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Abstract
Apoptosis is a form of programmed cell death that is essential for tissue homeostasis. De-regulation of the balance between 
proliferation and apoptosis contributes to tumor initiation. Particularly in the colon where apoptosis is a crucial process in 
intestinal turnover, inhibition of apoptosis facilitates transformation and tumor progression. The BCL-2 family of proteins 
are key regulators of apoptosis and have been implicated in colorectal cancer (CRC) initiation, progression and resistance 
to therapy. In this review we outline the current knowledge on the BCL-2 family-regulated intrinsic apoptosis pathway and 
mechanisms by which it is de-regulated in CRC. We further review BH3 mimetics as a therapeutic opportunity to target this 
pathway and evaluate their potential for CRC treatment.
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Introduction

Programmed cell death is an essential process regulating 
tissue homeostasis and stress response in many organisms. 
One of the most widely studied and well-characterized forms 
of programmed cell death is apoptosis, first described in the 
landmark study of Kerr et al. [1]. In their study they describe 
a unique morphology of dying cells which form membrane 
bound fragments that get phagocytosed by nearby cells. Fur-
ther understanding of the pathway came from developmental 
studies conducted in the nematode Caenorhabditis elegans 
[2]. It is now well accepted that this process is tightly regu-
lated by a set of proteins with specific interaction domains, 
most of which are conserved in mammals [2, 3]. In response 
to various signals, these proteins orchestrate a cascade of 
reactions that ultimately dictate the choice between life and 
death.

While apoptosis occurs in normal tissue development and 
regeneration, it can also be activated in response to stress 
signals such as nutrient deprivation, reactive oxygen species 
and excessive mitogenic signaling usually associated with 
cancer initiation [4]. Such signals lead to the activation of 
one of the two main apoptotic pathways—the extrinsic and 
intrinsic pathways. The extrinsic pathway is regulated by 
so-called death receptors such as TNFR, FAS, DR3/WSL. 
Upon ligand binding these receptors activate signaling cas-
cades that result in caspase activation, which is instrumental 
in the execution of apoptotic cell death. In this review we 
focus on the role of the BCL-2 family of proteins in cancer 
and hence on the intrinsic or mitochondrial pathway of apop-
tosis, which is regulated by this family [5].

Apoptosis is a key cell death mechanism that can counter-
act tumor formation and growth and for this reason, is often 
de-regulated in various cancers [6]. Increased proliferation 
resulting from oncogenic mutations is facilitated by genetic 
and epigenetic alterations in apoptotic pathways that ulti-
mately allow uncontrolled tumor growth. Homeostasis in 
the colon is tightly regulated by a balance between prolif-
eration and apoptosis. Disruption of this balance is an inte-
gral step in CRC development and progression. In addition, 
an increased apoptotic threshold is often observed in CRC 
tumors which contributes to therapy resistance [7]. In this 
review we describe how the members of the BCL-2 fam-
ily regulate apoptosis and how they often get de-regulated 
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to enable CRC progression and chemo-resistance. We fur-
ther assess the potential of BH3 mimetics—small molecule 
antagonists of anti-apoptotic BCL-2 family members—as a 
therapeutic strategy for targeting this pathway and inducing 
apoptosis in CRC tumors.

The intrinsic apoptosis pathway

In the intrinsic apoptosis pathway, the BCL-2 family of pro-
teins play a key role in determining the decision to undergo 
apoptosis. The first member of the BCL-2 family to be iden-
tified was the pro-survival B-cell lymphoma-2 (Bcl-2) gene, 
which was found to be frequently amplified in lymphomas 
by an oncogenic translocation [8, 9]. It was soon discovered 
that this protein was able to promote cancer cell survival 
by preventing apoptosis [10–12]. More than 15 members of 
this family have since been identified that can be segregated 
based on their apoptotic regulation as either pro- or anti-
apoptotic [13–17]. Here we describe how these members 
interact to regulate mitochondrial permeabilization.

The pro- and anti- apoptotic BCL-2 proteins

All members of the BCL-2 family of proteins show homol-
ogy in one or more of the four BCL-2 homology (BH) 
domains and are categorized based on the number of homol-
ogy domains they possess [18]. The anti-apoptotic members 
all have four BH-domains and include BCL-2, BCL-XL, 
MCL-1, BCL-W and A1/BFL-1. Of these, the BH1, BH2 
and BH3 domains contribute to the formation of a hydro-
phobic pocket in their tertiary protein structure. The pro-
apoptotic proteins can be divided into two sub-groups: the 
BH3-only proteins and the effector proteins. The BH3-only 
proteins, thus named as they only show homology to the 
BH3 domain of BCL-2 include BIM, BAD, BID, PUMA, 
NOXA, BMF, HRK, BIK and others. The effector proteins 
such as BAX and BAK possess three to four BH domains 
and are able to form macropores in the mitochondrial outer 
membrane. BOK is another multi-BH3 domain effector pro-
tein that has pro-apoptotic functions, which some studies 
suggest to be independent of BAX and BAK [19–21]. The 
physical interaction between anti- and pro-apoptotic proteins 
is a result of the binding of the BH3 domain of the pro-apop-
totic proteins to the hydrophobic clefts of the anti-apoptotic 
proteins [18, 22, 23].

Regulation of mitochondrial permeabilization

The vast majority of BAX and BAK molecules exist as inac-
tive monomers (BAX) or homodimers (BAK) in an equi-
librium between the cytosol and mitochondrial membrane 
[24–26]. BAX/BAK activation leads to the formation of 
pores that initiates the morphological changes associated 

with apoptosis [27]. Recent findings have shed light into 
detailed interaction models between these proteins that help 
provide new insights for targeting this pathway (Fig. 1) [5].

The mechanism by which BH3-only protein promote 
apoptosis is still a matter of intense debate. There is strong 
evidence for a “direct” model, which suggests that some 
BH3-only proteins can directly interact with BAX/BAK to 
induce conformational changes that leads to their activation 
[28–30]. These so called “activators” include BIM and BID 
and more recently PUMA and NOXA have shown to act as 
activators, although with lesser efficacy [31–34]. The other 
BH3 proteins such as BAD function as “sensitizers” in this 
model as they mainly interact with anti-apoptotic BCL-2 
proteins to release the “activator” BH3-only proteins [31]. 
The anti-apoptotic BCL-2 proteins can inhibit apoptosis by 
two modes: either by directly engaging with and inhibit-
ing activation of BAX/BAK or by sequestering activator 
BH3-only proteins, both of which prevent oligomerization 
of BAX and BAK (Fig. 1) [35]. Another “indirect” model 
proposes that the BH3-only proteins do not directly interact 
with BAX/BAK but instead act by binding to and neutral-
izing the anti-apoptotic proteins to release BAX/BAK and 
allow pore formation [36, 37]. A recent study employed 
genome editing to delete all BH3-only proteins to generate 
an apoptosis resistant cell line. Interestingly, when MCL-1 
and BCL-XL were inhibited in these cells the kinetics of 
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Fig. 1  BCL-2 family protein interactions regulate mitochondrial outer 
membrane permeabilization (MOMP)
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apoptosis was similar to the cells that did express all BH3-
only proteins. The authors therefore suggest that BH3-only 
proteins are not required for the direct activation of BAX 
and BAK and that they mainly function to repress BCL-XL 
and MCL-1 [37]. Even if they are not essential for BAX/
BAK activation, this does not exclude that BH3 activators 
can indeed facilitate pore formation through such direct 
interactions. Regardless of the prevailing model, when the 
balance is tipped in favor of pro-apoptotic molecules, BAX 
and BAK will multimerize to form pores in the outer mito-
chondrial membrane. Although less well studied, BOK was 
initially identified by its interactions with MCL-1 and is also 
suggested to have pore forming abilities [38, 39]. However, 
studies now propose its activation to be regulated by the 
endoplasmic reticulum-associated degradation pathway, 
independent of other BCL-2 protein interactions [21, 39, 
40].

Additional layers of complexity are added to these inter-
action models as the different members of the BCL-2 family 
show preferential binding patterns among each other. For 
instance, BH3-only proteins bind to pro-survival members 
with different affinities (Fig. 2). BH3-only proteins such as 
BIM, PUMA and tBID (“activators”) can engage with all 
anti-apoptotic proteins whereas others are more limited in 
their interactions [41, 42]. BAD interacts with BCL-2, BCL-
XL and BCL-W, while HRK binds specifically to BCL-XL 
and NOXA shows preferential binding to MCL-1 and A1. 
Studies also show preferential interactions between activator 
BH3-only proteins and BAX and BAK. So while BID pre-
fers to interact with BAK, BIM shows either no preference 
or preference for activation of BAX [30, 43]. An additional 
layer of complexity is introduced by specific interactions 
between anti-apoptotic proteins and effector proteins. For 
example, BAK is not inhibited by BCL-2 while MCL-1 and 
BCL-XL do restrain its activation [44]. Retrotranslocation 
of BAX and BAK away from the mitochondria into the cyto-
sol is also regulated by the different pro-survival proteins. 
While BAX is retrotranslocated by BCL-2, BCL-XL and 
MCL-1, BAK retrotranslocation is only regulated by BCL-
XL and MCL-1 [26]. This retrotranslocation process pre-
vents the activation of BAX/BAK at the mitochondrial outer 

membrane and thereby also prevents pore formation and 
mitochondrial outer membrane permeabilization (MOMP).

Outcomes of MOMP

MOMP is often considered to be the point of no return for 
apoptosis to occur [45]. Once the outer membrane is perme-
abilized by BAX/BAK pore formation, soluble proteins such 
as cytochrome c are released from the mitochondrial inter-
membrane space into the cytosol [46–48]. Here cytochrome 
c binds to APAF-1 to form the apoptosome, which activates 
caspase-9 and ultimately leads to cleavage and activation of 
effector caspases such as caspase-3 or 7. MOMP also leads 
to the release of other proteins such as second mitochondria 
derived activator of caspase (SMAC) which releases cas-
pase-3 from inhibitory proteins such as X-linked inhibitor of 
apoptosis (XIAP) [49]. The effector caspases are responsible 
for the cleavage of various proteins and eventual dismantling 
of the cell into apoptotic bodies. Despite being the execu-
tors of apoptosis, prevention of caspase activation does not 
always circumvent apoptosis. Permeabilized mitochondria 
can still lead to a cell’s death in the absence of caspases due 
to mitochondrial distress, a form of death termed caspase-
independent cell death [50–52]. Interestingly, several stud-
ies report cell survival despite caspase activation [53–55]. 
When only a minority of mitochondria commit to MOMP, 
cells may prevent cell death and maintain their clonogenic 
potential [56]. In fact, the limited caspase activation result-
ing from this so called “minority MOMP” can induce cas-
pase associated DNAse activity and thereby DNA damage. 
Cells that survive despite activation of the apoptotic pathway 
by such mechanisms may thus become genetically unstable 
and potentially tumorigenic [56–58].

Mechanisms of apoptotic de‑regulation

De-regulated apoptosis is observed in most tumor types and 
is considered one of the hallmarks of cancer. Evasion of 
apoptosis allows tumor cells to bypass oncogene-induced 
cell death and can also promote sustained tumor growth, 
survival during metastatic spread and therapy resistance. 
De-regulation of the BCL-2 family not only occurs during 
tumorigenesis and outgrowth but is also observed as part of 
the tumor evolution that takes place in response to therapy 
[59–61]. The intrinsic pathway of apoptosis is often modi-
fied to tip the balance towards reduced apoptosis by altering 
one or both of the two main components of the pathway.

Not surprisingly, an increased expression of pro-sur-
vival BCL-2 proteins is found in several cancer types. This 
increase can be achieved by several mechanisms includ-
ing chromosomal translocations [8], gene amplifications 
[62], increased transcription [63–65] and post-transcrip-
tional and post-translational modifications (PTM) [66, 67]. 

1-LCM2-LCB BCL-W 1ALX-LCB
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Fig. 2  BH3-only proteins have specific affinities for anti-apoptotic 
proteins
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Chromosomal gain mediated amplification of Mcl-1 and Bcl-
xL were found to be the most frequent alterations across 26 
tumor types, particularly in solid tumors [62]. Anti-apoptotic 
adaptation can also occur through PTMs that enhance the 
activity of pro-survival proteins [68, 69]. Most tumors gen-
erally rely on the up-regulation of one or two anti-apoptotic 
proteins for resistance, which varies from tumor-to-tumor 
and even within the same tumor type [70–73]. Thus, most 
cancers present heterogeneous expression and dependence 
on anti-apoptotic proteins.

Another mechanism of altering the apoptotic threshold is 
to decrease the expression or modulate the activity of pro-
apoptotic BH3-only proteins. Loss of BH3-only proteins is 
only mildly oncogenic on its own but can be tumorigenic in 
certain contexts such as co-occurrence with MYC activa-
tion [74]. Loss of P53 occurs in many cancers and leads 
to the downregulation of its transcriptional targets PUMA 
and NOXA [75, 76]. Several studies document other tumor-
associated changes in BH3-only proteins by various mecha-
nisms including mutation, loss of heterozygosity or epige-
netic silencing [77]. Reduced expression or activity of the 
BCL-2 family effector proteins is also a potent mechanism 
for apoptosis evasion in tumor cells. BAX somatic frameshift 
mutations are selected for in microsatellite instable gastric, 
colon and endometrial tumors [78]. Localization changes 
can also affect their apoptotic activity as observed in AML 
[79]. Studies have noted changes in their activity induced 
by phosphorylation and anti-cancer therapy that affect their 
pore forming abilities [59, 80]. BOK deletions are quite fre-
quently detected in a range of tumors [62]. However, BOK 
deficient mice show no overt phenotypic changes and cells 
derived from these mice are not hampered in apoptosis [81]. 
Several studies suggest that BOK exerts its anti-tumorigenic 
effects through non-apoptotic functions [82, 83]. On the 
other hand, a pro-tumorigenic role for BOK is reported in 
hepatocellular carcinoma where deletion of BOK is infre-
quent [84].

De‑regulation of the BCL‑2 family in CRC 

Anti-apoptotic adaptation is a crucial step in CRC initia-
tion and advancement. An accumulation of alterations that 
enable apoptosis evasion is observed as CRC progresses 
from adenoma-to-carcinoma stages. The increased apoptotic 
threshold hampers the efficacy of various chemotherapeutics 
and thus presents itself as a valuable target for CRC ther-
apy. Several studies highlight modifications in the intrinsic 
apoptosis pathway at various stages of the disease. Here we 
review the role of the BCL-2 family in transformation of a 
healthy colon into adenomas and examine the pathway’s de-
regulation as the disease progresses towards the carcinoma 
stage.

Apoptosis in the normal colon

Homeostasis in the colon is maintained by a balance 
between proliferation and apoptosis. The colonic epithelium 
consists of a single layer of epithelial cells that is organized 
to form invaginations called crypts [85]. Lgr5+ stem cells 
reside at the bottom of these crypts, which proliferate to 
give rise to intermediate transit amplifying cells [86]. Transit 
amplifying cells differentiate into various lineages as they 
move along the crypt towards the luminal face of the colon 
where they eventually get shed and die by apoptosis [87]. 
The entire colon gets renewed within 4–5 days thus making 
apoptosis an active pathway in intestinal regeneration and 
maintenance. Two forms of apoptosis occur in the intes-
tine—spontaneous apoptosis and damage-induced apoptosis. 
Spontaneous apoptosis occurs in general intestinal turnover 
whereas damage-induced apoptosis is elicited in response 
to stresses such as irradiation, chemotherapy and pathogens.

Several anti-apoptotic proteins and pro-apoptotic effectors 
are expressed in the colon and have important functions in 
both forms of apoptosis (Table 1). Studies on BCL-2 expres-
sion in the colon all conclude that it is mainly localized in 
the bottom of the crypt, where the stem cells reside [88]. 
On the other hand, BCL-XL and MCL-1 show more gen-
eral expression in the normal intestine, not localized to a 
particular crypt compartment but specifically showing an 
apical staining pattern in cells [89, 90]. BCL-W was hardly 
detectable in human normal tissue however a study in mice 
did show expression in the intestine [91, 92]. BAX and BAK 
expression in the crypts is more pronounced in the upper 
2/3rd part than the bottom, in contrast to pro-survival BCL-2 
[90, 93]. These expression studies support the observed pat-
tern of proliferation in the bottom of the crypt and apoptosis 
at the top.

Knockout (KO) mouse models of pro- and anti-apoptotic 
proteins provide insight into their role in spontaneous and 
damage-induced apoptosis in the colon. Homozygous BCL-2 
null mice show increased spontaneous apoptosis compared 
to wild-type mice in the crypt bottom of the colon [88]. This 
however was not observed in the small intestine of BCL-2 
KO mice, which show no overt phenotypic changes [88, 
110]. An increase in damage-induced apoptosis upon irra-
diation and 5-FU treatment is also observed in the colonic 
stem cells of BCL-2 KO mice [111]. Intestinal specific BCL-
XL KO mice do not present with any changes to spontaneous 
apoptosis, thus maintaining colon integrity [104]. Similarly, 
knocking out BCL-W does not affect spontaneous intestinal 
apoptosis. However, these KO mice do display an important 
role for BCL-W in damage-induced apoptosis, particularly 
in the small intestine [91]. Both spontaneous and damage-
induced apoptosis are unaffected by BAX KO, while the 
colon in BAK-null mice is significantly affected with crypt 
hyperplasia and reduced damage-induced apoptosis [111, 
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112]. The colon of BAK KO mice present with an increase 
in goblet cell numbers and a decrease in endocrine popula-
tions resulting from reduced basal apoptosis levels [112]. 
This suggests a unique role for BAK in regulating intestinal 
homeostasis that is not interchangeable with BAX.

The BCL-2 family in intestinal transformation

A progressive inhibition of apoptosis occurs during CRC 
progression [103]. This is particularly crucial during initia-
tion where the tumor cell needs to overcome the apoptotic 
check in response to oncogenic signaling. Immunohisto-
chemical (IHC) analysis of BCL-2 family protein expres-
sion in normal and adenoma tissues suggest that various 
members are de-regulated upon transformation (Table 1). 
IHC data indicate that colon adenomas have increased levels 
of anti-apoptotic protein BCL-XL while BCL-W is hardly 
detectable [92, 102, 104]. BCL-2 and MCL-1 stainings show 
inconsistent results in different studies. While several stud-
ies find an increase in BCL-2 protein levels in adenomas 
[94–101], there are also reports of either a decrease or no 
change in expression compared to normal tissue [102–104] 
(Table 1). However, the expression of BCL-2 specifically in 
the stem cells of the healthy colon has an important role in 
tumorigenesis [110]. Deletion of APC leads to adenoma for-
mation in the mouse small intestine due to hyperactivation of 
the Wnt pathway. In stem cell-specific BCL-2 null mice, loss 
of APC gives rise to significantly fewer adenomas, thus indi-
cating that BCL-2 is crucial for tumor initiation and survival 
[110]. Another study suggests an important role for BCL-XL 
in CRC development where intestinal epithelial cell-specific 
BCL-XL KO mice develop fewer tumors in an inflamma-
tion-driven tumor model [104]. Similarly, PUMA loss facili-
tates CRC progression as PUMA KO mice develop more 
adenomas in both the APC Min/+ and inflammation-driven 

tumor models [113]. As PUMA is driven largely by a p53 
response, this suggests that oncogenic stress elicited by APC 
deletion drives a p53-dependent apoptotic response. IHC 
expression data of the effector proteins suggest that levels of 
pro-apoptotic protein BAX remain unchanged, while BAK 
is clearly decreased in adenomas (Table 1) [90, 102]. The 
observed downregulation of BAK could in part be due to 
oncogenic KRAS signaling. Ectopic re-expression of BAK 
in KRAS-transformed intestinal cells reduces their tumori-
genicity [114]. More recently, a lesser known member of the 
BCL-2 family, namely BCL-G, was found to play a crucial 
role in colon tumorigenesis [115]. BCL-Gs (splice variant) 
only has the BH3 domain and has pro-apoptotic activity as 
it can bind to and inhibit BCL-XL [116]. Loss of BCL-G 
resulted in accelerated tumor formation in an inflammation-
driven tumor model but not in the APC Min/+ mouse model 
[115]. Importantly, it is unclear whether this relates to its 
apoptotic functions as deletion affects the Mucin structure of 
the mucosal layer, indicating a non-apoptotic role for BCL-G 
in this context.

The BCL-2 family in CRC carcinogenesis

CRC develops in a step-wise manner with sequential accu-
mulation of specific genetic mutations that dictate the pro-
gression from adenoma-to-carcinoma stages [117]. This pro-
gression is accompanied by several changes in the apoptotic 
threshold of the cancer cells with an overall inhibition of 
apoptosis [103]. Most members of the BCL-2 family show 
altered expression patterns in CRC tumors, which plays a 
role in cancer progression and therapy resistance.

Of the anti-apoptotic proteins, BCL-2 and MCL-1 
expression is found to be decreased in CRC while BCL-XL 
and BCL-W show increased expression (Table 1). While 
BCL-2 plays a key role in adenoma formation, a progressive 

Table 1  Expression alterations 
of BCL-2 family members 
in CRC progression from 
adenoma-to-carcinoma 
compared to healthy epithelium

BCL-2 family 
protein

Normal Adenoma Adenocarcinoma References

BCL-2 Expressed Increase Decrease [94–99]
Increase [100, 101]

Decrease Decrease [102]
No change Increase [103, 104]

BCL-XL Expressed Increase Increase [90, 102, 104, 105]
BCL-W Not expressed Not expressed Increase [92]
MCL-1 Expressed Increase Decrease [102]

Decrease [104]
BAX Expressed No change No change [90, 102]
BAK Expressed Decrease Decrease [90, 102]
PUMA Expressed - Increase [106]
NOXA Expressed - No change [107]
BID Expressed - Increase [108, 109]
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decrease in its expression during tumor progression indicates 
less of a role in CRC survival and resistance [90, 94–99, 110, 
118]. The mechanism behind this decrease in expression 
has not been explored but studies suggest reciprocal regu-
lation of BCL-2 and BCL-XL due to their inverse expres-
sion patterns [102]. Of all cancer types, Bcl-xL is amplified 
most often in cancers of the colon and a vast majority of 
CRCs present with BCL-XL overexpression [90, 102, 104, 
105, 119]. This increased expression has been shown to be 
crucial for CRC survival and progression [90, 104, 119]. 
Colon cancer stem cells (CSCs) in particular are considered 
to be the chemo-refractory sub-population in primary CRC 
cultures and this resistance is mainly BCL-XL dependent 
[120]. Indeed, overexpression of BCL-XL in these cultures 
renders the differentiated population chemo-resistant [120]. 
De-regulation of anti-apoptotic MCL-1 also plays a crucial 
role in CRC chemo-resistance. While MCL-1 expression 
studies suggest decreased levels in CRC, it is important 
to note that its protein turnover rates are quite high with a 
half-life of approximately 30 min [121, 122]. Phosphoryla-
tion of MCL-1 by GSK3β facilitates binding of FBW7, an 
E3 ubiquitin ligase which ubiquitylates and causes protea-
somal degradation of MCL-1 [122, 123]. This degradation 
of MCL-1 is necessary for the efficacy of various targeted 
therapeutics against CRC cell lines [124]. Alterations in pro-
teins regulating this degradation process often occur in CRC. 
Inactivating FBW7 mutations are found in CRC cell lines 
which promote MCL-1 stability and therefore, resistance to 
chemotherapy [123]. USP9X, a deubiquitinase enzyme that 
is reported to deubiquitinate and thus stabilizes MCL-1 pro-
tein levels, is also higher expressed in CRC cell lines [125].

In addition to the de-regulation of anti-apoptotic BCL-2 
family members, several studies indicate altered expres-
sion and activity of the apoptosis effector proteins in CRC. 
BAK expression levels are decreased in colorectal tumors, 
but in most cases BAX levels appear to be unchanged [90, 
102]. However, mutation analyses reveal the incidence 
of Bak mutations to be relatively low in CRC, but on the 
other hand, Bax frameshift mutations are quite frequently 
selected for in microsatellite instable tumors and this results 
in reduced apoptosis in BAX negative tumors [126–128]. 
The pro-apoptotic protein BAX interacting factor-1 (BIF-1) 
is found to be decreased in CRC tissues which might also 
result in reduced efficacy of BAX in CRC [129]. A recent 
study indicates a role for BOK in chemo-resistance in CRC 
as primary patient-derived organoids that are 5-FU resistant 
show decreased BOK expression compared to 5-FU sensi-
tive organoids. This role is independent of its pro-apoptotic 
activity as the study shows BOK regulates uridine metabo-
lism and thereby 5-FU chemo-conversion, thus a decrease in 
its expression promotes 5-FU resistance [130].

Of the pro-apoptotic BH3-only proteins, occasional 
mutations have been reported for Bad, but no mutations 

were detected in Noxa, Puma and Bik in CRC tumors [106, 
107, 131, 132]. 293T cells transfected with tumor-associ-
ated mutant BAD show decreased apoptosis induction and 
mutant BAD binds inefficiently to BCL-2 and BCL-XL 
[132]. Although mutations are infrequent, altered expres-
sion of BH3-only proteins is frequently observed in CRC. 
The promoter region of Hrk is found to be methylated in 
some CRC cases and treatment of cell lines with de-meth-
ylating agents re-introduces Hrk expression and sensitivity 
to chemotherapy [133]. An increased expression of PUMA 
and BID is detected in CRC, while NOXA levels remain 
unchanged (Table 1) [106–109]. This increase in pro-
apoptotic proteins might be counter-intuitive for apoptosis 
evasion but most likely, such mechanisms are employed 
by a cell as a protective measure against transformation. 
Therefore, this increased expression could indicate the 
presence of compensatory mechanisms that enable tumor 
cells to override such selection pressures. PTMs that de-
regulate BH3-only proteins are also reported in CRC such 
as an increase in BAD phosphorylation, which attenuates 
BAD pro-apoptotic activity and facilitates tumorigenesis 
[106, 134, 135].

Considering the frequent alterations in the BCL-2 family 
that occur in CRC, various studies have assessed the poten-
tial of different members of the family as prognostic bio-
markers for the disease [136]. However, due to the complex 
interactions of the various regulators of this pathway, none 
of the proteins on their own could reliably predict clinical 
response to therapy [136]. For this reason, a recent study 
employed a computational model that reflects the dynamic 
regulation of MOMP by the BCL-2 proteins to successfully 
identify high-risk CRC patients [137]. This highlights the 
importance of the various interactions among the BCL-2 
family members that play a major role in determining tumor 
progression and therapy response.

Targeting the BCL‑2 family

Cancer cells adapt to the various pressures of oncogenic 
transformation such as checkpoint evasion, metabolic stress 
and replicative damage by de-regulating the BCL-2 fam-
ily and becoming more refractory to apoptosis. In order to 
handle these stress signals, the cancer cell is in a precari-
ous position where it requires this apoptotic block to hold. 
This dependence on the BCL-2 family presents a therapeutic 
window of opportunity where pushing this block can specifi-
cally target cancer cells for apoptosis. Highly specific small 
molecule inhibitors called BH3 mimetics have therefore 
been developed to target anti-apoptotic BCL-2 proteins by 
mimicking the action of BH3-only proteins (Fig. 3). Here we 
review the reported efficacy of these inhibitors and examine 
their potential for CRC therapy.
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BH3 mimetics: pushing the apoptotic block

Early efforts to overcome the anti-apoptotic defense mech-
anism in cancer were mainly driven by screening librar-
ies of natural products, which yielded several classes of 
compounds that can inhibit anti-apoptotic BCL-2 proteins 
[138]. Two of these, AT-101 and Obatoclax (GX15-070), 
have been tested in clinical trials for solid and hematologi-
cal malignancies (see clinicaltrials.gov). Although these 
compounds can inhibit multiple anti-apoptotic BCL-2 
members, they do not show sufficient clinical efficacy to 
warrant their approval [138, 139]. Using structure-based 
design to selectively target anti-apoptotic proteins proved 
successful with the generation of ABT-737, the first BH3-
mimetic to be developed [140]. Designed using NMR-
based screening, this compound mimics the binding pat-
tern of BAD to inhibit the hydrophobic groove of BCL-2, 
BCL-XL and BCL-W. For clinical use, an orally bioavail-
able analog of ABT-737 was developed named ABT-263 
or Navitoclax [141]. Notwithstanding the remarkable effi-
cacy shown by this drug in pre-clinical studies [141–144], 
its use in the clinic is hampered by severe platelet toxic-
ity [145]. Inhibition of BCL-XL in particular is found to 
be the cause of the observed thrombocytopenia, reveal-
ing its role in regulating platelet lifespan [146]. However, 
appropriate dosing strategies can help control the throm-
bocytopenia and indeed, several clinical trials testing the 
safety and efficacy of ABT-263 in a range of tumor types 
are ongoing (see clinicaltrials.gov) [139]. Another dual 
BCL-2 and BCL-XL inhibitor, AZD4320 shows potent 
tumor regression in vivo in hematological and solid malig-
nancies [139]. This drug, re-formulated as a novel nano-
medicine (AZD0466), is currently in a phase I clinical 
trial for both blood and solid tumors (NCT04214093). 
APG-1252 is another newly developed inhibitor of BCL-2 
and BCL-XL that shows potent activity in vivo in small 
cell lung cancer models and triggers less platelet toxicity 
compared to Navitoclax [147]. The authors claim that this 

is because the drug on its own is poorly permeable but is 
converted to an active metabolite particularly in the tumor 
cells. This metabolite effectively reduces tumor growth 
while hardly being detected in the plasma, thereby avoid-
ing toxicity [147]. Further study is needed and will come 
from phase I clinical trials, which are currently ongoing 
for lung cancer and other solid tumors in several countries 
(NCT03387332, NCT03080311, NCT04001777) [148].

To circumvent the observed platelet toxicity of inhibit-
ing BCL-XL, it was hypothesized that specifically target-
ing BCL-2 could provide a wider therapeutic window with 
fewer toxicities. This led to the development of ABT-199 or 
Venetoclax, the first BH3 mimetic to receive FDA approval 
for relapsed/refractory chronic lymphocytic leukemia (R/R 
CLL) [149]. This landmark drug registration was followed 
by two more FDA approvals for Venetoclax in combination 
therapy for patients with R/R CLL and treatment naïve acute 
myeloid leukemia (AML) [139]. More than 200 clinical tri-
als, particularly for hematological malignancies, have since 
been conducted or are ongoing (see clinicaltrials.gov) [150]. 
S55746 is another BCL-2 specific inhibitor which demon-
strates significant efficacy against BCL-2 dependent tumors 
in vitro and in vivo and has been tested in two clinical trials 
(NCT02920697, NCT02603445) [139]. The results of the 
dose-escalation study have been recently released which 
show that the trial had to be terminated as the target active 
exposure of the drug in patients was not reached.

Studies of Venetoclax in solid tumors are limited with 
so far a trial in combination with tamoxifen for estrogen 
receptor positive breast cancers (ISRCTN98335443) and 
three others in a range of solid tumors (NCT03000257, 
NCT04029688, NCT03082209). These trials will test Vene-
toclax efficacy in combination with diverse compounds, 
which include the trail receptor agonist ABBV-621, MDM2 
inhibitor Idasanutlin and anti-PD1 monoclonal antibody 
ABBV-181. Although there are promising indications for 
BCL-2 inhibition in solid tumors, anti-apoptotic adaptation 
is more closely associated with the overexpression of BCL-
XL [151]. Several BCL-XL inhibitors have been designed 
and the first specific inhibitor, WEHI-539, binds to BCL-
XL with high selectivity and affinity [152]. Since then, fur-
ther efforts led to the design of A-1155463 and A-1331852, 
two far more potent inhibitors of which the latter is also 
orally bio-available [153, 154]. Studies show promise for 
these inhibitors alone and in combination for treatment of 
solid tumors [154, 155]. A-1331852 enhances the efficacy 
of docetaxel in a range of solid tumors including breast can-
cer, NSCLC, and ovarian cancer both in vitro and in vivo 
[155]. In addition to this efficacy, BCL-XL inhibition does 
not result in neutropenia, which is a common toxicity of 
Venetoclax, shown to result from BCL-2 inhibition specifi-
cally [155]. While both these inhibitors induce platelet tox-
icity in vivo, this toxicity is reversible and therefore could 

AZD-5991, A-1210477

ABT-737, ABT-263 (Navitoclax)

A-1155463

A-1331852
S557206         WEHI-539

AMG176, AMG397

UMI-77, MIK665

ABT-199 

(Venetoclax)

1-LCM2-LCB BCL-WBCL-XL

Fig. 3  An overview of selective BH3 mimetics designed to inhibit 
anti-apoptotic proteins
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be overcome by proper dosing strategies [154, 155]. These 
promising inhibitors are yet to enter clinical trials.

In the wake of inhibitors targeting BCL-2 and BCL-XL, 
MCL-1 is emerging as an increasingly promising target 
given its role in malignant cell survival and resistance to 
various anti-cancer therapies. Several tumor types show het-
erogeneous dependence on MCL-1 including breast, lung, 
multiple myeloma (MM) and MYC-driven lymphomas 
[139]. Interestingly, there is evidence of MCL-1 expression 
levels increasing upon treatment with ABT-737 and this 
is implicated in resistance to other BH3 mimetics such as 
Navitoclax and Venetoclax, which do not inhibit MCL-1 
[156, 157]. MCL-1 is also involved in resistance to various 
chemotherapeutics, making it a promising target for combi-
nation and second-line treatment in resistant tumors [158, 
159]. MCL-1 has proven far more difficult to target and only 
recently, successful specific inhibition has been achieved by 
BH3 mimetics such as A-1210477, UMI-77, S63845, AZD-
5991 and AMG176 [160]. A-1210477 shows in vitro efficacy 
against a range of cancer cell lines while UMI-77 is effective 
in vitro and in vivo against pancreatic and breast cancers 
[161, 162]. AMG176 is the first MCL-1 inhibitor to enter a 
clinical trial for MM and AML (NCT02675452) [163]. It is 
also being tested in combination with Venetoclax for AML 
and non-Hodgkin’s lymphoma (NHL) (NCT03797261). A 
similar Amgen MCL-1 inhibitor, AMG-397, is also being 
tested in the clinic for MM, AML and NHL (NCT03465540) 
[160]. However, trials for both these inhibitors have been 
recently suspended due to potential cardiac toxicity. Another 
MCL-1 specific inhibitor AZD-5991 shows significant anti-
tumor activity in vivo with complete regression in mouse 
models of MM and AML, based on which a phase I clinical 
trial has been set up for patients with hematological malig-
nancies (NCT03218683) [164]. A highly potent derivative 
of S63845 called S64315/MIK655 shows substantial in vivo 
activity against MM, AML and MYC-driven lymphomas 
and is also being tested in clinical trials for these malignan-
cies as a monotherapy (NCT02992483, NCT02979366) and 
in combination with Venetoclax (NCT03672695) [165].

The approval of Venetoclax has heralded a new era of 
significant progress in therapeutic targeting of anti-apoptotic 
BCL-2 proteins (Fig. 3). A major challenge in the clinical 
application of these inhibitors is to predict the appropriate 
anti-apoptotic molecules to inhibit in a context-dependent 
and perhaps even a personalized manner. Dynamic BH3 
profiling is one such technique that not only predicts the 
anti-apoptotic dependencies of a tumor, but also predicts 
response to various chemotherapeutics [18]. In this tech-
nique, control vs. drug-treated tumor cells are incubated 
with BH3 peptides that have specific anti-apoptotic binding 
partners (Fig. 2). Subsequent retention of cytochrome c is 
measured to assess the overall efficacy of the compound and 
the possible anti-apoptotic proteins that the tumor depends 

on. Such insight can not only predict treatment response 
in patients, but also greatly benefit the rationalized use of 
BH3-mimetics for treatment. Overall, these inhibitors not 
only show great promise for cancer therapy but also serve 
as invaluable tools for understanding the ever-changing anti-
apoptotic landscape of this disease.

BH3 mimetics for CRC therapy

While there are no CRC specific clinical trials testing the 
efficacy of BH3 mimetics, there is compelling evidence for 
the use of these inhibitors in CRC treatment. De-regulated 
expression of anti-apoptotic proteins is observed in all stages 
of CRC development and these changes can guide the use 
of BH3 mimetics for treatment. A recent study conducted 
in a panel of diverse cell lines finds that BCL-2 dependence 
directly correlates with BCL-2 expression levels, such that 
high expressers are more sensitive to ABT-199 treatment 
[166]. BCL-2 is expressed in crypt stem cells and plays a 
critical role in facilitating intestinal stem cell transformation 
and adenoma survival [110]. Treatment with ABT-199 while 
intestinal stem cells are undergoing APC deletion and hence 
transformation strongly impairs adenoma outgrowth, which 
suggests that BCL-2 is a potential target for CRC chemopre-
vention in patients with high risk conditions such as familial 
adenomatous polyposis [110]. However, BCL-2 expression 
is gradually lost as the disease progresses and most CRC 
cell lines are insensitive to ABT-199 [166]. Colon CSCs, 
which are particularly chemo-resistant, no longer express 
any BCL-2 and do not respond to ABT-199 treatment [120].

Considering the high levels of BCL-XL found in most 
CRC tissues, it has been a target of prime interest for CRC 
treatment [90, 104, 119]. Indeed the same colon CSCs 
that do not respond to BCL-2 inhibition are very sensitive 
to BCL-XL specific inhibitor WEHI-539, which impairs 
CSC clonogenicity and enhances the efficacy of chemo-
therapy [120]. The dual inhibitor ABT-737 also potently 
induces cell death in these CSCs while also showing effi-
cacy on CRC ex vivo tissue and cell lines in combination 
with diverse chemotherapies [104, 120, 167, 168]. Several 
studies indicate that the efficacy of ABT-737, or its orally 
bioavailable counterpart ABT-263, in solid tumors is pri-
marily due to the inhibition of BCL-XL [104, 120, 155]. 
The efficacy of BCL-XL inhibition is closely associated 
with MCL-1 activity, in particular predicted by NOXA 
expression which specifically inhibits MCL-1 [166]. Cells 
that express high level of NOXA either basally or induced 
by other therapies show increased sensitivity to BCL-XL 
inhibition by A-1155463 and ABT-737 [119, 169]. This 
suggests that concurrent treatment with MCL-1 inhibitors 
might potentiate the effect of BCL-XL inhibition in tumors 
that either present with high MCL-1 or low NOXA levels 
[170, 171]. In a CRC cell line HCT116, treatment with 
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A-1155463 alone was sufficient to induce apoptosis, while 
MCL-1 inhibitor S63845 alone did not induce any apop-
tosis. However, combining the two compounds resulted 
in more pronounced apoptosis even in the absence of all 
BH3-only proteins, in a BAX dependent manner [171].

Taken together, these pre-clinical data suggest that 
BH3 mimetics hold great promise for CRC treatment. 
Early stage high risk adenomas that express BCL-2 might 
benefit from BCL-2 inhibition with ABT-199, thus pre-
venting tumor progression. On the other hand treatment 
of more advanced carcinomas with BCL-XL specific 
inhibitors, perhaps in combination with MCL-1 inhibition 
might prove more effective. The main hindrance for the 
use BCL-XL inhibitors in clinical practice is the observed 
thrombocytopenia, as BCL-XL regulates platelet lifespan 
[146]. This can be managed by appropriate dosing strate-
gies, particularly by using lower doses of the inhibitors 
in synergistic combinations with other chemotherapeutics 
[139]. Pre-clinical studies that test such possibilities would 
greatly aid the advancement of the use of BH3 mimetics 
in CRC therapy.

Conclusions and future perspectives

Recent findings have provided novel insights into the 
interactions of the BCL-2 family members that regulate 
the intrinsic pathway of apoptosis. Although the intrica-
cies of this regulation are complex and still a matter of 
intense debate, it is clear that this family of proteins has 
an important role to play in homeostasis and tumorigenesis 
in the colon. De-regulation of the BCL-2 family occurs 
through various mechanisms and many CRC tumors show 
dependence on different anti-apoptotic proteins through 
different stages of the disease, making them a promising 
target for therapy. BH3 mimetics show potent induction 
of apoptosis in vitro and in vivo in various models. While 
BCL-2 inhibition can inhibit early adenoma outgrowth, 
CRC tumors respond well to BCL-XL specific inhibition, 
more so in combination with Mcl-1 inhibition. Implement-
ing strategies to reduce the toxicities associated with these 
inhibitors and determining the appropriate BH3 mimetic to 
administer in a context-dependent and personalized man-
ner (for example with dynamic BH3 profiling) could help 
untap the full potential of these novel inhibitors in CRC 
treatment.
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