flavobacteriales (OTU0006),
Oceanospirillales (OTU0007), Alteromonadales (OTU0010),
and Rhodobacterales (OTU0065). For I. kerguelenensis, this

community was composed by Alteromonadales (OTU0025 and
OTU123), Flavobacteriales (OTU0031, OTU0056, OTU0113,
and OTU0115), Thiotrichales (OTU0030), and Legionellales
(OTU0159). Detailed OTU taxonomic assignment is available in
Supplementary Table 5.

Functional Potential of Bacterial
Communities Associated With Antarctic
Sponges
We screened the functional potential of the bacterial symbionts
from the three Antarctic sponge species analyzed in this study
to understand if the variability at the community composition
within and between sponge species was maintained at the
functional level. The microbiome of the three sponges showed
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FIGURE 3 | Ordination plot derived from unconstrained principal component analysis (PCA) of sponge-associated bacterial communities. R followed by a number on
top of the colored dots represents the individual from each sponge species. The ordination includes the 12 bacterial orders with the highest significance to the
microbiome variation between sponge individuals. The strength of the contribution is represented by the length of the arrow.

a conserved functional potential with subtle differences in
gene copy number of pathways related to energy metabolism,
metabolisms of terpenoids and polyketides, and biosynthesis of
other secondary metabolites (Figure 5). The NSTI, a value that
expresses the availability of representative genomes for each
microbiome, was similar between sponge species: 0.12 ± 0.028
for Haliclona (Rhizoniera) sp., 0.15 ± 0.002 for H. torquata, and
0.11± 0.03 for I. kerguelenensis.

Hymeniacidon torquata had the bacterial microbiome
with the highest gene copy number of predicted functions
related to metabolisms. In contrast, bacteria associated
with Haliclona (Rhizoniera) sp. showed fewer gene copies
involved in these functions. Specific predicted pathways
involving energy metabolism (potential for nitrogen, sulfur,
and methane metabolisms) also showed differences between
species (Supplementary Table 6). The microbiome of H.
torquata had the highest potential (referred here as higher gene
copy number) for nitrogen metabolism (260 ± 56) and sulfur
metabolism (180± 39).

DISCUSSION

In this study, we used 16S rRNA gene sequencing to study
variations in the specificity of bacterial communities associated
with three common sponge species from the WAP: Haliclona
(Rhizoniera) sp., H. torquata, and I. kerguelenensis. We used
a relatively high number of individuals per sponge species

(10, 15, and 5, respectively) compared to previous studies on
Antarctic sponges, allowing us to better resolve the specific traits
representing each sponge microbiome.

Microbiome specificity in sponges, i.e., vertical microbiome
transmission, has been extensively discussed, mainly regarding
HMA and LMA sponges (Gloeckner et al., 2014; Erwin et al.,
2015; De Mares et al., 2017; Moitinho-Silva et al., 2017).
In most cases, LMA sponges are characterized by stable
communities dominated by a few taxa, high temporal stability,
and a higher degree of host specificity than HMA species
(Erwin et al., 2015; Cárdenas et al., 2019). In this way, the
community patterns detected in Haliclona (Rhizoniera) sp.,
H. torquata, and I. kerguelenensis, while agreeing with the
microbiome inter-specificity of an LMA sponge (Rodríguez-
Marconi et al., 2015; Cárdenas et al., 2018), still suggest
intra-specific variations but with different degrees of specificity
depending on the sponge species.

The differences observed in richness and diversity across
sponge species suggest different contribution levels of less
abundant OTUs over the microbiome of I. kerguelenensis and
Haliclona (Rhizoniera) sp. Overall, the low OTU diversity
observed in H. torquata is in accordance with previous studies
on other Antarctic sponge species (Sacristán-Soriano et al.,
2020). These observations also relate to unconstrained PCA
results, which showed individuals of H. torquata clustering
closer together and being defined by a narrowed community
dominated by Bdellovibrionales and Cytophagales. Contrarily,
Haliclona (Rhizoniera) sp. and I. kerguelenensis are structured
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FIGURE 4 | Upset plot showing the number of shared OTUs and representing the sponge core community. Percentages indicate the average contribution of those
core OTUs to the microbial community relative abundance.

by a greater repertoire of different taxa, some of them in low
abundance. We also observed a dominance and co-occurrence
of Bdellovibrionales, a predatory bacteria that help with the host
energy requirements under low-nutrient conditions (Martínez
et al., 2013; Welsh et al., 2016), and Cytophagales, a common
gliding bacteria, on the microbiome of H. torquata. This trend
has also been observed on coral microbiomes (Welsh et al., 2016),
suggesting a common marine symbiotic relationship. These
profiles suggest intra-specific differences in the microbiome
across sponge species.

Hymeniacidon torquata displays the highest degree of
specificity over their bacterial symbiotic community, with a core
community representing 69% of the microbial abundance and
corresponding only to five OTUs. This result suggest a lower
degree of community acquisition from the surrounding seawater
and, therefore, a reduced presence of transient bacteria. A similar
analysis of 37 sponge species from different sites around the
world oceans, but without including Antarctica, found that more

than half of the detected OTUs were present only in a single
sponge species (Schmitt et al., 2012). These authors suggest that
sponge species share a small core community that is still different
from the seawater and that the species-specific core community
is probably vertically transmitted. In our case, this hypothesis
seems plausible, with sponges sharing a small core community
(eight shared core OTUs) that represents different abundances
over sponge species microbiomes, suggesting a different selection
over the taxa acquired from the surrounding seawater. In our
study, the species-specific core community was also dominated
by few OTUs per sponge species. These OTUs represented a larger
proportion of the composition for Haliclona (Rhizoniera) sp. and
H. torquata, while a very low proportion of I. kerguelenensis,
indicating an overall specificity over this community that could
be explained by vertical transmission but that is not equally
conserved across sponge species.

Studies on LMA and HMA sponges showed that the
contribution of the core community varies across sponge
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FIGURE 5 | Average gene copy number predicted for each sponge species microbiome for pathways related to energy metabolism, metabolisms of terpenoids and
polyketides, and biosynthesis of other secondary metabolites.

species, as well as the percentage of the core community
that is acquired via seawater, supporting the existence of
different strategies for microbiome acquisition across sponge
species (Turon et al., 2018). Core OTUs described here
showed eight OTUs shared across all sponge species. The
community composition of these OTUs corresponds to
Gammaproteobacteria, Alphaproteobacteria, and Flavobacteriia,
all classes that have been described to be present in sponges and
their surrounding seawater of this area (Rodríguez-Marconi
et al., 2015). Therefore, this shared core community probably
corresponds to bacterial members obtained from the seawater.
The core OTUs had different contribution levels to the sponge
microbiome, with the higher contribution observed on the
microbiome of I. kerguelenensis and Haliclona (Rhizoniera)
sp. (28 and 22%, respectively) in comparison with the 11%
on H. torquata. These results agree with the lower diversity
observed in H. torquata and the higher contribution that the
species-specific core OTUs represent in this species.

In this work, we also provide an overview of the microbiome
potential capacity of the Antarctic sponges over generic
biochemical pathways. Although with several limitations, this
approach has been widely used as an initial exploration of
microbial functional potential in different environments (Cleary
et al., 2017; Koo et al., 2017; Selvarajan et al., 2019), including
temperate (de Voogd et al., 2015; Helber et al., 2019) and

Antarctic sponge microbiomes (Steinert et al., 2019). Functional
inferences based on conserved marker genes can be further used
as a screening tool in metagenomic and metatranscriptomic
studies to deepen the analyses of selected metabolic pathways.

Predicted functions of the bacterial microbiomes from
the sponges analyzed in this study include pathways related
to cellular processes, environmental information and genetic
information processing, organismal systems, and metabolisms,
with a highly conserved profile among individuals and sponge
species. These categories represent broad functional categories
previously identified in other Antarctic sponge microbiomes
using a similar 16S rRNA gene-based functional approach
(Steinert et al., 2019). In order to support our bioinformatics
analysis, we corroborated that the functions predicted in this
study were present in the only Antarctic sponge metagenomes
available so far (Moreno-Pino et al., 2020).

All three sponge microbiomes analyzed in this study
showed potential for nitrogen, sulfur, and methane metabolisms,
with the microbiomes of H. torquata exhibiting the higher
abundance of gene copies related to all these pathways and,
in particular, to methane metabolism. Accordingly, H. torquata
presented the highest abundance of the methane-oxidizing
clade SUP05. This pathway was described in deep-sea sponges
(Rubin-Blum et al., 2019), where, due to poor light availability,
sponges present chemosynthetic bacterial symbionts with the
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capacity of oxidizing methane. A similar situation could occur in
the microbiomes of Antarctic sponges as they are exposed to long
periods of darkness during the Austral winter. Genes implicated
in nitrogen fixation, nitrification, anaerobic respiration of
ammonium, and denitrification have been frequently described
in marine sponges from different environments (Wilkinson
and Fay, 1979; Bayer et al., 2008; Hoffmann et al., 2009;
Schläppy et al., 2010; Radax et al., 2012). These processes
are among the main metabolisms in marine microorganisms
with symbiotic lifestyles with invertebrate hosts (Fiore et al.,
2010). In the case of the Antarctic sponges, L. antarctica and
Myxilla sp., the archaea Nitrosopumilus sp. and the bacterial
taxa Rhodospirillales were identified as involved in ammonia
and nitrite oxidation and denitrification, although in different
proportions in each sponge species (Moreno-Pino et al., 2020).
These microorganisms were also identified in the microbiomes
of the three sponges from this study but in an extremely low
abundance, suggesting that rare microorganisms participate in
main metabolism pathways. A similar case was demonstrated for
the deep-sea sponge Hexadella cf. dedritifera, where symbiotic
taxa present in low abundance might have great implications
on functional traits (Reveillaud et al., 2014). Sulfur cycling has
been described as an important pathway in sponges from cold
environments (Jensen et al., 2017; Tian et al., 2017) and to be
driven by Nitrosomonadales, also present in the sponge species
here analyzed in low abundance.

Due to the great potential of sponges as a source for
biomedical compounds (Ruocco et al., 2021; Varijakzhan et al.,
2021), we also included pathways related to the biosynthesis
of antibiotics (butirosin, neomycin, novobiocin, penicillin,
cephalosporins, streptomycin, ansamycins, vancomycin group,
and tetracyclines), besides genes associated with the biosynthesis
of polyketide sugar units and carotenoids. These compounds
are synthesized by routes of terpenoids, polyketides, and
other secondary metabolites. We found genes related to the
biosynthesis of important antimicrobial compounds in all the
sponges analyzed, supporting previous studies demonstrating
the enormous biotechnological potential behind the sponge
microbiomes of extreme environments (Papaleo et al., 2012;
Berne et al., 2016), as well as the importance to continue
understanding and protecting this ecosystem.

CONCLUSION

The Antarctic sponges Haliclona (Rhizoniera) sp., H. torquata,
and I. kerguelenensis showed an overall conserved taxonomic
profile across individuals of each sponge species with a
distinct core community and differences in its contribution to
the total microbiome. Taxonomic profiles show specific traits
for each sponge species, particularly for H. torquata, which
had the highest degree of specificity over their microbiome.
Inference of the potential to express interesting pathways
related to energy metabolisms, metabolisms terpenoids and
polyketides, and biosynthesis of secondary metabolites indicates
a functional convergence despite taxonomic differences in the
bacterial communities. Overall, this study provides evidence

to support that the relationship between the Antarctic sponge
microbiome and their hosts is not equally conserved and
suggests differences in the acquisition of the sponge microbiome
among host species.
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