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Abstract: The development and progression of colorectal cancer (CRC) have been associated with
genetic and epigenetic alterations and more recently with changes in cell metabolism. Amino acid
transporters are key players in tumor development, and it is described that tumor cells upregulate
some AA transporters in order to support the increased amino acid (AA) intake to sustain the tumor
additional needs for tumor growth and proliferation through the activation of several signaling
pathways. LAT1 and ASCT2 are two AA transporters involved in the regulation of the mTOR
pathway that has been reported as upregulated in CRC. Some attempts have been made in order
to develop therapeutic approaches to target these AA transporters, however none have reached
the clinical setting so far. MiRNA-based therapies have been gaining increasing attention from
pharmaceutical companies and now several miRNA-based drugs are currently in clinical trials with
promising results. In this review we combine a bioinformatic approach with a literature review in
order to identify a miRNA profile with the potential to target both LAT1 and ASCT2 with potential
to be used as a therapeutic approach against CRC.
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1. Introduction

Colorectal cancer (CRC) is one of the most common cancers worldwide, with 1,849,518
new cases in 2018, being the third most common cancer [1]. Currently, CRC accounts
for approximately 10% of all diagnosed cancers and it is the world’s second most deadly
cancer [2]. CRC is the second most common neoplasia diagnosed in women, and the third
in men, being the incidence and mortality approximately 25% lower in woman [2]. CRC
development can be modulated by several factors, being the high alcohol consumption,
overweigh, physical inactivity, tobacco smoking, diabetes mellitus, age, personal or family
history of CRC well established risk factors [3,4]. Although the mortality rates have
declined due to the improvement in diagnosis and treatment, CRC still represents one of
the most lethal cancer types [3]. Furthermore, metastasis is also found in, approximately,
15–25% of CRC cases at the diagnosis, and increase to 50% during the course of the
disease [2,5]. The advances in the pathophysiological and molecular CRC knowledge
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allowed the increase of the treatment options, but these new therapeutic approaches
were proven to be more effective in patients with non-metastatic disease [2]. Thus, it
is imperative to clarify the mechanisms involved in disease progression, aggressiveness
and metastasis formation in order to improve the patients’ follow up and to identify new
therapeutic approaches.

Recently, the literature showed that amino acid (AA) transporters, such as solute car-
rier transports (SLCs), are important players in tumor development, since tumor cells have
an increased demand for AA to sustain their excessive proliferation rate [6]. In fact, it is de-
scribed that tumor cells upregulate some AA transporters in order to support the increased
AA demand and intake [7]. Moreover, SLCs are able to regulate the PI3K/Akt/mTORC1
signaling pathway, which is central in the regulation of CRC proliferation and aggressive-
ness and is also involved in metabolic reprograming [8,9]. In fact, there are some SLC
dysfunctions associated with CRC, such as L-type amino acid transporter 1 (LAT1) and
alanine-serine-cysteine transporter 2 (ASCT2) upregulation, that may have an impact on
disease aggressiveness [9–11]. Given the growing evidence and interest in the impact of
cancer metabolism in disease aggressiveness, it is imperative to further understand the
regulatory mechanisms responsible for of LAT1 and ASCT2 modulation in CRC and study
the potential of their inhibition as a therapeutic approach. Since these two AA transporters
are frequently overexpressed in CRC cells, they have potential as drug targets because their
inhibition or blockade could lead to cell cycle arrest and apoptosis [10,12–14].

1.1. Amino Acid Transporters Deregulation in CRC: The Impact of LAT1 and ASCT2

It has been nearly a century since the discovery that normal and tumor cells differ in
energy metabolism, with tumor cells presenting a higher need of nutrients, being the AA
bioavailability crucial to support cell proliferation and growth [15]. Amino acids can be
classified into three groups: (1) essential AA (EAA), if the organism is not able to synthesize
them and needs to acquire them from the diet; (2) non-essential AA, if they are synthesized
in sufficient quantities by the organism or (3) conditional AA, if are usually nonessential,
except in times of illness, trauma or stress were they become conditionally essential [16,17].

In addition to their need in protein synthesis, several amino acids have other roles
in supporting cancer development. One example is glutamine, the most abundant AA
that participates in energy production, redox homeostasis, macromolecular synthesis and
cell signaling [18]. In fact, the commitment of glutamine in the these cell processes makes
this AA conditionally essential in conditions characterized by a high proliferation rate,
such as cancer, in which endogenous glutamine synthesis is not sufficient to satisfy the cell
need [17].

Since AAs are hydrophilic, they need selective transport proteins in order to cross the
plasma membrane of the cells. There are approximately two-dozen amino acid transporters
in humans, and cancer cells must regulate one or more of these transporters to satisfy
their nutrient demand [6]. LAT1 (SLC7A5) is a transmembrane transporter involved in
the import of large and neutral AA such as leucine and phenylalanine, in exchange for
intracellular AA, such as glutamine [10,13,19]. According to various studies, LAT1 is highly
upregulated in multiple human cancers, including gastrointestinal cancers [10,19–21]. In
fact, Hayase and coworkers found a higher expression of LAT1 in 72.4% of CRC cases when
compared to colonic adenoma cases, concluding that LAT1 could be a marker for malignant
lesions [10]. Furthermore, Zhang and colleagues also found an association of higher
LAT1 expression levels to poorer outcomes and shorter survival in several types of cancer,
including CRC [14]. The higher LAT1 expression in cancer cells shows the importance
of this AA transporter in the maintenance of AA nutrition in cancer cells [6]. Studies
conducted by Elorza and coworkers show that the upregulation of LAT1 is involved in the
increase of mTORC1 activity through HIF2α activation, showing a relationship between
the hypoxic microenvironment, HIF2α and LAT1 [22]. Furthermore, LAT1 mediates leucine
uptake with high affinity, which is a key AA activator of the mTOR signaling pathway [23].
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However, for mTOR activation, the functional LAT1 is coupled to ASCT2, another AA
transporter involved in glutamine uptake [16].

The ASCT2 (SLC1A5) is expressed in most human tissues including the large intestine
and CRC tumor cells, and is essentially responsible for the influx of glutamine inside
the cells, inducing asparagine, serine and threonine efflux [24–26]. According to Liu
and colleagues, ASCT2 expression levels can modulate the migration capacity of CRC
cells, being the overexpression of this AA transportersassociated with a poorer patients’
prognosis [1,27]. In fact, ASCT2 is upregulated in several cancers, including triple-negative
breast cancer, CRC, lung cancer, melanoma, neuroblastoma, glioblastoma and prostate
cancer [12]. Some studies in glioblastomas and neuroblastoma support the involvement of
the activation of c-Myc, n-Myc oncogenes in the inducing of ASCT2 expression [28,29].

Metabolic reprogramming is a well-known hallmark of cancer that has been gaining
increasing attention in the last few years due to its importance in cancer cells viability and
growth [30]. Cancer associated metabolic reprogramming influences intracellular and extra-
cellular availability of metabolites that will result in alterations in gene expression, cellular
differentiation and also in the tumor microenvironment [31]. Glutamine is considered to be
a crucial nutrient for cancer proliferation due to its ability to donate its nitrogen and carbon
to several growth-promoting pathways [32]. In 2012, Mootha and colleagues reported
that tumor cells have a high necessity of glutamine uptake compared to other AA and,
consequently, a glutamine starvation can interfere with tumor metabolism inhibiting tumor
proliferation and progression [32]. More recently, Varshavi and colleagues, described a
molecular association between CRC that present oncogenic KRAS mutation and glutamine
metabolism, since these cells exhibit special metabolic phenotypes, including differences
in glycolysis, glutamine utilization and AA metabolism [33]. Furthermore, glutamine is
described as a signaling factor in the uptake of AA for the activation of mTORC1 [34]. Thus,
the upregulation of AA transporters have an important role in the support of the high-
level protein synthesis for continuous cancer growth and proliferation [10,35]. The mTOR
pathway is well described as deregulated in CRC, and the availability of AA functions as
a regulator of this pathway, since a high AA microenvironmental bioavailability induces
mTOR activity and consequent biological processes, such as protein translation [36]. Some
studies report a relationship between LAT1 and ASCT2, with a two-step mechanism of
these AAT being able to regulate mTOR pathway [37–39]. Firstly, ASCT2 regulates the
intracellular concentration of glutamine, and in turn LAT1 uses this intracellular glutamine
as an efflux substrate, in order to regulate the uptake of extracellular leucine, which will
lead to an activation of mTOR signaling and consequent induction of cell growth and
proliferation [40,41] (Figure 1). Furthermore, according to Rajasinghe and coworkers, the
inhibition of glutamine uptake in proliferating cells, through the inhibition of glutamine
transporters LAT1 and ASCT2, results in the inhibition of cell proliferation and induces
apoptosis, through the downregulation of the mTOR pathway [38]. Thus, the inhibition of
LAT1 and ASCT2 expression levels could represent a promising therapeutic approach for
CRC since it would reduce the AA intake, consequently causing mTOR pathway inhibition
and compromising cancer cell proliferation.

The use of pharmacologic approaches against LAT1 and ASCT2 in cancers with
overexpression of these two AA transporters seems be a promising strategy. In fact, over
the last few years there was investment in the development of drugs against LAT1 and
ASCT2 [26,38,42,43]. The design of drugs against these two AA transporters usually follows
an approach based on substrate analogues, which act as competitive inhibitors [26]. In the
case of ASCT2 there are also been developed monoclonal antibodies against its cell surface
domains [44]. The pharmacological inhibitors against LAT1 and ASCT2 reported in CRC
are listed on Table 1.
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Table 1. Pharmacological inhibitors of LAT1 and ASCT2 reported in CRC.

AA Transporter Inhibitor Inhibitor Type Reference

LAT1 JHP203 Tyrosine analog [45,46]

ASCT2

MAb KM4008 Monoclinal antibodies
against cell surface
domains

[44]MAb KM4012

MAb KM4018

V-9302 Competitive antagonist [47]

More recently, in a phase I study, Okano and coworkers observed that the JPH203
treatment was well tolerated by patients with CRC and biliary tract cancer (BTC). In fact,
disease control was observed in two of the six CRC patients and in three of the five BTC
patients [13]. Furthermore, a study from Toda and colleagues using two KRAS-mutated
cells lines demonstrated a significant association between ASCT2 expression and KRAS
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mutation and, when the authors used siRNAs to silence KRAS, they observed a significant
reduction of ASCT2 [48]. In addition to that, the authors also used specific inhibitors
of Raf/MEK/ERK, and PI3K/Akt/mTOR pathways, and observed that both inhibitors
presented the ability to reduce ASCT2 expression [48]. Moreover, studies using xenograft
models demonstrated that the inhibition of ASCT2 expression is able to reduce the uptake
of glutamine and inhibit tumor cell proliferation [49]. However, it is imperative to keep
in mind that the block of AA transporters could be associated with the upregulation
of compensatory and redundant pathways, being crucial an accurate overview of all
network involved in the process [50]. In addition to that, there are some limitations in
the use of pharmacological inhibitors due to the low affinity for the transporter and low
selective capacity observed to cancer cells. Thus, these data highlight the need for a deeper
understanding of other therapeutic approaches for the selective inhibition of LAT1 and
ASCT2 in CRC.

1.2. Applicability of microRNAs as Therapeutic Agents

Over the years, advances in genomic technologies have led to an identification of a
variety of epigenetic alterations believed to be strongly involved in cancer initiation and
progression [51]. In fact, several studies revealed that the altered metabolic pathways
in cancer are tightly regulated by microRNAs (miRNAs) [52–58]. MiRNAs are a family
of short non-coding RNAs with a length of approximately 19–25 nucleotides that post-
transcriptionally regulate gene expression, with an important role in several biological
pathways, including cell proliferation and differentiation [59,60]. MiRNAs can regulate
the expression of more than 50% of protein-coding genes by binding to their target mRNA
transcript and causing its degradation or translation repression [61]. Furthermore, the
downstream targets of several miRNAs are directly or indirectly connected to metabolic
alterations [52].

Regarding their applicability in the clinical setting, a growing number of evidence
suggests a significant utility of miRNAs as biomarkers for pathogenic conditions, modu-
lators of drug resistance and as therapeutic agents for medical intervention in almost all
human health-related conditions [62–65]. The pleiotropic nature of miRNAs makes them
particularly attractive, both as drugs or drug targets, for diseases with a multifactorial
origin and no current effective treatments [66,67]. In addition to that, circulating miRNAs
present several advantages compared to other circulating nucleic acids, such as: protection
from RNAse degradation, high stability in circulation through the body, and resistance
to adverse conditions such as temperature or pH alterations [68,69]. Regarding miRNA
therapeutics applicability, there are reports demonstrating clinical utility of miRNA mimics
and miRNA repressors and miRNAs loaded in something. In fact, there are two major
types of miRNA-based therapies: miRNA suppression therapy, when the goal is the target
mRNA upregulation and miRNA replacement therapy, when the goal is the target mRNA
downregulation.

Overall, the current evidence suggests a viable future for miRNA drugs in diseases
with no current effective treatments, such as CRC. Hence, the scope of this review is to
gather and systematize the information available regarding the impact of LAT1 and ASCT2
related miRNAs in CRC development and establish a profile with potential application to
be used as a therapeutic agent through in silico analysis combined with a literature review
(Figure 2).



Biomedicines 2021, 9, 195 6 of 18

Biomedicines 2021, 9, x FOR PEER REVIEW 6 of 18 
 

 

Figure 2. Schematic overview of the applicability of this review in the future development of 

miRNA-based therapies against LAT1 and ASCT2 in CRC. This image was created using BioRen-

der. 

2. Materials and Methods 

2.1. MiRNA Selection and Literature Review 

In order to select miRNAs that target both LAT1 and ASCT2 we used miRTarBase 

(version 8.0), the largest known online database of validated miRNA:mRNA interactions 

[70]. According to miRTarBase there are 267 miRNAs that target LAT1 and 173 that target 

ASCT2 mRNAs. Since one miRNA has multiple targets and the same mRNA can be reg-

ulated by several miRNAs, we went to see if there were miRNAs that targeted both LAT1 

and ASCT2. From the 440 miRNAs retrieved by miRTarBase, we observed that 33 targeted 

both LAT1 and ASCT2 (Figure 3). 
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against LAT1 and ASCT2 in CRC. This image was created using BioRender.

2. Materials and Methods
2.1. MiRNA Selection and Literature Review

In order to select miRNAs that target both LAT1 and ASCT2 we used miRTarBase (ver-
sion 8.0), the largest known online database of validated miRNA:mRNA interactions [70].
According to miRTarBase there are 267 miRNAs that target LAT1 and 173 that target ASCT2
mRNAs. Since one miRNA has multiple targets and the same mRNA can be regulated by
several miRNAs, we went to see if there were miRNAs that targeted both LAT1 and ASCT2.
From the 440 miRNAs retrieved by miRTarBase, we observed that 33 targeted both LAT1
and ASCT2 (Figure 3).
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cnb.csic.es/tools/venny, accessed on 21 December 2020) and the detailed list of the 33 miRNAs.

After retrieving the miRNAs that target both LAT1 and ASCT2 from miRTarBase, a
literature search in PubMed and Google Academic was conducted using the search terms
“colorectal cancer” plus one of the following 33 microRNAs: “miR-122-5p”, “miR-1224-3p”,
“miR-1260a”, “hsa-miR-1260b”, “hsa-1273g-3p”, hsa-miR-1273h-5p”, “hsa-miR-149-3p”,
“hsa-miR-15b-5p”, “miR-16-5p”, “miR-193b-3p”, “miR-30b-3p”, “miR-3199”, “miR-3689a-
3p”, “miR-3689b-3p”, “miR-3689c”, “miR-383-3p”, “miR-4690-5p”, “miR-4728-5p”, “miR-
504-3p”, “miR-5693”, “miR-5698”, “miR-619-5p”, “miR-6499”, “miR-6778-3p”, “miR-6799-
5p”, “miR-6780a-5p”, “miR-6785”, “miR-6799”, “miR-6821”, “miR-6883-5p”, “miR-6890-
3p”, “miR-7106-5p” or “miR-7977”. The articles were selected by relevance of their findings,
namely, a significant association between these miRNAs and colorectal cancer. Literature
analysis includes scientific papers published in the last 6 years (between 2014 and 2020).
The obtained scientific papers were manually curated in order to determine associations
between the miRNAs and CRC, giving a total of 28 selected papers. The exclusion criteria
for the collected papers were as follows: (1) no significant association between the miRNAs
and CRC; (2) association of the miRNAs with a benign tumor and (3) individual papers
that were already included in meta-analysis. For each study, information was extracted
concerning the following characteristics: the name of the miRNA, type of sample where
the miRNA was studied, miRNA expression levels (upregulated and downregulated) and
their effect on CRC (e.g., prognosis, therapy response or pathways regulation).

2.2. In Silico Analysis

The Search Tool for the Retrieval of Interacting Genes (STRING) database is an online
tool that is used to develop protein–protein interaction (PPI) networks [71]. We used
the STRINGapp of the Cytoscape software (v3.7.X) to construct and visualize the protein
interaction network of the selected target genes. Those with a combined score of >0.4 were
selected as significant. The functional enrichment analysis of Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Reactome pathways was made with
the STRING enrichment analysis tool, with a false discovery rate (FDR) of p < 0.01. The
enrichment results were filtered, and redundant terms were removed according to the
Jaccard index.

3. Results
3.1. miRNAs that Target Both LAT1 and ASCT2 and their Impact on CRC

From the 33 candidate miRNAs, only 16 have already been described in CRC (Table 2).
However, in terms of the miRNA: mRNA target interaction with LAT1 and ASCT2, none of
the miRNAs have been yet validated for CRC.

http://bioinfogp.cnb.csic.es/tools/venny
http://bioinfogp.cnb.csic.es/tools/venny
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Table 2. Selected miRNAs’ impact on CRC.

miRNA Expression Sample Type Effect Reference

Hsa-miR-122-5p

Down CRC Tissue and cells
Increase in cell proliferation, migration and

invasion through the upregulation of
CDC25A

Yin 2020 [72]

Down CRC Tissues Upregulation of the PI3K/Akt pathway
through upregulation of TRIM29 Asadi 2019 [73]

Up CRC liver metastatic tissues Not described Liu 2019 [74]

Up Serum and HT-29 and SW480
cell lines

Lymph node metastasis biomarker and cell
migration inducer Qu 2018 [75]

Up CRC Plasma
Worse prognosis in metastatic patients and

shorter RFS and OS in non-metastatic
patients

Maiertheler 2017 [76]

Hsa-miR-1224-3p Up CRC Tissues Upregulated in E cadherin positive tissues Lin 2017 [77]

Hsa-miR-1260a Down CRC Serum Not described Wang 2017 [78]

Hsa-miR-1260b

Up HCT116 cells Chemoresistance to 5-FU through
upregulation of PDCD4 Zhao 2018 [79]

Down SW480 cells Downregulated by STAT3-siRNA Zhang 2014 [80]

Up Carcinoma vs adenoma
(tissue) Not described Slattery 2016 [81]

Down CRC Serum Not described Zhang 2017 [82]

Up DKO-1 cells Enriched in KRAS mutant cells Cha 2015 [83]

Hsa-miR-1273g-3p Up LoVo cells
Proliferation, migration and invasion

through activation of
ERBB4/PIK3R3/mTOR/S6K2 pathway

Li 2018 [84]

Hsa-miR-1273h-5p Up CRC tissues Not described Du 2018 [85]

Hsa-miR-149-3p Down HCT-8 and HCT-116 cells Chemoresistance to 5-FU through
upregulation of PDK2 Liang 2020 [86]

Hsa-miR-15b-5p

Down CRC tissues and cell lines Chemoresistance to 5-FU through
upregulation of XIAP Zhao 2017 [87]

Up HT-29 cell line Cell growth and inhibition of the
proapoptotic pathway Gasparello 2020 [88]

Down KRAS mutated CRC tissues vs
wild type CRC tissues Not described Milanesi 2020 (82)

Hsa-miR-16-5p Down CRC tissues and cell lines Upregulation of VEGFA Wu 2020 [33]

Hsa-miR-193b-3p
Down CRC tissues vs adjacent

normal tissues
Shorter OS of CRC patients and upregulation

of STMN1 Guo 2016 [89]

Up CRC tissues Downregulation of RAD51 Kara 2015 [90]

Hsa-miR-3199 Down SW620 cell line Upregulation of SMAD4 Yan 2018 [91]

Hsa-miR-383-3p Down CRC tissues and HT-29 and
LoVo cell lines Upregulation of APRIL Cui 2018 [92]

Hsa-miR-4690-5p
Down CRC Stool Not described Ghanbari 2015 [93]

Up CRC tissues Upregulated in CIMP high/MSI CRC tissues Mullany 2016 [94]

Hsa-miR-619-5p Down CRC tissues vs adjacent
normal tissues

Upregulation of MALAT1, lymphovascular
invasion perineural invasion, shorter DFS

and shorter OS
Qiu 2016 [95]

Hsa-miR-6821-5p Down SW480 CSCs vs SW480
wild-type Not described Zhou 2019 [96]

Up CRC tissues Not described Du 2018 [85]

Hsa-miR-6883-5p Down TCGA dataset and Cell lines Upregulation of CDK4 and CDK6 and cell
growth stimulus Lulla 2017 [97]

Through the analysis of Table 1 we can observe that some of the miRNAs present
opposite results regarding their expression levels, which may be related with the type of
biological sample from which their expression levels are analyzed. Regarding their effects
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on CRC, the deregulation of miR-122-5p, miR-1273g-3p, miR-16-5p, miR-3199, miR-383-3p,
miR-619-5p and miR-6883-5p was associated with the upregulation of important players
of oncogenic pathways, such as TRIM29, CDC25A, PI3K/Akt, mTOR, VEGFA, MALAT1,
SMAD4, STMN1, APRIL and CDK4, with an impact on cell proliferation, invasion and
migration. In addition to that, miR-1260b, miR-149-3p and miR-15b-5p were reported as
associated with resistance to 5′-FU treatment through the upregulation of PDCD4, PDK2
and XIAP, respectively. Moreover, only three miRNAs were associated with clinical end-
points. Higher plasmatic levels of hsa-miR-122-5p were associated with worse prognosis
in metastatic patients and shorter RFS and OS in non-metastatic patients, while lower
levels of CRC tissue hsa-miR-193b-3p and hsa-miR-619-5p were associated with shorter OS.
Moreover, lower levels of CRC tissue hsa-miR-619-5p were also associated with shorter
DFS, lymphovascular invasion and perineural invasion.

3.2. Functional Annotation and Pathway Enrichment Analysis

Since the downregulation of a miRNA usually leads to the upregulation of its mRNA
targets, we focused on the 11 miRNAs that have been reported as downregulated in CRC
cells and tissues and therefore could be implicated in the upregulation of LAT1 and ASCT2
(miR-122-5p, miR-1260b, miR-149-3p, miR-15b-5p, miR-16-5p, miR-193b-3p, miR-3199,
miR-383-3p, miR-619-5p, miR-6821-5p and miR-6883-5p) and did an in silico analysis to
obtain a deeper knowledge of their impact on CRC. We used miRTarBase v8.0 to retrieve the
mRNA targets of the selected miRNAs that were validated with strong evidence methods
in order to do the functional annotation and enrichment analysis. From the 11 miRNAs
studied, only miR-15b-5p, miR-16-5p, miR-122-5p, miR-149-3p, miR-1260b, miR-193b-3p
and miR-383-3p presented mRNA targets validated with strong evidence methods (Western
blot, qRT-PCR or luciferase assay), which are listed on Table 3.

Table 3. Validated targets of miR-15b-5p, miR-16-5p, miR-122-5p, miR-1260b, miR-149-3p, miR-193b-3p and miR-383-3p.

miRNA Target mRNA

miR-16-5p

ZYX, YAP1, WNT4, WNT3A, WEE1, VEGFA, UNG, UCA1, TPPP3, TP53, SOX6, SOX5, SOCS3,
SLC6A4, RPS6KB1, RICTOR, RECK, RAF1, PURA, PTGS2, PRDM4, PPM1D, PIM1, OPRM1, NCSTN,
NCOR2, MYB, MTOR, METTL13, MAP7, KRAS, KDR, IL12B, IGF1R, IFNG, HMGA2, HMGA1, HGF,
HDGF, GLS2, FGFR1, FGF2, CLDN2, CHUK, CHEK1, CDS2, CDK6, CCNE1, CCND3, CCND2, CCND1,

CAPRIN1, CADM1, BRCA1, BMI1, BIRC5, BDNF, BCL2, BACE1, AXIN2, ARL2, ARHGDIA, APP,
AKT3, ADORA2A, ACVR2A

miR-15b-5p
WEE1, VEGFA, TRIM29, TRIM14, TGFB1, TBR1, SOCS3, SMURF1, SMAD2, RECK, RAB1A, PURA,
PPM1D, PEBP4, OIP5, MTSS1, MMP9, KDR, INSR, IFNG, HNF1A, FUT2, FOXO1, EIF4A1, CHEK1,

CCNE1, CCND3, CCND1, BCL2, BAX, AXIN2, AKT3, AGO2

miR-122-5p

ZNF395, XPO6, WNT1, VEGFC, UBAP2, TRIB1, TPD52L2, TBX19, SRF, SPRY2, SOCS1, SLC7A11,
SLC7A1, RHOA, RAC1, RAB6B, RAB11FIP1, PTPN1, PRKRA, PRKAB1, PKM, PEG10, PDK4, P4HA1,

NUMBL, NT5C3A, NOD2, NFATC2IP, NCAM1, MEF2D, MECP2, MAPK11, LPIN1, IL1A, IGF1R,
HMOX1, GYS1, GALNT10, G6PC3, FUT8, FUNDC2, FOXP1, FOXJ3, FAM117B, ENTPD4, EGLN3,
EGFR, DUSP2, DSTYK, CYP7A1, CTDNEP1, CREB1, CLIC4, CDK4, CCNG1, BCL2L2, BAX, AXL,

ATP1A2, AP3M2, ANXA11, ANK2, ALDOA, AKT3, ADAM17, ADAM10, AACS

miR-1260b SMAD4, SFRP1, DKK2

miR-193b-3p YWHAZ, SMAD3, SHMT2, RAD51, PRAP1, PLAU, NF1, MYB, MCL1, MAX, KRAS, KIT, ETS1, ESR1,
CCND1, AKR1C2

miR-383-3p PRPF31

miR-149-3p WNT1, MYBL2, GPC1, FGFR1, E2F1, AKT1

In order to explore the biological impact of these miRNA profiles in CRC, we analyzed
their 186 validated targets with the STRINGapp Protein Query from Cytoscape software. A
total of 168 of the 186 coding genes were filtered into a protein–protein interaction (PPI) net-
work with 168 nodes and 1284 edges that presented a significant enrichment (p = 1 × 10−16).
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We also applied a Markov clustering (MCL), which resulted in the clustering of the proteins
into 11 clusters according to their STRING interaction score (Figure 4).
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The functional enrichment analysis was made using an FDR threshold of p < 0.01, and
the redundant terms were eliminated using a redundancy cutoff of 0.5, which resulted in a
total of 892 enriched terms among the KEGG, Reactome and GO categories (Supplementary
Tables S1–S5). The top 20 enriched terms for each category are represented on Figure 5.
Among the functionally enriched terms in the KEGG and Reactome pathways we could
find PI3K/Akt, MAPK, HIF-1, mTOR, VEGF and EGFR inhibitor resistant pathways, all of
which are well established as involved in CRC development. Regarding the GO terms, if
we focus on the molecular processes, we can observe that the two most enriched terms are
the regulation of cell proliferation and the cellular response to organic substances, which
may be related with the increase intake of nutrients as a consequence of the downregulation
of this miRNA profile and consequent upregulation of AA transporters, such as LAT1 and
ASCT2.
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4. Discussion

CRC remains one of the most diagnosed cancers in the world, with a high metastatic
potential and not enough therapeutic options. The previous underestimated metabolic
alterations are now gaining more attention from the scientific community, and it is now
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known that metabolic cross-communication between tumor cells, immune cells, stromal
cells and the gut microbiota are able to induce CRC proliferation, invasion and metasta-
sis [98]. Among the metabolic alterations with potential to be targeted in order to develop
new therapeutic approaches, the upregulation of AA transporters LAT1 and ASCT2 seems
promising due to their impact in the regulation of the mTOR pathway. In addition to
that, the liver is recognized as the most common metastatic site of CRC and cumulative
evidences show that LAT1 and ASCT2 are overexpressed in hepatocellular carcinoma
(HCC) and that these cells present a 10–20 fold increase in glutamine uptake, compared to
normal hepatocytes [27,38,99–101]. Therefore, the definition of a new therapeutic approach
involving the inhibition of these two AA transporters could be a promising strategy to
control CRC proliferation and aggressiveness.

Recently, it has been suggested that modulation of miRNAs in cancer cells could be a
potential tool for the improvement of cancer patients’ therapies. In fact, by suppressing
oncogenic miRNAs or substituting deficient tumor suppressive miRNAs, we are able
to control cancer cell growth and progression. The world’s first miRNA therapeutic, a
short locked nucleic acid (LNA) antagonist for miR-122 named Miravirsen (produced by
Roche/Santaris) was developed for the treatment of hepatitis C virus (HCV) infection [102].
Along with Miravirsen, all of the miRNA-based drugs are currently in clinical trials and
none have yet reached the pharmaceutical breakthrough. However, acquisition of miRNA-
based companies by famous pharmaceutical companies is sending a positive feedback on
their potential [103]. Currently, there are several strategies used for miRNA-based therapies,
which could include miRNA inhibition therapies that target oncomiRNAs, replacement
therapies for tumor-suppressor miRNAs or miRNA-based delivery systems [104]. One
example, of their applicability was the study performed by Callegari and coworkers that
showed that the in vivo delivery of an anti-miR-221 caused a significant decrease in the
size and number of tumor nodules, being established the promotor role of miR-221 in
liver carcinogenesis [105]. On the other hand, Oshima and coworkers reported an effective
delivery of miR-655-3p to CRC liver metastasis using nanoscale coordination polymers.
The polymers used prolonged the miRNA distribution and miRNA-655-3p suppressed
tumor growth when codelivered with oxaplatin, suggesting a synergistic effect of both
therapeutic approaches [106].

Regarding the delivery mechanisms, miRNAs are delivered through the use of vectors
that can be divided into two categories: viral vectors and nonviral vectors. The viral
vectors used for miRNA delivery are mainly adenovirus vectors, adeno-associated virus
vectors, retroviral vectors and lentivitus vectors. On the other hand, nonviral vectors
include inorganic material-based delivery systems, lipid-based nanocarriers, polymeric
vectors/dendrimer-based vectors, cell-derived membrane vesicles and 3D-Scaffold-based
delivery systems [107]. The use of these delivery mechanisms improves targeting ability
while protecting the miRNAs or miRNAs inhibitors from degradation. In fact, it was
already demonstrated that, for cancer treatment, intratumoral injections of miRNA drugs
directly into the tumor site are able to enhance target efficacy, specificity and minimize the
side effects and there are also several ongoing clinical trials [62,108,109].

In the present review we combined a bioinformatic approach with a literature review
to define a miRNA profile (miR-15b-5p, miR-16-5p, miR-122-5p, miR-1260b, miR-149-3p,
miR-193b-3p and miR-383-3p) that has the potential to target both LAT1 and ASCT2 in
CRC. The in silico approaches are very useful since they allow the simultaneous analysis of
the interactions of hundreds of genes and, therefore, the creation of an integrative network
that allows a deeper understanding of the biological processes regulated by them. Our in
silico analysis result in a list of miRNAs that target both LAT1 and ASCT2 and the literature
review allowed us to focus on the miRNAs that have already been studied in CRC and
have been reported as downregulated. In addition to that, functional enrichment analysis
showed that among the enriched terms derived from the miRNA profile targets, we can
find PI3K/Akt, MAPK, HIF-1, mTOR, VEGF and EGFR inhibitor resistant pathways, all of
which are well established as involved in CRC development.



Biomedicines 2021, 9, 195 13 of 18

The MAPK and PI3K/Akt signaling pathways are involved in cell proliferation and
survival, and their deregulation confers proliferative advantages on cancer cells. In fact,
KRAS, BRAF and PI3K mutations are frequent in CRC. Moreover, the increase of the
PI3K/Akt pathway activation in CRC is also associated with the loss of the tumor sup-
pressor PTEN, which is significantly associated with a worse prognosis [1]. In addition
to that, according to Slatery and colleagues, approximately 41% of the genes of MAPK
signaling are dysregulated in CRC [110]. These two signaling cascades can activate directly
and indirectly the Ser/Thr protein kinase mTOR, respectively, being the mTOR involved
in the regulation of cell proliferation and survival [111]. Similarly to other solid tumors,
CRC is also characterized by a hypoxic microenvironment [112]. In fact, the cancer cells
have the ability of adaptation to hypoxia through the regulation of the PI3K/AKT/mTOR
pathway and by the transcription factors HIF-1α and HIF-2α, whose protein expression
and transcriptional activity are also regulated by mTOR [113]. Furthermore, tumor hy-
poxia can also enhance cancer cells survival and proliferation through the upregulation of
VEGF and its receptor VEGFR. VEGF promotes CRC growth through the stimulation of
angiogenesis and its downstream signaling pathways are well characterized in cancer, with
VEGF/VEGFR activation leading to the activation of MAPK/ERK, PI3K/Akt, PLC/PKC
and other signaling pathways [114,115] .

Taking this information into consideration, we can conclude that the miRNA profile
proposed in the present study plays an important role on CRC development and aggressive-
ness. However, despite promising, the results are still preliminary and require validation in
CRC study models in order to assess the miRNA profile interaction with LAT1 and ASCT2
mRNAs, especially in terms of its inhibitory power. During the past few years, there has
been a significant development of in vitro and in vivo preclinical research models, such as
3D cell culture of spheroids and organoids derived from several human tissues, which is
helping in the translation of miRNAs into clinical practice [66,116,117]. In a recent study,
Kawai and colleagues determined the culture conditions necessary to establish 3D cell
culture models that mimic colon cancer heterogeneity [118]. In another study, Zoetemelk
and colleagues established a robust, low-cost and reproducible short-term 3D colorectal
cancer spheroids model to be used as a platform for screening the effect of combination
therapies in CRC [119]. These enhanced research models are very useful for the study of
miRNAs dynamics and for the development of the delivery systems for miRNA-based ther-
apeutics [120,121]. Therefore, the next step should be focused on the delivery of the miRNA
profile to CRC 3D culture models in order to see if it is sufficient to reverse the increased
AA uptake caused by the increase of LAT1 and ASCT2 and inhibit cell proliferation.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-905
9/9/2/195/s1, Table S1: GO Cellular Component enrichment results for terms with FDR p < 0.01,
Table S2: GO Molecular Function enrichment results for terms with FDR p < 0.01, Table S3: GO Bio-
logical Process enrichment results for terms with FDR p < 0.01, Table S4: KEGG pathway enrichment
results for terms with FDR p < 0.01, Table S5: Reactome pathways enrichment results for terms with
FDR p < 0.01.
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