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Abstract: Many proteins perform essential biological functions by means of regions that 

lacking specific organized structure exist as an ensemble of interconverting transient 

conformers. The characterization of such regions, including the description of their 

structural propensities, number of conformations and relative populations can provide 

useful insights. Prion diseases result from the conversion of a normal glycoprotein into a 

misfolded pathogenic isoform. The structures of mammal and chicken prion proteins show 

a similar fold with a globular domain and a flexible N-terminal portion that contains 

different repeated regions: octarepeats (PHGGGWGQ) in mammals and hexarepeats 

(PHNPGY) in chickens. The higher number of prolines in the hexarepeat region suggests 

that this region may retain a significant amount of residual secondary structure. Here, we 

report the CD, NMR and MD characterization of a peptide (2-HexaPY) composed of two 

hexarepeats. We combine experimental NMR data and MD to investigate at atomic level 

its ensemble-averaged structural properties, demonstrating how each residue of both 
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repeats has a different quantified PPII propensity that shows a periodicity along the 

sequence. This feature explains the absence of cooperativity to stabilize a PPII 

conformation. Nonetheless, such residual structure can play a role in nucleating local 

structural transitions as well as modulating intra-molecular or inter-molecular interactions. 

Keywords: avian prion repeats; NMR; CD; conformational ensemble; polyproline II 

 

1. Introduction 

Many proteins perform crucial functions by means of disordered regions. Structural disorder under 

physiological conditions offers a variety of functional advantages: flexibility of interaction with 

different partners, specific but low-affinity binding, and fine modulation by post-translational 

modifications. The structural characterization of such regions can therefore provide useful information 

regarding the role of secondary structure propensities in directing essential biological functions. The 

secondary structure adopted by a protein is generally driven by local dihedrals associated to a 

particular aminoacid: the presence of a given residue is not a random choice of nature, but it is 

intrinsically related to the flexibility versus the stiffness of a protein. The extended flexible disordered 

N-terminal tail of the prion protein, whose C-terminal portion shows a globular structured domain, has 

captured the attention of many studies. 

NMR studies have established the structure of mammal, chicken, turtle and frog prion proteins, 

showing closely similar fold of the globular domains, containing three α-helices, one short 310-helix 

and a short antiparallel β-sheet [1]. The low solubility of PrP even without GPI anchor and its strong 

propensity to aggregate has required that most of the structural studies were performed at low pH and 

mainly with N-terminally truncated variants. 

The chicken PrPC, despite only 30% of identity in the primary sequence with its mammal 

counterpart, maintains the presence of tandem amino acid repeats in the N-terminal region (PHNPGY 

in avian, PHGGGWGQ in mammals), followed by a highly conserved hydrophobic core. 

The repeat region of the avian prion protein suggests some important differences when compared 

with the human corresponding region. In particular, the normal isoform of mammalian prion protein is 

totally degraded by proteinase K while the chicken prion protein is not, thereby producing, from the  

N-terminal domain, peptide fragments stable to further proteolysis [2]. The mammalian octarepeat 

region contains 50% of glycine and 12% of proline residues, while avian hexarepeat accounts for 16% 

and 33%, respectively. The higher amount of glycine in the human protein is in agreement with the 

flexible and disordered structure of the N-terminal domain, while the increased content of prolines 

suggests the presence of a preferred structured conformation of this domain in the avian species [3]. 

Accordingly, CD data reported for the entire protein or different peptide fragments containing the 

hexarepeat sequence clearly suggest the presence of more than one conformation and not simply a 

random coil one [2,4,5]. The location of the PXXP motif along the peptide backbone appears to be 

important to determine the conformational preferences [5]. The presence of PXXP motif is often 

associated with the formation of an extended poly-L-proline II (PPII) structure or turns [6–8]. The 

sequence of the avian hexarepeat can be reported as PHNPGY which reveals the presence of two 
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different PXXP motifs (i.e., PHNP and PGYP) along the whole tandem repeat domain. Previous 

studies described the conformational behaviour of the Ac-PHNPGY-NH2 peptide [9]. It was found 

that the Asn-Pro residues populated dihedral angles typical of a PPII conformation, while a turn-like 

structure in the NPGY region was preferred. Further studies on the tetraHexaPY (PHNPGY)4 

conformation, at different pH values [10], have shown for this peptide a periodic-like shape that 

reflects the periodicity in the primary structure and with it the differences with the flexible and 

disordered structure of the human N-terminal domain. 

Therefore, in order to fully explore the conformational preferences of the chicken hexarepeat 

region, here, we report the CD, NMR and MD characterization of a dodecapeptide  

Ac-PHNPGYPHNPGY-NH2 (2-HexaPY) composed of two chicken hexarepeats. We investigate at an 

atomic level its ensemble-averaged structural properties using an approach that combines experimental 

NMR data and MD. Our data strongly support that, despite the reported high flexibility of the 

hexarepeat region, the 2-HexaPY is not completely random coil in solution but rather shows a residue- 

based (per residue) quantified propensity to poly-L-proline II conformation. Our findings are in 

agreement with the reported CD behaviour of tetraHexaPY [10] offering valuable hints on PPII 

conformation propensity of the full hexarepeat region of the chicken prion protein. 

2. Results and Discussion 

2.1. Circular Dichroism Measurements 

Due to their high flexibility, short peptides generally present a random coil structure. However the 

PXXP motif in the avian prion protein suggests that this region may possess a defined secondary 

structure [11]. 

The CD spectrum of 2-HexaPY in aqueous solutions at acidic pH is characterized by a strong 

negative minimum at 205 nm and a weaker positive band centered at 230 nm (Figure 1A). The 

spectrum shape is similar to that previously reported for the tetrahexarepeat (tetraHexaPY) [10] and 

suggests the presence of a polyproII (PPII) helix conformation. To verify this hypothesis, CD spectra 

have been carried out also in the presence of 1 mM urea, that is well known to induce peptide 

unfolding. The CD spectrum in urea solution (Figure 1A) shows a decrease of maximum at 230 nm and a 

blu-shift of minimum at 205 nm, indicating a decrease of polypro(II) content toward a random  

coil conformation. 

The CD spectra deconvolution by means of CDPro software package containing three different 

algorithms [12,13] indicated that in aqueous solution, the 2-HexaPY displays a 11% content of 

polypro(II), that decreases to 2% in presence of urea. In order to evaluate the sequence effect on the 

PPII propensity, the same spectra were recorded on one of the possible hexapeptides encompassing the 

sequence of the repeat region. The chosen peptide was HexaYG (Ac-YPHNPG-NH2) and its spectra are 

shown in Figure 1B. The reason for choosing HexaYG among the other possibilities will be clarified in the 

next section. 
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Figure 1. CD spectra of 2-HexaPY (A,C) and HexaYG (B,D) in H2O (solid line) and  

1 × 10−3 M Urea (dotted line). Spectra were recorded at pH 4.2 (A,B) and pH 7.4 (C,D) for 

both peptides. 

 

The CD spectra of HexaYG recorded in aqueous solutions are characterized by an intense negative 

band between 200 and 210 nm along with a positive band between 228 and 232 nm. In urea, the band 

at 230 nm is shifted and increases its intensity. The CD spectra deconvolution gives a 2.6% of 

polyproII content for HexaYG in aqueous solution. In presence of urea the polypro(II) content for 

HexaYG remains unchanged. 

As PPII conformation is known to be favoured in the acidic pH range, CD spectra of peptides were 

carried out also at physiological pH both in urea and in water (Figure 1C,D). The CD spectra of  

2-HexaPY and HexaYG in aqueous solutions at pH 7.4 show a decrease of the maximum at 230 nm 

confirming a pH dependent decrease of PPII content, likely due to the histidine deprotonation  

(Figure 1C and 1D). The CD spectra deconvolution confirms that at physiological pH the content of 

polypro(II) conformation is 5.3%. 
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2.2. Nuclear Magnetic Resonance Assignments 

The CD results indicate 2-HexaPY as a suitable model to explore the conformational heterogeneity 

of the full hexarepeat region of the chicken prion protein. The solution behaviour at pH 4.2 of this 

peptide offers the possibility to obtain an accurate interpretation of NMR spectra in terms of chemical 

shift assignments and NOEs evaluation. 

At 300 K the peptide 2-HexaPY shows a well resolved 1D spectrum, characterized by a good 

dispersion of the proton resonances. In the amide region two major species which slowly interconvert 

on the NMR timescale are clearly visible. They are approximately populated in a ratio of 1 to 4 and 

represent two of the possible cis-trans isomers of the Xxx-Pro peptide bonds; only the major conformer 

gives detectable NOE cross peaks. The other conformers are also present in solution and account for 

about 5% of the total population. 

The sequential assignment of all the major conformer protons of 2-HexaPY was performed using 

the standard strategy described by Wuthrich [14]. TOCSY [15] experiment was used to identify spin 

systems, DQFCOSY [16] spectrum was analyzed to measure three-bond spin-spin coupling constants, 

NOESY [17] and ROESY [18] were analyzed to obtain inter-residue connectivities and to distinguish 

equivalent spin systems. The complete 1H-NMR assignment is summarized in the Table 1. To explore 

the solution conformations of this peptide, proton chemical shifts, scalar coupling constants 3JHNHα and 

ROE pattern were investigated. 

Table 1. 1H-NMR resonances assignment (ppm) for 2-HexaPY in H2O (300 K, pH 4.2). 

 HN αH βH others 

PRO  4.18 2.10, 1.67 γCH2 1.81 δCH2 3.48 
HIS 8.47 4.57 3.11, 3.02 δCH 7.12 εCH 8.46  
ASN 8.34 4.83 2.69, 2.56 γNH2 7.47, 6.81 
PRO  4.29 2.13, 1.80 γCH2 1.88 δCH2 3.64, 3.60 
GLY 8.21 3.73   
TYR 7.81 4.69 2.94, 2.78 δCH 6.93 εCH 6.69  
PRO  4.24 2.09, 1.68 γCH2 1.81 δCH2 3.62, 3.32 
HIS 8.36 4.55 3.11, 3.03 δCH 7.15 εCH 8.47  
ASN 8.38 4.83 2.68, 2.54 γNH2 7.49, 6.82 
PRO  4.31 2.13, 1.79 γCH2 1.88 δCH2 3.65, 3.61 
GLY 8.28 3.78, 3.72   
TYR 7.79 4.39 2.96, 2.85 δCH 7.00 εCH 6.70  

2.3. Chemical Shift Analysis 

Chemical shifts are sensitive reporters of dihedral angles of peptide backbones and therefore of the 

secondary structure content [19–21]. In particular, since well-defined chemical shift changes are 

associated with α-helices and extended β-strands [21,22], deviations of αH chemical shifts from 

random or statistical coil values provide information about peptide secondary structure. To get suitable 

“statistical coil” reference chemical shifts, the NMR resonances of 2-HexaPY were also assigned in 8 

M urea [23] at 300 K and were used as intrinsic statistical coil shifts (δisc). ‘Secondary shifts’ 

(deviations from random coil values) were calculated as δ–δisc. This referencing method allows to 
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have an evaluation of the secondary shifts with less noise than the traditional method based on 

chemical shifts databases. As reported in the Figure 2A, the residues N,P,G,Y and P show negative Hα 

secondary shifts (average upfield shift −0.04 ppm) suggesting that the peptide populates conformations 

with structural proprieties different from the random coil condition. This is mostly due to prolines that 

sterically restrict the conformational space. These chemical shift deviations are consistent with the 

typical values observed for the PPII helix conformation (ΔδHα= −0.02ppm) [24] (Figure 1A). The 

histidine residues show a positive secondary shift that is more evident for the second histidine. These 

residues interrupt the PPII helix propensity and the effect is more marked when the His is located at 

the centre of the peptide sequence. To further confirm the structural propensity observed, we decided 

to investigate a component shorter peptide named HexaYG (Ac-YPHNPG-NH2) in which the histidine 

is in the middle of the sequence. Interestingly the secondary chemical shifts analysis (Figure 2A) 

indicates that this peptide adopts a completely random coil conformations in agreement with the results 

obtained by the deconvolution of CD data. 

Figure 2. (A) Secondary Chemical Shifts of Hα obtained by subtraction of intrincic 

statistical coil shifts recorded in 8 M urea for 2-HexaPY (Blue) and HexaYG (orange).  

(B) Amide HN Chemical Shift Deviation (CSD)–Δδ/ΔΤ correlation for 2-HexaPY (filled 

circles). The open circles shown define the condition for HNs involved in H-bond reported 

by Andersen and co-workers [25]. 
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2.4. Temperature Coefficients 

The high temperature coefficients for all amide protons (Figure 1B), indicate that the backbone NH 

groups are exposed to the solvent and not involved in any intramolecular hydrogen bond interaction. In 

addition, the correlation between the backbone amide HN chemical shift temperature gradients (Δδ/ΔT) 

with the deviation of the HN protons from 2-HexaPY statistical-coil reference chemical shift (ΔδHN) 

(Figure 1B), proposed by Andersen et al.[25], confirms that no persistent hydrogen bond are present in 

the 2-HexaPY peptide. 

2.5. 3JHNHα Coupling Constants 

The torsion angles φ and Ψ are key parameters for defining the backbone conformation of a 

polypeptide chain [26]. In solution these angles can be detected experimentally by NMR via spin-spin 

coupling constants, which in case of 3J coupling constants can be related to specific torsion angles by 

Karplus relationships [27,28]. Three bond 3JHNHα coupling constants for extended conformations are 

between 6–9 Hz, whereas smaller values (2–5 Hz) are commonly observed for α helix [14]. However, 

when multiple conformations are adopted, and there is rapid inter-conversion between them, the 

experimental coupling constants will be averaged over the contributing conformers [29]. As result, the 

interpretation of coupling constants regarding specific conformation requires caution.  

The coupling constants measured for 2-HexaPY peptide are summarized in Figure 3C and were 

found to be in the 6.0 to 7.5 Hz range. Additionally, the average <φ> backbone dihedral angles derived 

from Karplus equation [28], via the equation given by Vuister and Bax [30], were in the ranging from 

−82° to −85°. Altogether our data are in accordance with a relatively flexible backbone and/or PPII 

conformations. 

2.6. NOE Evaluation 

The intensity ratio between sequential αH–HN (i, i+1) and HN-HN (i, i+1) NOEs is a useful 

measure for secondary structure, since it depends on the dihedral angles (φ and ψ). Using a population-

weighted random coil model, Dobson and co-workers predicted that the intensity ratio of αH–HN (i, 

i+1)/HN-HN (i, i+1) is about 1.4 for random coil structure. This value is markedly different from the 

ratio estimated for extended β-strand conformation (∼55) [31]. We performed an analysis of NOE 

intensities for the 2-HexaPY peptide using ROESY spectrum (Figure 3A and 3B) as no signals were 

observed in the NOESY spectrum due to the molecular tumbling of the peptide in solution. As 

expected, the spectrum does not show any long range NOEs, suggesting that the peptide does not adopt 

a compact structure. Moreover the HN-HN (i, i+1) NOEs were not detected for any residues of the 

peptide with the exception of a weak contact observed between Gly and Tyr of each repeat (Figure 3C). 

Additionally, αH–HN (i, i+1) cross-peaks were medium/strong. These data result in a high  

αH–HN (i, i+1)/HN-HN (i, i+1) intensity ratio, which is consistent with a predominantly extended 

rather than random coil conformation. 

The NOE intensity ratio αH-HN (i, i+1)/αH-HN (i, i) provided further evidence for an extended 

conformation in solution. A ∼2.3 value is predicted for the population-weight random coil, whereas 

values > 4 are predicted for β-strands and values > 2.3 are predicted for PPII helical conformations. As 
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reported in Figure 3C the intensity ratio αH-HN (i, i+1)/αH-HN (i, i) suggest that 2-HexaPY is not 

completely random coil but shows a significant propensity to PPII conformations. 

Figure 3. The amide proton region of the 2D 1H-1H ROESY spectrum of 2-HexaPY 

acquired in water (A) and urea (B), respectively. (C) Summary of NMR parameters of  

2-HexaPY. The summary includes the NOEs diagram, 3JHNHα coupling constants at 300 K 

and temperature coefficients. The intensity ratios of αH–HN(i,i+1)/HN-HN(i,i+1) and  

αH–H N(i,i+1)/αH–HN(i,i) are also reported. 
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An important structural characteristic of the PPII helix is that the peptide bonds preceding proline 

residues adopt trans configurations. To distinguish between cis/trans configuration of the imide bonds 

in the 2-HexaPY peptide, the inter-proton distances between the Hα of the preceding residues and the 

proline Hα and Hδ were measured [32]. A short distance with a strong NOE signal between Hα of a 

preceding residue and Hδ of a proline is diagnostic for the trans configuration, whereas a short distance 

between Hα of a preceding residue and Hα of a proline is diagnostic for the cis configuration. The 

ROESY spectrum displays for both prolines of each reapeat a strong Hα/Hδ(i, i+1) cross peak 

indicating trans configurations further confirming that the peptide in solution has a significant 

propensity to occupy the PPII helical conformation. 

2.7. Hydrodynamic Proprieties 

A full description of intrinsically disordered or unfolded state, requires information about the 

ensemble distribution of molecular size, shapes and the extent of compactness. Diffusion parameters 

can be related directly to an effective hydrodynamic radius in according to the Stoke-Einstein equation 

and can thus be used to study molecular size. Therefore, using the average translational diffusion 

coefficient, hydrodynamic radii of Rh = 9.9 ± 0.2 Å and Rh = 11.0 ± 0.2 Å have been obtained for the 

2-HexaPY peptide in water and urea, respectively. The hydrodynamic radii clearly indicate that the 

peptide in solution samples more compact than random coil conformations. 

2.8. Conformational Ensemble of 2-HexaPY 

Different disordered states, including unfolded, molten globule and intrinsically disordered states, 

exhibit wide variability of compactness and transient or residual structure. Therefore, unlike a folded 

protein, which can typically be represented as a single structure or as an ensemble of closely related 

structures, the high degree of conformational dynamics of a disordered state needs for its 

representation an ensemble of fairly heterogeneous conformers. 

To describe the structural ensemble of 2-HexaPY, we applied a computational approach based on 

experimental NMR data (see Experimental). We have used ENSEMBLE [33–35] as computational 

software and chemical shifts, distance restraints (Supplementary Table S1) and 3JHNHα coupling 

constants as conformational constraints. These experimental restraint types account for different 

structural proprieties including also secondary and tertiary structure. We generated a pool of 50,000 

conformations and selected a final ensemble of 100 structures that are collectively consistent with the 

experimental NMR data. Additionally, we generated a reference “coil” ensemble using the software 

TraDES [36]. The average hydrodynamic radius of the “coil” ensemble was estimated with the 

HYDROPRO program [37–39]. According to the hydrodynamic proprieties, the random coil ensemble 

average hydrodynamic radius (Rh = 11.2 ± 0.5 Å) is in a good agreement with the data obtained for the 

2-HexaPY in urea (Rh = 11.0 ± 0.2 Å). 

The residue-specific secondary structure content, considering the fraction of residues within PPII 

region of Ramachandran space [40,41], was analyzed by STRIDE software [42]. In Figure 4A is 

reported the residue-specific population of PPII helical conformation for the calculated ensemble. 

Overall the 2-HexaPY peptide shows a moderate amount of residual secondary structure (Figure 4A) 

In particular, each residue of the region NPGYP of both repeat has a different PPII secondary 
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structural propensity. This feature indicates the absence of a cooperativity necessary for a PPII. The 

maximum value is the one estimated for prolines with a 20% population. 

Considering that we have characterized the major conformer and also that in solution minor 

conformations are present, the obtained PPII fraction (14%) is in good agreement with the PPII 

population content estimated by CD data (11%). 

Figure 4. (A) Secondary structural propensity of 2-HexaPY Ensemble: fraction of 

conformers in the PPII region of the Ramachandran plot as a function of the residue 

number. (B) Cluster analysis of the final Ensemble. 

 

When the dynamics or motions are extensive, conformational families are believed to be a more 

realistic representation of the structure [43–46]. For these reason, in order to visualize the structural 

diversity induced by the conformational flexibility of the 2-HexaPY peptide, we extracted using the 

program NMRCLUST [43], the conformationally related subfamilies of structures. 

The backbone heavy atoms of residues 3–10, the region showing the secondary structure 

propensity, were superimposed. The ensemble was clustered on the backbone heavy atoms of residues 

1–12. In total 9 subfamilies of structures were found (Figures 4B and 5A). Among these, the first six 

contain 87 of the 100 structures, whereas each of the other classes contained five or fewer structures. 

The conformers in each subfamily are moderately well defined over the entire amino acid sequence. 

The root mean square distributions for backbone atoms of residues spanning from Asn3 to Pro10 with 

respect to the mean coordinate position range from 0.9 Å to 1.6 Å (Figure 5B). However, the first 6 

subfamilies of structures are equally populated (Figure 4B) indicating the 2-HexaPY displays an high 

degree of conformational flexibility. Finally, a comparison between the mean structure of each 

subfamily (Figure 5A) outlines the conformational differences among them. In particular the resulting 

distribution of RMSD values reported in Figure 5B and 5C indicate the high structural heterogeneity 

within and between each cluster of the ensemble that strongly depends on the intrinsic flexibility of the 

peptide in solution. Overall the data suggest that the peptide 2-HexaPY samples a wide conformational 

space with a moderate propensity for PPII helix conformation. 
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Figure 5. (A) The representative conformer from the final Ensemble of 2-HexaPY for each 

of the nine clusters based on backbone heavy atoms RMSD. The root mean square 

distributions for backbone heavy atoms of the residues 3–10 with respect to the mean 

coordinate position within (B) and between (C) each cluster is also reported. 

 

2.9. Validation of the Ensemble 

One strategy for assessing the accuracy of calculated ensemble conformers is the cross-validation. 

We performed a cross-validation analysis for 2-HexaPY ensemble using the hydrodynamic proprieties 

that were not considered in the ensemble generation. In particular, we back-calculated for each 

conformer of the ensemble the hydrodynamic radius using the HYDROPRO software [37–39]. A 

comparison of the calculated average hydrodynamic radius (Table 2) (Rh = 10.1 ± 0.4 Å) with the 

experimental value (Rh = 9.9 ± 0.2 Å) indicate that the calculated ensemble can properly describe the 

experimental data observed in solution. Moreover, comparing the hydrodynamic properties of the 

ensemble obtained for 2-HexaPY peptide with those back-calculated for the “coil” statistical ensemble, 

we further confirmed the accuracy of the ensemble generated from our NMR experimental data. 
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Table 2. Comparison of the experimental hydrodynamic radius estimated in water and urea 

with the values back-calculated for the obtained ensemble of 2-HexaPY(a) and the TraDES 

random coil ensemble (b) 

 
Experimental 

(water) 
Calculated 

(2-HexaPY) a  
Experimental 

(urea) 
Calculated 

(Coil) b 

Hydrodynamic radius (Å) 9.9 ± 0.2 10.1 ± 0.4 11.0 ± 0.2 11.2 ± 0.5 

3. Experimental 

3.1. General 

All N-fluorenylmethoxycarbonyl (Fmoc)-protected amino-acids, (Fmoc-Gly-OH, Fmoc-Pro-OH, 

Fmoc-Asn(Trt)-OH, Fmoc-His(Trt)-OH, Fmoc-Tyr(tbu)-OH and 2-(1-H-benzotriazole-1yl)-1,1,3,3-

tetramethyluronium tetrafluoroborate (TBTU), were obtained from Novabiochem (Laufelfingen, 

Switzerland)); Fmoc PAL-PEG resin, N,N-Diisopropylethylamine (DIEA), N,N-dimethylformamide 

(DMF, peptide synthesis grade) and 20% piperidine-DMF solution were from Applied Biosystems 

(Foster, CA ,USA); N-hydroxybenzotriazole (HOBT), triisopropylsilane (TIS), trifluoroacetic acid 

(TFA), ethandithiol (EDT), were purchased from Sigma-Aldrich (St. Louis, MO, USA). All other 

chemicals were of the highest available grade of purity and were used without further purification. 

Preparative reversed-phase high-performance liquid chromatography (rp-HPLC) was carried out by 

means of a Varian PrepStar 200 model SD-1 chromatography system equipped with a Prostar 

photodiode array detector with detection at 222 nm. Purification was performed by eluting with solvent 

A (0.1% TFA in water) and B (0.1% TFA in acetonitrile) on a Vydac C18 250 × 22 mm (300 Å pore 

size, 10–15 µm particle size) column, at a flow rate of 10 mL/min. Analytical rp-HPLC analyses were 

performed using a Waters 1525 instrument, equipped with a Waters 2996 photodiode array detector with 

detection at 222 nm. The peptide samples were analysed using gradient elution with solvent A and B on a 

Vydac C18 250 × 4.6 mm (300 Å pore size, 5 µm particle size) column, at a flow rate of 1 mL/min. 

3.2. Peptide Synthesis and Purification 

The synthesis and the purification of the dodecapeptide Ac-(PHNPGY)2-NH2 (2-HexaPY) has been 

reported elsewhere [5]. The Hexapeptide Ac-YPHNPG-NH2 (HexaYG) was synthesized in the N-

acetylated and C-amidated form to avoid end group effects and to mimic more properly their protein 

fragment character. It was assembled using the solid phase peptide synthesis strategy on a PioneerTM 

Peptide Synthesiser. All residues were introduced according to TBTU/HOBT/DIEA activation method 

for Fmoc chemistry on Fmoc-PAL-PEG resin (substitution 0.22 mmol/g, 0.33 mmol scale synthesis, 

1.5 g of resin. Removal of Fmoc protection during synthesis was achieved by means of 20% piperidine 

solution in DMF. N-terminal acetylation was performed by treating the fully assembled and protected 

peptide resins (after removal of the N-terminal Fmoc group) with a solution containing Acetic 

anhydride (6% v/v) and DIEA (5% v/v) in DMF. The peptide was cleaved off from the respective resin 

and simultaneously deprotected by treatment with a mixture of TFA/TIS/H2O (95/2.5/2.5 v/v) for 2 h 

at room temperature. The solution containing the free peptide was filtered off from the resin and 
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concentrated in vacuo at 30 °C. The peptide was precipitated with cold freshly distilled diethyl ether. 

The precipitate was then filtered, dried under vacuum, re-dissolved in water and lyophilised. The 

resulting crude peptide was purified by applying preparative rp-HPLC. The peptide was eluted with the 

following protocol: from 0 to 8 min isocratic in A, then linear gradient from 0 to 5% B over 15 min, 

finally isocratic gradient in 5% B from 15 to 25 min. Hexapeptides HexaYG: Mass calculated for 

C33H44N10O9 M = 724.33, m/z = 724.78 ESI-MS [Obsd m/z: (M+H)+ 725.5]. 

3.3. CD Measurements 

CD spectra were recorded on a JASCO 810 spectropolarimeter at a scan rate of 50 nm min−1 and 

0.1 nm resolution. The path lengths were 1 cm, in the 190–260 nm range. The spectra were recorded as 

an average of 20 scans. The CD instrument was calibrated with ammonium(+)-camphor-10-sulfonate. 

Peptide solutions were freshly prepared in water and in urea 1 × 10−3 M solution, in a concentration 

range of 1 × 10−5–1 × 10−6 M. The pH was varied by addition of potassium hydroxide or sulphuric acid 

in water solutions. CD spectra of peptide in Urea solution have been obtained by subtracting urea 

signal at 1 × 10−3 M. CD spectra were analyzed and deconvoluted by means of three different 

algorithms (CONTIN, SELCON3, and CDSSTR) [12,13]. 

3.4. NMR Experiments 

All 1H-NMR experiments were carried out at 500 MHz using a Varian Unity 500 spectrometer 

located at the Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche in 

Caserta (Italy). The lyophilized peptides were rehydrated in H2O/D2O 90/10 (v/v) and the pH of 

aqueous solutions was adjusted at 4.2. An identical sample containing 8M urea was used to define the 

reference “intrinsic statistical coil” chemical shifts δisc. Final concentration of 4 mM peptide solutions 

were attained. NMR experiments for collecting structural constraints were performed at 300 K 

referenced to external TMS (δ = 0 ppm). The temperature dependence of the amide chemical shifts 

was observed in the range 300–311K. Deuterium oxide (D2O) was purchased from Cambridge Isotope 

Laboratories (Andover, MA, USA). Mono (1D) and two dimensional (2D) spectra were accumulated 

with a spectral width of 6000 Hz. 2D experiments DQFCOSY [16], TOCSY [15], ROESY [18] and 

NOESY [17] were recorded using the States-Haberkorn method. Water suppression was achieved by 

DPFGSE sequence [47]. TOCSY, NOESY and ROESY spectra were acquired with mixing times of 

70, 250 and 150 ms, respectively. Typically, 64 transients of 4K data points were collected for each of 

the 256 increments; the data were zero filled to 1K in ω1. Squared shifted sine-bell functions were 

applied in both dimensions prior to Fourier transformation and baseline correction. Data were 

processed and analyzed using VNMRJ and CARA software [48]. 

3.5. Calculation of 2-HexaPY Ensemble Conformers 

Ensemble conformers of 2-HexaPY was calculated by ENSEMBLE software [33–35] using the 

protocol defined by Forman-Kay and co-workers [33]. NMR chemical shifts, distances derived from 

ROESY experiment and 3JHNHα scalar coupling constants were used as experimental constrains. In 

particular, we used 70 short-range and medium-range NOEs including aromatics and amide protons 
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and we treated them differently based upon their quality. For most NOEs, the two atoms from which 

they arose were restrained to be within 8 Å of each other. Those NOEs that were identified as being 

weak or as possibly arising from exchange were restrained to be within 10 Å of each other and were 

given 10% of the weighting of the stronger NOEs. The residue-specific secondary structure propensity of 

the ensemble was estimated by STRIDE [42]. Families of structures were extracted from the ensemble 

of models by superimposing the backbone of residues 3–10 of 2-HexaPY using the program 

NMRCLUST [43]. The ensemble was visualized and evaluated by using the programs PyMOL [49], 

MOLMOL [50] and CHIMERA [51]. 

3.6. Diffusion Experiments 

The hydrodynamic radius Rh for the peptide in water and 8M urea was calculated from the 

translational diffusion coefficients, Dtrans by using the Stoke-Einstein equation. PFG diffusion 

measurements with the PG-SLED (pulse gradient-stimulated echo longitudinal encode-decode) 

sequence [52] permitted to obtain Dtrans [53]. Each diffusion data set contained a series of 20 

monodimensional 1H spectra with gradient strength from 0.5 to 30 G/cm. Dtrans data were obtained by 

DOSY package of the VNMRJ software. The hydrodynamic properties of the 2-HexaPY in aqueous 

solution were also estimated by using HYDROPRO software [37–39]. 

4. Conclusions 

Mammal and avian prion proteins both contain repeated regions in the N-terminal portion: mammal 

octarepeats (PHGGGWGQ) exhibit a high number of glycines while chicken hexarepeats (PHNPGY) 

are characterized by a high number of prolines. The presence of the PXXP motif in the avian prion 

protein suggests that this region may possess a defined secondary structure. We undertook, by means 

of CD, NMR and MD techniques, an in-depth structural analysis on a dodecapeptide (2-HexaPY) 

composed of two chicken hexarepeats. Our results indicate that the 2-HexaPY peptide in solution is in 

a complex equilibrium between different interconverting conformations. We demonstrate using CD 

and NMR data that the peptide is not completely random coil but shows a significant propensity to 

occupy the PPII helical conformation. In order to have a rigorous interpretation of experimental data 

and to quantify such residual secondary structure we generated, using a combination of experimental 

NMR data and molecular dynamics, the ensemble of conformers. We demonstrate how each residue of 

both repeats has a different quantified PPII propensity that shows a periodicity along the sequence. This 

feature explains the absence of the cooperativity necessary to stabilize a PPII: overall, we estimated for 

2-HexaPY peptide a 14% PPII population. Nonetheless, such residual structure can play a role in 

nucleating local structural transitions as well as modulating intramolecular or intermolecular interactions. 

In fact, the residual PPII structure detected for 2-HexaPY peptide suggests a possible stabilization 

upon interaction with specific binding partners (protein or metal ion), which according to the 

“conformational selection” theory [54,55], select and stabilize the appropriate conformation. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/18/9/11467/s1. 
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