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Abstract: Flight crew performance is of great significance in keeping flights safe and sound. When
evaluating the crew performance, quantitative detailed behavior information may not be available.
The present paper introduces the Bayesian Network to perform flight crew performance evaluation,
which permits the utilization of multidisciplinary sources of objective and subjective information,
despite sparse behavioral data. In this paper, the causal factors are selected based on the analysis of
484 aviation accidents caused by human factors. Then, a network termed Flight Crew Performance
Model is constructed. The Delphi technique helps to gather subjective data as a supplement to
objective data from accident reports. The conditional probabilities are elicited by the leaky noisy
MAX model. Two ways of inference for the BN—probability prediction and probabilistic diagnosis
are used and some interesting conclusions are drawn, which could provide data support to make
interventions for human error management in aviation safety.

Keywords: flight crew; Bayesian Network; Delphi technique; leaky noisy MAX model

1. Introduction

By very nature, human beings make mistakes [1]. Hence, it comes as no surprise that 70% to 80%
of aviation accidents involve human errors [2]. Of these human-error-related accidents, approximately
60% involved flight crew errors [3,4]. Crews conduct the flight mission directly and should correspond to
various external threats properly and in time [5]. Therefore, excellent flight crew performance is regarded
as the key element to ensure continuing safe and reliable air transportation services for the public.

In order to improve flight crew performance, quite a lot of research has been done by governmental
and non-governmental organizations, of which a key component is Crew Resource Management (CRM)
training [6,7]. As the sixth generation of CRM training developed, Threat and Error Management (TEM)
emerged as well. On the basis of this model, Line Operations Safety Audits (LOSA) collects safety
data in normal flight operations and provides a quantitative view of external threat and flight crew
error [8,9]. LOSA collects data just during the normal operation of each flight, but detailed behavior
information that is needed for flight crew performance evaluating may be available in accident reports.
Furthermore, quantitative causal relations are usually limited. The relationships between causes or
influence factors appear to be complicated with great uncertainty.

Faced with the problem of data scarcity, the Bayesian Network (BN) model is introduced in this
paper, which could make inference from incomplete, imprecise and uncertain knowledge [10,11]. In the
BN model, all related factors could be presented with the dependence relations, which reflects the
hierarchical nature of influence domains [12]. Moreover, multidisciplinary sources of objective and
subjective information could be integrated. As a methodology that has been used in analysis of human
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failures by many researchers, the BN model provides an important supplement in describing flight
crew performance both qualitatively and quantitatively.

The BN modeling process and application in the field of aviation safety (especially about
inspection and aviation maintenance) have been discussed in the authors’ previous studies [13,14].
Nevertheless, only two states are set for most nodes in the network due to the limitations of the noisy
OR gates and the recursive noisy OR rule, which are used to generate CPTs (Conditional Probability
Table). In this paper, the noisy leaky MAX model that could handle multiple states of nodes is
used instead.

The rest of this paper is organized as follows. Section 2 gives a brief introduction of methodologies
that are applied in this research, including the BN model, the noisy leaky MAX model, and the Delphi
Technique. In Section 3, a BN model for flight crew performance is constructed based on the analysis
of 484 aviation accidents and CPTs are elicited. Section 4 presents sensitivity analysis of the influence
factors. Conclusions and further research work are summarized in Section 5.

2. Materials and Methods

2.1. Bayesian Network

The BN model, proposed by Pearl in 1988, is a probabilistic graphical model that consists of a set
of nodes, representing random variables with finite states, and edges, representing their conditional
independencies in a Directed Acylic Graph (DAG) [15]. The nodes with edges directed into them are
child nodes (e.g., X2 in Figure 1) and the nodes from which the edges depart are parent nodes (e.g., X1

in Figure 1) and nodes without arches directed into them are root nodes (X1). The causal dependence
between variables is expressed by the structure of nodes, which gives the qualitative part of causal
reasoning in a BN. The relationship between variables and the corresponding states are presented in
the form of CPT attached to each node, which constructs the quantitative part. Bayesian inference,
D-separation, and chain rule are key concepts in BN modeling [14].
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Figure 1. A Bayesian Network (BN) sample.

2.1.1. Conditional Probabilities and Bayes Theorems

The fundamental formulae of Bayesian inference is shown as below:

P(B|A ) =
P(A|B )P(B)

P(A)
(1)

• B refers to a specific hypothesis or a set of hypothesizes;
• A refers to an observed evidence E;
• P(B) refers to prior probability before getting the evidence E;
• P(A|B ) refers to the probability that E presents in every situation of B;
• P(B|A ) refers to the posterior probability after getting the evidence E; and,
• P(A) is the marginal probability of A.

For each node A in BN, apart from marginal nodes, there is a CPT. P(A|B1, . . . , Bn ) is decided by
one’s parent nodes B1, . . . , Bn.
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2.1.2. D-Separation and Conditional Independence

There is another fundamental concept in BN called D-separation. D-separation means the blocking
of the transmission through a casual network. Its mathematical definition is as follows: “Two variables
A and B in a causal network are D-separated if for all paths between A and B there is an intermediate
variable V such that either the connection is serial or diverging and the state of V is known or the
connection is converging and neither V nor any of V’s descendants have received evidence.” 3 types of
connections in BN applying D-separation are shown as below:

(a) Serial Connection (see Figure 2)
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When there is evidence given about A, communication is blocked between its parent nodes.

In use of D-separation, child nodes only relate to their parent nodes. In the Bayesian calculus,
D-separation is reflected in the concept of conditional independence. It can be formulated as:

P(A|B) = P(A|B,C) (2)
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It means whether there is evidence about event B or not, no knowledge regarding event A will
change the probability of event C.

Using Chain Rule and D-separation, the following is valid.

P(A1,A2, . . . ,An)

= P(A1)P(A2|A1) . . . P(A1|A2, . . . ,An−1)
(3)

A Bayesian Network is a representation of the joint probability distribution over all of the variables
represented in the DAG [16]. The marginal and the conditional probabilities for each node of the
network are computed by the chain rule.

Then, according to the Bayes rule, probabilistic inference is processed, which lies in two-way
reasoning: diagnostic (bottom-up) and predictive (top-down). Given an evidence about the possible
states of a subset of the variables of the network, the probability of occurrence of some events can
be calculated.

Therefore, by probabilistic inference in Bayesian Networks it is possible to make inference of
unobserved nodes. The posterior probability obtained from inference in BN (diagnosis or prediction)
is of great importance for updating the network and decision making.

2.1.3. BN Modeling

BN modeling steps are summarized as follows (see Figure 5) [13,14]:

• Step 1: Definition and identification of influence factors.
• Step 2: Construction of the BN model, which includes development of the network and elicitation

of the CPTs. The dependence relations of the influence factors are modeled in a BN diagram and
quantitative dependency is specified by eliciting the CPTs.

• Step 3: BN inference and finding key factors.
• Step 4: Intervention. Corresponding to the key factors, some measures should be taken to improve

the safety condition.
• Step 5: Re-definition and re-identification. The process should be constant and the model should

be improved continuously.
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2.2. Noisy MAX and Leaky Noisy MAX

Generally, CPTs can be elicited from databases or human experts’ judgments [17]. However, it is
challenging and doubtful work to obtain conditional probabilities in a large-scaled network directly
due to the exponential growth of the number of parameters [18,19]. Some Canonical interactions, such
as the noisy OR gates, are developed to solve this problem, which take advantage of independence of
causal interactions and offer a logarithmic reduction of the number of parameters required to specify
a CPT.

Generally, for complete conditional distribution of n binary predecessors, 2n parameters are
required. But, when using the noisy OR gates, the number of parameters required changes to only
n, which is the number of predecessor nodes. Therefore, the complexity of knowledge acquisition is
reduced [20]. But in order to apply the OR model in practice, the network builders should verify that
the noisy OR gates cannot be used if the variables involved in the network are not Boolean [21].

To solve this problem, Henrion first proposed the generalization of the OR model to multi-valued
variables [22] and Díez formalized Henrion’s model, coined the term “MAX gate” [18,21,23].

2.2.1. Noisy MAX Model

In this paper, random variables (nodes) are represented by upper-case letters (e.g., Y) and their
values indexed by lower-case letters (e.g., y1). In the noisy MAX model, child node Y takes on i possible
values denoted by Zi (Y and the Zi s share the same domain), and Pa(Y) = {X1, . . . , Xn} usually stand
for the causes of Y. cxi

zi means the probability that parent node Xi, when taking the value xi, results in
Y = zi. The parameters for a link Xi→Y are:

cxi
zi = P(zi|xi ) (4)

or, equivalently,
cxi

y = P(Zi = y|xi ) (5)

In the noisy MAX model, P(Y ≤ y|X ) for all of the values y and all of the configurations X should
be computed at first in order to obtain the CPT:

P(Y ≤ y|X ) = ∑
z| fMAX(z)≤y

∏
i

cxi
zi

= ∑
z1≤y
· · · ∑

zn≤y
∏
i

cxi
zi = ∏

i
( ∑

zi≤y
cxi

zi )
(6)

where
fMAX(z) = max(z1, . . . , zn) (7)

Then, the CPT can be obtained as follow:

P(y|X ) =

{
P(Y ≤ y|X )− P(Y ≤ y− 1|X ) y 6= ymin
P(Y ≤ y|X ) y = ymin

(8)

2.2.2. Leaky Noisy MAX Model

Like any other knowledge representation model, the BN model is never complete as it could not
model every possible cause of an effect [24]. To allow for this in the noisy MAX model, an additional
variable ZL, called the leaky variable, can be introduced to represent set of causes that are not modeled
explicitly. The MAX model which takes leaky probabilities into account is termed as the leaky noisy
MAX model. In the model, dom(ZL) = dom(Y), which implies that i possible leaky parameters cL

y are
needed to compute the conditional probabilities:
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cL
y = P(ZL = y) (9)

Similarly to the case of noisy MAX model, P(Y ≤ y|X ) should be computed according to the
following formula before CPT elicitation:

P(Y ≤ y|X ) = ∑
z

∏
i|Xi∈X

P(zi|xi ) ∑
zL | fMAX(z,zL)≤y

P(zL)

= ( ∑
zL≤y

cL
zL
) ·∏

i
( ∑

zi≤y
cxi

zi )
(10)

Define an accumulative vectorial parameter,

CL
y = ∑

zL≤y
cL

zL
(11)

then Equation (10) becomes
P(Y ≤ y|X ) = CL

y ·∏
i

Cxi
y (12)

In the end, each value of CPT can be obtained as Equation (8).

2.3. The Delphi Technique

When hard data is unavailable or too costly to obtain, the Delphi technique is a useful tool to
“obtain the most reliable consensus of opinion of a group of experts” [25].

When conducting a Delphi survey, a panel of experienced experts who are very familiar with the
specific subject in the area are selected. Questionnaires were transmitted and filled in by each expert
strictly individually. After compiling all of the data gathered from the experts, feedbacks of responses
are exchanged with the panelists in order to achieve a consensus. In the technique, information can be
exchanged via e-mail, mail, FAX, which may avoid counterproductive discussions and digressions in
face-to-face group discussions.

When evaluating the flight crew performance, not all detailed behavior information needed can
be available. Opinions from experts on this domain plays an important part of the data sources, other
methods such as the Classical Method, are applicable to deal with experts opinions [26–28].

3. The Flight Crew Performance Model

3.1. Network Construction

In this study, detailed information of 484 aviation accidents related to human factors occurring
from 1999 to 2012 are gathered from the website www.skybrary.aero and the causes of each accident
are analyzed according to the final report. The frequencies of various causes involved in all of these
accidents are counted (see Figure 6), and the top 5 causes are ineffective monitoring, procedural non
compliance, manual handling, inappropriate crew response, and distraction.

Based on the analysis of aviation accidents, the most influential factors of flight crew performance
are selected. Then, the relations between factors are defined by experts in the field of aviation
safety and shown graphically in a network (see Figure 7), which is termed as the “Flight Crew
Performance Model”.

www.skybrary.aero
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3.2. Data Collection

Data collection has always posed a very serious problem when it comes to human factors.
As accident reports cannot record concrete information about every node in the model, it is quite
difficult to elicit CPT just based on reports. In this paper, two methods are applied to collect data in
different probability scenarios.

3.2.1. Marginal Probability Scenario

Data fusion from related literatures and reports are used in marginal probability scenarios. Take
the node Experience for example to illustrate this process. According to the qualification requirements
of Federal Aviation Administration (FAA), 1500 h of pilot flight time are needed to hold an Airline
Transport Pilot License (ATPL) [29]. In this paper, three states are set for the node Experience: poor,
normal, and rich, which correspond to “pilot flight time < 1500 h”, “1500 h < pilot flight time < 5000 h”
and “pilot flight time > 5000 h”. According to 434 related records available for 484 aviation accidents,
the marginal probabilities of this node are calculated and shown in Table 1.

Table 1. Marginal Probabilities for Node Experience.

Pilot Flight Time (hours) <1500 (1500, 5000) ≥5000

Number 12 73 349
State poor normal rich

Probability 0.027650 0.168203 0.804147

3.2.2. Conditional Probability Scenario

In conditional probability scenarios, survey is conducted to obtain the original parameters, which
are used to generate conditional probabilities by noisy Leaky MAX model. The survey is carried
out through the process known as the Delphi Technique. As introduced above, this technique is a
methodical interactive procedure that completely relies on the knowledge of a panel of experts whose
duty is to predict an outcome which is normally achieved through the goal of consensus building
without bringing the experts face to face.

There are two types of questions that are posed for each node in the survey, corresponding to the
modeled causes and unmodeled causes. Take the node Organizational Climate in Figure 7 as example,
the question amounted to:

• What is the probability that “Safety Culture = good” results in “Organizational Climate = good”
in the absence of the cause “Policy = good”?

• What is the leaky probability of the unmodeled causes result in “Organizational Climate = good”
in the absence of the causes “Safety Culture = good” and “Policy = good”?

The original values were gathered and processed according to the Absolute Probability Judgment
(APJ) rule. Then, the CPTs are computed based on these values according to the Leaky Noisy MAX
Model stated above.

4. Discussions

In this research, the conditional probabilities are calculated and inference is conducted with
the use of software GeNie. After BN modeling, sensitivity analysis of probabilities can be made by
giving different subsets of evidences. Also, two-way reasoning: bottom-up diagnostic and top-down
predictive could be performed on the basis of BN probabilistic inference.
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4.1. Key Factors

By setting states of each influence factor, the posteriors of the target node Flight Crew Performance
are compared in Table 2 and the “Increased Percent” measures the influences of different influence
factors on crew performance.

Table 2. Computation Results of Changing States of Influence Factors.

Node State FCP 1

= good
State FCP

= good State FCP
= good

Increased
Percent

Flying Skills poor 0.97263 qualified 0.99636 excellent 0.999247 2.74%
vigilance low 0.98911 middle 0.997717 high 0.998753 0.97%

Emergency Mishandling yes 0.993575 - - no 0.999217 0.57%
safety culture poor 0.993667 normal 0.998564 good 0.999199 0.56%

Crew Coordination poor 0.993972 normal 0.996798 good 0.999198 0.53%
training poor 0.994111 normal 0.998586 good 0.999329 0.52%

Negligence or Misoperation yes 0.993784 - - no 0.998802 0.50%
experience poor 0.995181 middle 0.998638 rich 0.999167 0.40%

professional quality poor 0.99589 middle 0.99855 good 0.999086 0.32%
organizational climate poor 0.996428 normal 0.99832 good 0.999101 0.27%

communication poor 0.996667 normal 0.998148 good 0.999153 0.25%
Violation yes 0.99706 - - no 0.999305 0.23%

supervision poor 0.996923 normal 0.998605 good 0.999012 0.21%
organization resources management poor 0.997499 normal 0.998713 good 0.999113 0.16%

Judgment Error yes 0.997443 - - no 0.998977 0.15%
operation plan poor 0.997866 normal 0.998781 good 0.999149 0.13%

situational awareness lose 0.997596 - - exist 0.998701 0.11%
Crew Incapacitation yes 0.997864 - - no 0.998749 0.09%

physiological situation poor 0.997872 normal 0.998696 good 0.99875 0.09%
working pressure high 0.998308 middle 0.998827 low 0.998862 0.06%

mentation poor 0.998226 normal 0.998676 good 0.998765 0.05%
policy poor 0.998425 normal 0.998613 good 0.998827 0.04%

continuous working period long 0.998531 - - normal 0.998752 0.02%
mood poor 0.998605 normal 0.998691 good 0.998748 0.01%

circadian rhythms drowsy 0.998657 - - awake 0.998745 0.01%
sudden injury yes 0.998657 - - no 0.998745 0.01%

1 FCP represents flight crew performance for simplification.

As shown in Table 2, the top 5 key influence factors are flying skills, vigilance, emergency
mishandling, safety culture and crew coordination. One interesting point is that safety culture, which
is an invisible element, ranks fourth among all of the nodes. Safety culture is defined as the product of
individual and group values, attitudes, perceptions, competencies, and patterns of behavior about
organization’s health and safety management [30]. Safety culture penetrates into all aspects of the
organization and has great impact on everybody including the flight crews.

4.2. Bottom-up Diagnostic

In Section 4.1, the process of finding key factors is a kind of top-down predictive reasoning.
If evidence about the target node or the child nodes are given, diagnosis can be performed by
computing the probabilities of their parent nodes. Take the node Flight Crew Performance as an
example, three states “good”, “normal”, and “poor” are set, respectively, and the computation results
about parent nodes are shown in Figure 8. When Flight Crew Performance turns out poor, the output
of node Violation and node Emergency Mishandling are “yes = 0.974137” and “yes = 0.935934”,
respectively, which is significantly higher than other parent nodes. It could be inferred that the most
possible causes are violation and emergency mishandling when the flight crews do a bad job. But
when the state of Flight Crew Performance is set as “good”, the nodes Negligence or Misoperation
and Crew Incapacitation become more attractive, which may indicate that these two factors play more
important roles under this situation.
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4.3. Sensitivity Analysis

Sensitivity analysis is a general technique for studying the effects of parameter inaccuracies on
the output of a mathematical model. In Section 4.1, sensitivity analysis is applied to compare the
importance of different factors. The mathematical function and analysis based on it will be shown in
this part.

When carrying out sensitivity analysis, the sensitivity function can be used to express the sensitive
change in posterior probability of the target query [31]. If x represents a probability parameter, y is
defined as a query, then the posterior probability p(y|e )(x) could be written as a fraction of two linear
functions of x given the evidence e:

p(y|e )(x) =
α1x + β1

γ1x + δ
(13)

The function could be normalized as following for simplicity:

p(y|e )(x) =
αx + β

γx + 1
(14)

Message passing scheme in junction tree inference with x’s value set as 0, 0.5 and 1 is used in
order to determine the value of α, β and γ:

β = p0

γ = β−p0.5

p0.5−p1 − 1

α = p1(γ + 1)− β

(15)

Then, the sensitivity value of query y at x given e can be obtained according to the partial
derivative of p(y|e )(x) on x, which can be expressed as formula (16):

f ′(x) =
∂p(y|e )

∂x
=

α− βγ

(γx + 1)2 (16)

In this paper, the node Crew Incapacitation is taken as an example to show the whole process.
The sensitivity function of the node Crew Incapacitation is shown as follow:

y =
−0.941524x + 0.998749
−0.942652x + 1

(17)

where y represents the probability that flight crew performance is good and x stands for the probability
of “Crew Incapacitation = yes”. The sensitivity function takes the form of curve in Figure 9.

Generally, the vertex of the curve could be found and it should be regarded as the turning point
that divides the curve into two parts: in one part, the value of y changes sharply with the changes of
x’s value (modulus of slope is greater than 1); and, the other part turns out to be inelastic (modulus of
slope is less than 1). However, for the node Crew Incapacitation, vertex does not exist as modulus of
slope for all x’s values are less than 1, indicating that the probability of crew incapacitation is inelastic
(the probability of target node changes gently with the change of probability of crew incapacitation).
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5. Conclusions

As a useful tool in solving problems with uncertainty and data scarcity, the Bayesian Network is
applied to evaluate the flight crew performance. Important influence factors are selected based on the
analysis of 484 aviation accidents that were caused by human factors. The Delphi technique helps to
gather subjective data as a supplement to objective data from accident reports. CPTs are elicited by the
leaky noisy MAX model. Two ways of inference for the BN—probability prediction and probabilistic
diagnosis are used to analyze causal relations between factors and possible causes in the BN model.

Flying skills, vigilance, emergency mishandling, safety culture, and crew coordination are
recognized as the most five important factors in flight crew performance.

Although the study shows the practical implementation of BN, the structure of BN model
still needs to be modified according to additional practical feedback. Moreover, when it comes
to probabilities distribution in risk analysis, the Delphi technique reflects weakness of validity. Other
methods, such as the Classical Method, would be tried to improve the accuracy of CPTs when obtaining
experts’ opinions.
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