
fmicb-11-00867 May 11, 2020 Time: 17:4 # 1

ORIGINAL RESEARCH
published: 12 May 2020

doi: 10.3389/fmicb.2020.00867

Edited by:
Simona Rossetti,

Water Research Institute, Italian
National Research Council, Italy

Reviewed by:
James Scott Maki,

Marquette University, United States
Nuria Fernandez-Gonzalez,

University of Valladolid, Spain

*Correspondence:
Christian Abendroth

christian.abendroth@tu-dresden.de

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Microbiotechnology,
a section of the journal

Frontiers in Microbiology

Received: 09 October 2019
Accepted: 14 April 2020
Published: 12 May 2020

Citation:
Schwan B, Abendroth C,

Latorre-Pérez A, Porcar M, Vilanova C
and Dornack C (2020) Chemically

Stressed Bacterial Communities
in Anaerobic Digesters Exhibit

Resilience and Ecological Flexibility.
Front. Microbiol. 11:867.

doi: 10.3389/fmicb.2020.00867

Chemically Stressed Bacterial
Communities in Anaerobic Digesters
Exhibit Resilience and Ecological
Flexibility
Benjamin Schwan1†, Christian Abendroth1,2*†, Adriel Latorre-Pérez3, Manuel Porcar3,4,
Cristina Vilanova3 and Christina Dornack1

1 Institute of Waste Management and Circular Economy, Technische Universität Dresden, Pirna, Germany, 2 Robert Boyle
Institut e.V., Jena, Germany, 3 Darwin Bioprospecting Excellence, S.L. Parc Cientific Universitat de València, Paterna, Spain,
4 Institute for Integrative Systems Biology, University of Valencia-CSIC, Paterna, Spain

Anaerobic digestion is a technology known for its potential in terms of methane
production. During the digestion process, multiple metabolites of high value are
synthesized. However, recent works have demonstrated the high robustness and
resilience of the involved microbiomes; these attributes make it difficult to manipulate
them in such a way that a specific metabolite is predominantly produced. Therefore,
an exact understanding of the manipulability of anaerobic microbiomes may open up a
treasure box for bio-based industries. In the present work, the effect of nalidixic acid,
γ-aminobutyric acid (GABA), and sodium phosphate on the microbiome of digested
sewage sludge from a water treatment plant fed with glucose was investigated. Despite
of the induced process perturbations, high stability was observed at the phylum
level. However, strong variations were observed at the genus level, especially for
the genera Trichococcus, Candidatus Caldatribacterium, and Phascolarctobacterium.
Ecological interactions were analyzed based on the Lotka–Volterra model for
Trichococcus, Rikenellaceae DMER64, Sedimentibacter, Candidatus Cloacimonas,
Smithella, Cloacimonadaceae W5 and Longilinea. These genera dynamically shifted
among positive, negative or no correlation, depending on the applied stressor, which
indicates a surprisingly dynamic behavior. Globally, the presented work suggests a
massive resilience and stability of the methanogenic communities coupled with a
surprising flexibility of the particular microbial key players involved in the process.

Keywords: anaerobic digestion, Lotka–Volterra, population modeling, anaerobic microbiomes, microbiome
manipulation

BACKGROUND

In previous decades, tremendous efforts have been made to better understand the biocenosis
underlying the process of anaerobic digestion. According to a recent study, approximately 300
operational taxonomic units (OTUs) represent 80% of the microorganisms involved in anaerobic
digester microbiomes. If the remaining 20% are also taken into consideration, the number of
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OTUs is much higher (Kirkegaard et al., 2017). Moreover, an
often complex and inhomogeneous feedstock is used, which
can affect microbial community structures and functions (Xu
et al., 2018). To gain better access to microbial systems of
such complexity, high-throughput approaches are often applied,
such as 16S-rRNA gene amplicon sequencing (Abendroth et al.,
2015), metagenomics (Xu et al., 2019); or metaproteomics (Hassa
et al., 2018), all of which facilitate the analysis of complex
microbial communities with high diversity. The continuously
decreasing prices of these technologies have allowed scientists
to compare many anaerobic digester plants simultaneously. For
example, Sundberg et al. (2013) compared 21 full-scale anaerobic
digesters, including co-digesters and sewage sludge digesters,
based on 16S-rRNA amplicon sequencing at both mesophilic
and thermophilic temperatures. In the study by Sundberg et al.
(2013), Actinobacteria, Proteobacteria, Chloroflexi, Spirochetes
and Euryarchaeota were dominant in sewage sludge digesters,
while Firmicutes were especially enriched in co-digesters. Theuerl
et al. (2015) indicated that even well-operating agricultural biogas
plants show fluctuation in the microbial community composition
due to high sensitivity to changes in the process performance.

The aforementioned studies provide good insight into
microbial key players involved in the process of anaerobic
digestion. However, to understand the reasons behind the
observed taxonomic patterns, complex experiments are
necessary, which usually involve disturbing the system to
identify the changes associated with the new environment.
The experiments reported include stressors like very low pH
of 6.0 (Delbès et al., 2000; Hori et al., 2006; Abendroth et al.,
2017), changing temperature (Shi et al., 2019), very high salt
concentrations causing conductivity values up to 80 mS cm−1

(Ogata et al., 2016; De Vrieze et al., 2017) and varying total
solids (TS) contents (Hardegen et al., 2018). For instance, to
further test the hypothesis that the genus Methanosarcina is
especially enriched in anaerobic digester sludge with low viscosity
(Abendroth et al., 2015), an experiment was conducted in which
sewage sludge was fed in parallel with various feedstocks with
different percentages of TS (Hardegen et al., 2018). Hardegen
et al. (2018) gradually increased the concentration of total volatile
fatty acids (up to 10 g L−1 before acidosis took place); as the
researchers anticipated, the approach in which a feedstock with a
low percentage of TS was used resulted in higher concentrations
of Methanosarcina than the approach with feedstocks with
high concentrations of TS were fed did. In another example,
Spirito et al. (2018) used antibiotics up to concentrations of
5 mg L−1 (monensins) to disturb the underlying microbiome.
An adaptation to extremely high concentrations of monensins
was possible, which was explained by the authors with a highly
redundant microbiome, in which the inhibited species can be
substituted by other microorganisms with similar functions.

Experiments with such harsh conditions-like those in the
experiments performed by De Vrieze et al. (2017) and Spirito
et al. (2018)-make it possible to study the microbial shifts caused
by different stress levels; however, this provides no insight per se
into the microbial interactions that are driving these shifts. With
massive sequencing data, it would be possible to find biological
correlations by, for example, pairwise comparisons or regression-

and rule-based networks, enabling an approximate calculation
of microbial interactions (Faust and Raes, 2012). According to
Faust and Raes (2012), this would make it possible to determine
whether positive, negative or neutral effects exist between
different species, indicating potential ecological interactions,
such as mutualism, commensalism, parasitism, amensalism or
competition. Because of this, scientists are regularly trying to
understand microbial interactions within anaerobic microbiomes
through sequencing data. For example, Kuroda et al. (2016)
analyzed the correlations between multiple OTUs within granules
from an anaerobic upstream sludge blanket (UASB). In that work,
many positive correlations between methanogens and syntrophic
bacteria were highlighted. The existing microbial interaction
between syntrophs and methanogens has been investigated since
the 1980s (Baresi et al., 1978), and the work of Kuroda et al. (2016)
highlighted the applicability of sequencing-based information on
microbial ecology. In many more studies, based on sequencing
approaches, to shed light on microbial interactions. Very often,
network analysis is used to analyze the evolution of microbiomes
based on 16S-rRNA gene amplicon sequencing in response to
a certain environmental stress. For instance, a recently applied
network analysis demonstrated that organic overloading causes
microbial population shifts, which in turn affects microbial
interactions (Braz et al., 2019).

Although several reports have investigated microbial
interactions within anaerobic microbiomes, to date, it has not
been determined whether interactions may be restricted to
certain environmental conditions. For example, it is conceivable
that two mutualistic bacteria shift into a state of parasitism
due to changing digester conditions in which the feedstock
composition changes. Using Lotka–Volterra based modeling,
the presented work aims to address the question of how
microorganisms in anaerobic microbiomes are ecologically
adapting to externally induced fluctuations. To answer this
question, four semicontinuously fed reactors were treated
over 9 weeks while receiving different inhibiting substances,
namely nalidixic acid, γ-aminobutyric acid (GABA) and
sodium phosphate. Following this, 16S-rRNA gene amplicon
sequencing and Lotka–Volterra modeling were applied to
address the microbial interactions in all four reactors. Based
on DNA sequencing, gLV has already been applied various
times to investigate microbial interactions in the gut (Weng
et al., 2017), in cheese (Mounier et al., 2008), in the coffee-
machine bacteriome (Vilanova et al., 2015) and its suitability
to simulate population dynamics and estimate microbial
interactions based on high-throughput sequencing was recently
highlighted by Kuntal et al. (2019).

MATERIALS AND METHODS

Inoculum and Substrates
As seed sludge, a digester sludge from a sewage plant in Saxonia
was used. The sludge came from the digestion towers of a large
sewage treatment plant in Saxony, Germany. The average solids
retention time (SRT) in the digestion towers is 16.5 days. Biogas is
produced under mesophilic conditions in the range of 30–35◦C.
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The average pH value is 7.7. The TS content varies between 3
and 5 g L−1 per year. The sum of the volatile fatty acids (VFA)
amounts to 163 mg L−1 on average. At the time of sampling, this
sum parameter was 169 mg L−1. The ammonium content was
1157 mg L−1.

The reactors were supplemented with nalidixic acid (Sigma
Aldrich, Germany), GABA (Sigma Aldrich) or sodium phosphate
(Sigma, Aldrich), which were applied as stressors during the last
5 weeks, as shown in Figure 1. To prevent starvation, glucose was
used as substrate.

Reactor Performance
The anaerobic digester experiments lasted 11 weeks and were
performed using custom-built continuous stirred tank reactors
(CSTRs), which were used in fed-batch configuration. The
reactors had a volume of 5 L, with a 3 L working volume
(Figure 1). After 1 week without feeding, the reactors received
glucose three times a week. For feeding, glucose was dissolved
in 150 mL of fresh sludge from a sewage sludge digester. Since
feeding events took place discontinuously and the amount of
applied substrate and stressors varied during the experiment,
the organic loading rate (OLR) could only be estimated. For
determining the OLR, the daily flow rate of volatile solids (VS)
was calculated by dividing the sum of VS per week by 7. Initially,
1 g L−1 of glucose was used, which is equivalent to a loading
rate (OLR) of 0.43 gVS L−1 d−1. After the third week, the
reactors received three times a week 3 g of glucose per liter, which
corresponds to a loading rate of 1.29 gVS L−1 d−1 (Figure 2),
and this loading rate was retained until the end of the experiment
(week 7). Before each feeding event, 150 mL of digestate was
removed and used for chemical analysis. Therefore, the retention
time was approximately 46.66 days.

Beginning from week 7, three of the four digesters received
a chemical stressor with the goal of causing disturbances in the
digestion process and the underlying microbiomes (Figure 1).
The inhibiting chemicals, which were applied to the different
digesters, were fed once a week, using nalidixic acid, GABA and
sodium phosphate. The fourth reactor received only the substrate
(glucose) and no further supplements. The amount of stressor
fed into the respective reactors was increased from 0.5 g L −1

to 5 g L−1 for sodium phosphate and from 10 mg L−1 to 10 g
L−1 for nalidixic acid and GABA, as shown in Figure 1. Since
both of them are organic substances, adding nalidixic acid and
GABA increased the OLR. In weeks 7 and 8, nalidixic acid
and GABA were applied in such small amounts that the OLR
was only changed to the third decimal place. However, from
week 9 onward, much higher amounts of stressors were applied
(Figure 1). In week 9, the OLR was increased to 1.43 gVS L−1 d−1

and during the last 2 weeks, the OLR reached 2.72 gVS L−1 d−1.
In the case of the reactor receiving sodium phosphate, the OLR
remained at 1.29 gVS L−1 d−1 throughout the experiment, since
sodium phosphate is an inorganic substance.

Chemical Analysis
Biogas was analyzed simultaneously with each feeding event
(three times a week, Figure 2). The exhaust gas measuring
device “Abgasmessgerät VISIT 02 S” from Messtechnik Eheim

GmbH (Germany) was used for gas analysis. This measuring
device is certified according to the German legal requirements
of the Federal Immission Control Act. The device is calibrated
at least twice a year with test equipment according to DIN ISO
10012. The detectable gases are oxygen, methane, carbon dioxide,
hydrogen sulfide and hydrogen with a volumetric flow rate of
0.8 L min−1. Methane and carbon dioxide were detected with
an infrared double beam sensor. Oxygen and hydrogen sulfide
were detected by a carbon dioxide-compensated electrochemical
sensor. The hydrogen content was determined by a palladium
sensor. The detection limits for oxygen, carbon dioxide and
methane are 0.1 vol%, for hydrogen and hydrogen sulfide
10 ppm with an error of ±1% of the measured value. On
analyzing the gas composition, the gas was dried in a custom-
built column filled with silica gel. The quantity of the dry
gas was analyzed using a common gas meter (BK G6, Elster
Handek GmbH Mainz, Germany). Based on the guideline VDI
4630 from the Association of German Engineers (2016), the
gas volume was normalized to standard temperature (273 K)
and standard pressure (1013 hPa). During the treatment (weeks
7–11), the concentration of chemical oxygen demand (COD)
and total volatile fatty acids (TVFAs) were measured once a
week. The COD was measured in the untreated sludge (total
COD) and in the liquid phase after centrifugation (solubilized
COD). The first step of solids separation was carried out via a
centrifuge at 13,000 g. The second treatment step was vacuum
filtration through a 0.2-µm cellulose-acetate filter (Sartorius
AG, Göttingen, Germany). Finally, COD was measured with
the Spectroquant COD kit (VWR, Germany) according to the
manufacturer’s guidelines. The spectrum of VFAs (lactic acid,
formic acid, acetic acid, propionic acid, iso-butyric acid, butyric
acid, and valeric acid) was determined by ion chromatography
using the Metrosep Organic Acids 250/7.8 column (Model:
882 Compact IC plus, Metrohm AG, Herisau, Switzerland).
The applied column is a cation exchange column, which is
particularly designed for the determination of VFAs. The mobile
phase contained 0.6 mmol L−1 of perchloric acid 10 mmol
L−1 of lithium chloride. The detection limit is 0.25 mg
L−1. The amount of TVFAs was determined as the sum of
all measured VFAs.

DNA Extraction and Sequencing
Before DNA extraction, samples were washed to reduce the
amount of inhibiting substances (especially humic acids). For
the first sample (Figure 1, day 0), biomass was sedimented
by centrifugation for 5 min at 20,000 g and washed several
times with sterile phosphate-buffered saline (PBS buffer).
Because increasing viscosity sedimentation was impaired in
the following extractions, at this point, the centrifugation
time was increased to 10 min for all remaining samples.
DNA extraction was performed using the DNEasy Power Soil
Kit (Qiagen, Netherlands) according to the manufacturer’s
instructions. Extracted DNA was quantified using the Qubit
dsDNA HS Assay kit (Qubit 2.0 Fluorometer, Thermo Fisher,
Waltham, United States). The bacterial full-length 16S rRNA
gene was amplified by polymerase chain reaction (PCR)
using the following universal primers: S-D-Bact-0008-a-S-16
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FIGURE 1 | Reactor set-up: To compare the influence of different inhibitors on microbial interactions, four experiments were performed in continuous stirred tank
reactors. The left side of the figure shows the reactor design: (1) Substrate input, (2) gas tight feeding pipe, (3) lid, (4) stirrer, (5) upper stirrer for foam elimination, (6)
motor for the stirrer, (7) gas output, (8) gas tight pipe, (9) sampling port, (10) double wall for heating. The experiment lasted 77 days, with chemical inhibitors applied
on day 42, 49, 56, 63, and 70. Nalidixic acid, γ-aminobutyric acid (GABA) and sodium phosphate were applied as chemical inhibitors. One reactor received no
additional inhibiting chemicals to function as a control.

(5′-AGRGTTYGATYMTGGCTCAG-3′) and S-D-Bact-1492-a-
A-16 (5′-TACCTTGTTAYGACTT-3′) (Klindworth et al., 2012).
The PCR reaction mix consisted of 200 µM dNTPs, 200 nM of
each primer, 1 U of VWR Taq DNA Polymerase (VWR R©, WR
International bvba/sprl, Belgium), 1 x PCR buffer supplemented
with MgCl2 (1.5 mM), and 1 ng of DNA template (final
volume: 20 µL). The PCR amplification protocol comprised
an initial denaturation step at 94◦C for 1 min, followed
by 35 cycles of amplification (denaturing, 1 min at 95◦C;
annealing, 1 min at 49◦C; extension, 2 min at 72◦C) and a
final extension at 72◦C for 10 min. A negative control (no
DNA) was also included. Following the PCR reaction, DNA
concentrations were measured using the Qubit dsDNA HS
Assay kit (Qubit 2.0 Fluorometer, Thermo Fisher, Waltham,
United States). The resulting amplicons were sequenced with
Oxford Nanopore MinION, as previously described (Hardegen
et al., 2018). In total, 39 samples were multiplexed in the same
run using the EXP-PBC096 barcoding kit. The recommended
ONT protocols were followed for priming and loading the flow
cell. Raw sequences were uploaded at the National Center for
Biotechnology Information1.

Reads were basecalled with MinKNOW software (core version
3.3.2), and sequencing statistics were assessed by the EPI2ME
(v2.59.1896509) ‘Fastq Barcoding’ protocol. Porechop2 was
applied for detection of the barcodes, demultiplexing of the
samples and removal of the adaptors. Finally, reads shorter than

1https://www.ncbi.nlm.nih.gov/bioproject/PRJNA554976
2https://github.com/rrwick/Porechop

400 base pairs (pb) or with a mean quality below 7 (in PHRED
score) were removed.

Taxonomic Analysis and Modeling
Full-length 16S rRNA sequences generated by MinION
were used to obtain a taxonomic profile of each sample.
Reads were classified using the Quantitative Insights Into
Microbial Ecology (QIIME 1.9.1.) software (Caporaso et al.,
2010). OTUs were constructed using the ‘pick_otus.py’
script, and uclust as the picking method (similarity
threshold = 97%). Then, ‘pick_rep_set.py’ was run with the
default parameters. Taxonomic assignment was carried out
with the ‘assign_taxonomy.py’ script, and this consisted of
BLAST searches against the latest version (v. 132) of the SILVA
database. Finally, ‘make_otu_table.py’ was employed to obtain
the final OTU table.

The QIIME results were used to perform simulations
based on generalized Lotka–Volterra (gLV) models for
each condition studied. The gLV model is an extension
of the classic predator-prey Lotka–Volterra model, which
allows the prediction of a wider range of relationships
(competition, cooperation, neutralism, etc.) among the
individual species —or OTUs— coexisting in the same
habitat. The interaction could be directly interpreted from
the algebraic sign of a coefficient incorporated to the equation
(Kuntal et al., 2019). To reduce computation efforts and
obtain comparable results, only the most abundant taxa
detected in all the experiments were selected for the gLV
simulations. Further analyses were performed using the
R-software for statistical computing. Differential abundance
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FIGURE 2 | Produced biogas: Cumulative methane (A), the amount of methane per sampling day (B) and the ratio of methane to total biogas for each sampling day
(C) are shown for all four digesters in response to perturbation with nalidixic acid, γ-aminobutyric acid (GABA) and sodium phosphate. The fourth reactor acted as a
control, with no inhibiting substances. Organic loading rates (OLR) were increased after week 1 (0.43 g/L d-1) and after week 3 (1.29 g/L d-1). At days 0, 56, 70, and
77, 16S-rRNA gene samples were taken for all four reactors (highlighted with horizontal lines in red).
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analyses were carried out using the DESeq2 package (Love
et al., 2014; v. 1.18.1) to detect variations in the microbial
composition among the different treatments and the control.
The ‘phyloseq_to_deseq2’ function was applied to convert
the phyloseq object into a DESeq2 object. Then, the DESeq2
main function was applied using the ‘parametric’ option for
fitting the dispersion and the ‘Wald test’ option for calculating
the significance of the resulting coefficients. The Benjamini–
Hochberg method was used for adjusting the p-values, and
only features with an adjusted p-value lower than 0.05 were
considered significant.

RESULTS AND DISCUSSION

Methane Production Upon Addition of
Microbial Stressors
The aim of the present work was to cause multiple taxonomic
shifts outgoing from the same anaerobic microbiome. Extensive
shifts were intended to facilitate the analysis of ecological
interactions among involved microorganisms based on
population dynamics analysis. Sodium phosphate was used
as it is a known stressor in anaerobic digestion processes (Ogata
et al., 2016). The antibiotic nalidixic acid was chosen as a stressor,
as antibiotics are known to manipulate anaerobic process
performance and the involved microbiomes (Mitchell et al.,
2013; Mustapha et al., 2016; Bay et al., 2019; Fáberová et al.,
2019). GABA was chosen, as high concentrations of butyric acid
(an intermediate product from GABA degradation) is known to
inhibit syntrophic metabolism in anaerobic digesters (Henson
et al., 1985; Zhang et al., 2019).

The experiments started with a low OLR (0.43 gVS L−1 d−1),
with the OLR being elevated after 3 weeks (1.29 gVS L−1 d−1;
Figure 2A), which destabilized the digestion experiments from
week 3 until week 6 (Figure 2B). Beginning in week 7, nalidixic
acid, GABA and sodium phosphate were also added weekly,
and in increasing amounts, to cause a process perturbation,
and thus, multiple alterations in the underlying microbiome.
Due to the addition of GABA and nalidixic acid, the OLR
increased gradually to 2.72 gVS L−1 d−1 during the last 5 weeks
for both cases. In the case of the reactor receiving sodium
phosphate, the OLR remained at 1.29 gVS L−1 d−1 as it is an
inorganic substance.

During the 11 weeks of the experiment, all reactors received
a total of 78.26 g of glucose per liter, which corresponds to
a theoretical methane potential of 28.96 L of methane. The
control produced 16.66 L of methane per liter of working
volume (Figure 2A). Therefore, the digestion efficiency was
57.53%. A similar methane volume would have been expected
for the reactor that was supplemented with sodium phosphate,
because sodium phosphate cannot be converted into methane.
However, the reactor that received sodium phosphate produced
only 12.75 L of methane per liter of working volume. Since
the cumulative gas volume was already lower than the control,
before sodium phosphate was added, a process perturbation
due to sodium phosphate cannot entirely explain the lowered
cumulative methane volume (Figure 2A). However, the fact that

the ratio of methane to total biogas became highly irregular
upon the addition of sodium phosphate (Figure 2C, weeks 7 –
11) indicates a process perturbation, which may have affected
the methane productivity negatively during the last 5 weeks.
This hypothesis is supported by the fact that the pH gradually
decreased from 7.55 to 6.57 (Figure 3C).

The reactors receiving nalidixic acid and GABA, in addition
to the 78.26 g of glucose, received 21.11 g L−1 of the respective
stressor. In case of complete degradation, 0.58 L g−1 would
be expected for nalidixic acid, and 0.49 L g−1 for GABA
(Supplementary Material S1). In the case of the reactor, which
received nalidixic acid, this 21.11 g L−1 of stressor corresponds
to an additional theoretical methane potential of 12.24 L. In the
case of GABA, 21.11 g L−1 of stressor corresponds to 10.34 L
of methane. Based on the digestion efficiency of 57.53%, which
was observed in the control, the reactors receiving nalidixic
acid and GABA were expected to produce 7.04 L and 5.95 L
more methane per liter than the control did. However, in both
cases, the produced volume of methane was extremely close
to the control. This suggests that the respective stressors were
not entirely converted to methane. One explanation is that the
respective stressors were not degradable. Another explanation is
an inhibition of the underlying microbiome.

Chemical Parameters
Although the methane productivity alone did not indicate a very
clear variation between the performed digestions experiments,
chemical parameters did show some differences. As mentioned
above, the ratio of methane to total biogas became highly
irregular with the addition of sodium phosphate (Figure 2C,
weeks 7-11). From this, one can assume a humble but continuous
inhibition of the reactor receiving sodium phosphate, resulting
in a pH decrease from 7.55 to 6.57 at the end of the experiment
(Figure 3C). Comparing the result of the reactor receiving
sodium phosphate to other works, it draws attention that the
loading rate must usually be higher to cause acidosis. In an
experiment by Goux et al. (2015), where the OLR was gradually
increased, acidosis took place approximately at 4 gVS L−1 d−1.
In a recent study by Musa et al. (2018), an UASB reactor
showed an even higher stability compared with that of Goux
et al. (2015), as the OLR was increased until 15 gCOD L−1

d−1 before acidosis took place. In the study presented here,
the loading rate in the reactor receiving sodium phosphate
was based on the works from Goux et al. and Musa et al.,
and an OLR of 1.29 gVS L−1 d−1, not close to a range that
could cause acidosis. This supports the interpretation that the
observed process disturbance was caused by high concentrations
of sodium phosphate.

In contrast to the reactor receiving sodium phosphate, a
very sudden and heavy shock was observed in the reactor
receiving GABA as stressor, which resulted in a strong increase in
solubilized COD and TVFAs beginning in week 9 (Figures 3B,D
and Supplementary Figure S1). In addition, as expected,
this aforementioned COD and TVFA shock coincided with
strong irregularities in methane productivity, which was almost
fully disrupted by the end of the experiment (Figures 2A,B;
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FIGURE 3 | Chemical analysis of the different digesters: Total chemical oxygen demand (A), solubilized chemical oxygen demand (B), pH (C) and amount of total
volatile fatty acids (D) are shown for all the digester experiments, which were perturbed with nalidixic acid, γ-aminobutyric acid (GABA) and sodium phosphate.

day 77) and showed a strongly reduced ratio of methane
(Figure 3C, day 77).

Compared with the acidosis events in the aforementioned
works from Goux et al. (2015) and Musa et al. (2018), it appears
that the OLR in the present study (max. 2.72 gVS L−1 d−1)
was still too small to cause acidosis. As discontinuous fed-batch
reactors were used in the present work, one could argue that
shock loads may have destabilized the process. However, in an
experiment by Nachaiyasit and Stuckey (1997), shock loads with
OLR as high as 18 gCOD L−1 d−1 were applied over a duration
of 20 days without causing acidosis. Therefore, it appears
unlikely that a substrate overload caused acidosis in the present
experiment. A potential explanation could be the aforementioned
release of butyric acid, which is a known inhibitor of anaerobic
digestion processes (van den Heuvel et al., 1988).

The chemical parameters for the reactor treated with nalidixic
acid were particularly unexpected. As explained in the previous
section, the methane yield was lower than anticipated, indicating
an uncomplete degradation and/or inhibitory effect in the
process. Due to the low methane yield, one would expect an
increase in TVFAs or COD in the liquid fraction. However,

TVFAs and solubilized COD remained at a low level, with a
concentration of less than 600 mg L−1 (Figures 3B,D). However,
at the end of the experiment, a strong increase in the total COD
up to 61.60 g L−1 was observed. A potential explanation for
these findings is an impaired degradation due to adsorption. This
hypothesis is supported by the fact that the antibiotics ampicillin,
norfloxacin, ciprofloxacin, ofloxacin, tetracycline, roxithromycin,
and trimethoprim are mainly removed from sewage systems due
to adsorption (Li and Zhang, 2010).

Taxonomic Profiles After Treatment
As the basis for population modeling based on the Lotka–
Volterra equations, high-throughput sequencing of 16S-rRNA
gene amplicons was applied. To create a general overview of the
produced data, Bray–Curtis dissimilarities were calculated and
analyzed based on a principal component analysis for ordination
(Figure 4). The control was extremely different from the rest of
the time points. At the beginning of the time period, in which
supplementation with the respective chemical stressors started
(day 56), all the samples clustered close to each other. However, at
day 70, the underlying microbiomes had already clearly diverged.
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FIGURE 4 | Principal component analysis of 16S-rRNA gene amplicon sequences after calculation of Bray-Curtis dissimilarities at the genus level.

For days 70 and 77, the samples from the reactor receiving
sodium phosphate clustered far away from the reactors receiving
nalidixic acid and GABA. Interestingly, and despite showing clear
differences in the underlying chemical parameters (Figure 3), the
reactors receiving nalidixic acid and GABA clustered together.
The respective taxonomic profiles for all reactors are shown in
Figure 5.

The dominant phyla observed during the experiment
were Bacteroidetes (38.82% ± 5.08%) and Firmicutes
(19.87% ± 6.68%), which is in line with other studies (Klocke
et al., 2007; Sundberg et al., 2013; Abendroth et al., 2015, 2017).
Phyla that were observed in minor ratios, were Patescibacteria
(9.13% ± 2.73%), Chloroflexi (8.10% ± 1.62%), Proteobacteria
(6.56% ± 1.76%), Cloacimonetes (5.36% ± 1.91%),
Verrucomicrobia (3.18% ± 1.14) and Spirochaetes
(2.41% ± 1.45%). These minor phyla are also typical of
digested sewage sludge (Abendroth et al., 2015). The taxonomic
patterns were surprisingly similar in all the experiments, despite
of the process perturbations due to the addition of nalidixic acid,
GABA and sodium phosphate. Such stability at the phylum level
has been indicated in other studies. For example, in the work
from Calusinska et al. (2018) 20 mesophilic full-scale bioreactors
were monitored over a time period of 1 year, and a surprisingly
stable core microbiome was revealed. In addition, with harsher
conditions, the underlying microbiome shows robustness. For
example, the effect of thermoshocks on high-strength liquor from
an acidifying pre-treatment stage for an anaerobic digester sludge
was investigated, and the frequencies of phyla remained stable
despite the harsh heat shocks applied (Abendroth et al., 2018).

Despite of the high robustness of anaerobic digester
microbiomes at the phylum level, a shift was detected for
Bacteroidetes with addition of nalidixic acid at day 56
(Figure 5A). As the antibiotic nalidixic acid affects gram-
negative bacteria, the inhibition of Bacteroidetes was expected.
However, more Gram-negative groups should also have been
affected. Moreover, the primordial ratio of Bacteroidetes
was already re-established at day 70, indicating a rapid
adaptation by the involved Gram-negative bacteria. To obtain
a deeper understanding of the respective taxonomic shifts, a

differential analysis was applied, in which differences among
perturbated reactors and the control experiment were analyzed
(Supplementary Tables S1–S3). Although the difference for
Bacteroidetes at day 56 appeared to be clear compared with
days 70 and 77, a differential abundance analysis indicated no
significant differences, when comparing the results from day 56
to the control experiment.

In the subsequent discussion, only significant changes with
p < 0.05 were considered. Compared with the control, it appeared
that nalidixic acid caused significant increases in the ratio of
Firmicutes, Tenericutes, Cloacimonetes, and Lentispheara. In
contrast, Patescibacteria and Nitrospirae showed a significant
decrease. Particularly Tenericutes and Nitrospirae seem to have
been strongly affected by nalidixic acid, as they were affected at
more than one time point. Despite of their statistical significance,
it must be highlighted that the respective shifts were extremely
small (Figure 5A). An explanation for this robustness may be a
high antibiotic resistance of microbiomes from digested sewage
sludge, which has already been highlighted by multiple authors
(e.g., Amador et al., 2015; Naquin et al., 2015; Karkman et al.,
2018; Yin et al., 2019).

Although the performed principal component analysis
indicated a high similarity for the microbiomes that were
treated with nalidixic acid and GABA (Figure 4), they showed
some differences in relation to the control. Atribacteria and
Fibrobacteres were reduced in the reactor receiving GABA but
not in the reactor receiving nalidixic acid. An increase was
observed for the phyla Epsilonbacteraeota and Spirochaetes,
which was not observed in the reactor receiving nalidixic acid
neither. Interestingly, the phyla Tenericutes and Nitrospirae were
also affected by GABA, as was the case with nalidixic acid and
with sodium phosphate. This similar shift behavior indicates a
high robustness for Tenericutes, as well as a high sensitivity
for Nitrospirae. Nitrospirae are known to occur regularly in
wastewater treatment plants (Zhang et al., 2017); however, to
our knowledge, there are no reports that link Nitrospirae with
perturbated conditions in anaerobic digesters. At any rate, the
described sensitivity is supported by Daims (2014) work, which
highlighted the difficulties in cultivating Nitrospirae, especially
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FIGURE 5 | Taxonomic profiles of chemically stressed digester microbiomes: Taxonomic profiles are shown for all experiments (perturbation with nalidixic acid,
γ-aminobutyric acid [GABA], sodium phosphate and the control). Results are shown for the 8 most abundant phyla (A) and 10 most abundant genera (B). For
determining the most abundant phyla and genera, they were sorted after summing up their relative abundancies in all samples. The 16S-rRNA gene amplicons were
analyzed for the seed sludge (start) and at three time points during treatment (days 56, 70, and 77). For each timepoint 3 sludge samples were taken and analyzed.

the genus Nitrospira. The observed increase for Tenericutes due
to the application of all tested stressors is of particular interest, as
it is in concordance with a recent work by Braz et al. (2018), where
the increase in the abundance of Tenericutes was descrobed as a
consequence of an OLR shock.

Other phyla that were significantly impaired due to the
application of sodium phosphate were Aegiribacteria, Firmicutes,
Proteobacteria, Patescibacteria, and Fibrobacteres. Moreover,
there was a significant increase in the ratio of Verrucomicrobia,
Synergistetes, Lentisphearae and Atribacteria. Like the reactor
receiving nalidixic acid, reactors receiving GABA and sodium
phosphate showed only small taxonomic shifts (Figure 5), which
again highlights the robustness of the underlying microbiome.

To compare the differences in relative abundancies at
the genus level among perturbated reactors and the control
experiment (Figure 5B), differential abundance analyses

were applied here (Supplementary Tables S4–S6). The
most abundant genera, for which significant changes with
p < 0.05 were observed, were Trichococcus, Sedimentibacter,
Phascolarctobacterium, Cadidatus Caldatribacterium, and
Proteiniphilum.

With the addition of nalidixic acid, Trichococcus showed a
ratio 18.36%± 2.93% at day 56, which was significantly higher, by
8.80%, than the control. However, no significant differences were
detectable at day 70 between the control and the nalidixic acid-
receiving reactor anymore, suggesting a fast adaptation. A similar
observation was made by Mitchell et al. (2013), where ampicillin
with concentrations between 280 and 350 mg L−1 inhibited the
process only during the early stages. In concordance with this
observation, it has recently been described that sewage sludge
from wastewater treatment often contains considerable amounts
of antibiotic resistance genes (Mengli et al., 2019).
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With the addition of sodium phosphate, Trichococcus showed
a significantly lower ratio than in the control at day 70
Interestingly, Trichococcus was not detected in the initial sample
(anaerobic digested sludge from a waste water treatment plant).
The overall increase of Trichococcus at day 56 cannot be explained
by the addition of nalidixic acid, GABA or sodium phosphate, as
Trichococcus was enriched in the control as well.

Like Trichococcus, Sedimentibacter significantly decreased
with the addition of sodium phosphate. At day 56,
Sedimentibacter showed a ratio of 1.81% ± 0.17% and decreased
to a ratio of 0.63%± 0.09% on days 70 and 77. There were several
genera that were significantly enriched upon addition of sodium
phosphate in comparison with the control samples, namely,
Phascolarctobacterium, Candidatus Caldatribacterium, and
Proteiniphilum. At day 56, these three genera showed ratios of
0.02% ± 0.01%, 0.77% ± 0.12 and 0.59% ± 0.09%, respectively.
During the last two sampling time points the ratio of these
three genera increased to 3.19% ± 1.07%, 2.07% ± 0.46% and
1.96± 0.59%.

It should be stressed that the high sensitivity of Trichococcus
and Sedimentibacter, as well as the increase in relative abundance
of Candidatus Caldatribacterium, Phascolarctobacterium, and
Proteiniphilum, is likely linked to phosphate but not conductivity.
The highest observed conductivity values for the reactor receiving
sodium phosphate was 12.06 mS cm−1, but process disturbance
due to high conductivity values are usually observed at values
higher than 35 mS cm−1 (Ogata et al., 2016). By contrast, an
inhibitory effect due to high phosphate levels has already been
reported at a concentration of 70 mM (Paulo et al., 2005).
According to Paulo et al. (2005) the phosphate concentration
in the present study reached a level that already inhibited the
underlying biocenosis process; in total, approximately 20.5 g
L−1 was added, corresponding to 125 mM. Other authors
have described inhibiting effects due to elevated phosphorous
levels too. For example, Sharma and Singh (2001) described
phosphate as detrimental for anaerobic sludge granulation
during the treatment of distillery effluents. Mancipe-Jiménez
et al. (2017) described inhibitory effects due to a sudden
increase of phosphorus in the influent during anaerobic liquid
waste treatment.

From a total of 2995 OTUs, 25 changed their relative
abundance on day 56 significantly. On day 70, the number
increased to 80 significant changes, which was elevated again on
day 77 to 119 significant changes. This number might appear
small, but it has to be considered that 2960 OTUs had a relative
abundance of less than 1% in the total pool of sequences. To
reach a better impression of the severity of the induced stresses
at the community level, all significant changes (Supplementary
Tables S4–S6) were compared in Venn diagrams. These showed
that, with increasing concentrations of stressors, the number
of significant taxonomic shifts also increased (Figure 6).
From the eight genera that were affected similarly in all
three reactors, five showed a significant decrease and three
showed a significant increase. The five decreasing genera were
Gracilibacter, Geobacter, Syntrophobacter, and two uncultured
bacteria. One of these two uncultured bacteria could only be
classified on class level (Thermodesulfovibrionia) and the other

one on family level (Gracilibacteraceae). The three increasing
genera were Fermentimonas, Proteiniphilum and an uncultured
bacterium belonging to the family Acidaminococcaceae.

Comparing the shown taxonomic profiles to the existing
literature, it is immediately apparent that the number of works
addressing acidosis events on a bacterial level is limited. Many
works address acidosis events based only on chemical parameters.
Authors of more recent works also address the methanogenic
community (e.g., Steinberg and Regan, 2011; Lerm et al.,
2012; Tale et al., 2015), but bacterial communities remain
underrepresented in most of the works. Among the few works
addressing the bacterial community and in relation to the
results presented here, an article from Goux et al. (2015) is of
particular interest; as in the present study, Goux et al. (2015)
observed only small variations at the phylum level. Moreover,
the phyla Bacteroidetes, Firmicutes, Chloroflexi, Proteobacteria,
Cloacimonetes, Verrucomicrobia and Spirochaetes were also
abundant, and on lower taxonomic levels, Goux et al. (2015)
described a more intense shift behavior as well. Another work
addressing the bacterial community during organic overloading
is that of Braz et al. (2019). One of their findings was an
increased abundance of fatty acid fermenters and a disturbance
of syntrophic bacteria. These two findings are in concordance
with the finding presented here of decreased ratios for the genera
Geobacter and Syntrophobacter, which are known syntrophic
bacteria (Meher and Ranade, 1993; Liu et al., 2018). The
aforementioned increase in Fermentimonas and Proteiniphilum
is also in concordance with the described increase of fatty
acid fermenters in the work from Braz et al. (2019). Both
Fermentimonas and Proteiniphilum are known to produce VFAs
from a wide range of substrates (Hahnke et al., 2016).

In respect to the observed taxonomic profiles and the detected
changes it has to be highlighted that the repeated input of 150 ml
of digested sewage sludge during each feeding event might have
influenced the results. Invasion of microbial communities is
a problem, which has recently been highlighted by Kinnunen
et al. (2016). However, the used setting reproduces the normal
conditions in the industry and, additionally there are multiple
reasons for which it is likely that this had a minor impact on the
presented results: The sludge that was used as fed was the same,
which was used originally as inoculum. Therefore, the fed did
not introduce new kinds of organisms into the system. Moreover,
a comparative analysis was performed, in which all the reactors
shared the same feeding conditions and, thus, the same “input”
microbiota. Therefore, the comparisons are not influenced by this
factor. This is supported by a PCA (Figure 4), which shows that
the microbiomes diverged and that they were in the end very
different from the control.

Generalized Lotka–Volterra Modeling
To investigate the effect of the different perturbations on
the interactions between microorganisms, a gLV was applied.
The possibility for fast and robust assessment of microbial
interactions directly from microbial time series was recently
emphasized by Faust et al. (2018). This model can be used not
only to predict the predator-prey interactions in the shape of
Lotka–Volterra equations but also to detect a wider range of
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FIGURE 6 | Venn diagrams for genera exhibiting a dynamic behavior in comparison with the control in all reactors: Significant changes in frequency are shown for all
the days where DNA samples were analyzed (day 56, 70, and 77). Genera showing an increase in relative abundance are highlighted in green. Genera exhibiting a
decrease are highlighted in red. In some cases, the relative abundance of a genus was significantly increased by one stressor but significantly decreased with
another stressor. Such cases are highlighted in blue. The sum of all changes (blue, red, and green) is given in black. The total number of OTUs, which were
significantly affected in all the reactors is shown to the left of each diagram. Genera from each reactor were compared with the control and only results with a
significance of p < 0.05 were considered.

relationships, including competition, cooperation and neutralism
(Kuntal et al., 2019). Based on DNA sequencing, gLV has
already been applied various times to investigate microbial
interactions in the gut (Weng et al., 2017), in cheese (Mounier
et al., 2008), in the coffee-machine bacteriome (Vilanova et al.,
2015) or in bacteria grown on pine-tree resin-based medium
(Dorado-Morales et al., 2015).

Recently, a graphical user interface (GUI) based interactive
platform was published by Kuntal et al. (2019); this is available
online3, and it automates the estimation of the respective gLV
parameters, based on the following equation:

dxi

dt
= xi(ri +

n∑
j=1

∝ij xj). (1)

3http://web.rniapps.net/webglv

Here, dxi
dt corresponds to the rate of growth of species xi, ri

represents the intrinsic growth rate and ∝ij is the ‘interaction
coefficient’. gLV predictions are based on the algebraic sign
of the interaction coefficient. If this coefficient is positive,
a beneficial effect is assumed, while prejudicial effects are
derived from negative values of the parameter. Finally, if the
interaction coefficient is equal to zero, no interaction is assumed
between the two taxa.

In the present study, the most abundant bacteria were selected
for each condition according to their average relative abundance.
Only those OTUs present among the top-10 abundant bacteria
in all groups were kept for further Lotka–Volterra modeling (7
OTUs). Applying the gLV on the here presented set of taxonomic
data (Figure 7), more positive interactions among the studied
taxa were observed in the control experiment (24) than in the
rest of the conditions (23 with nalidixic acid, 15 with GABA
and 18 with sodium phosphate). In contrast, there were more
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FIGURE 7 | Ecological interactions among the most abundant bacteria in all samples, as deduced from generalized Lotka–Volterra model. Gray: negative interaction;
Green: positive interaction; Yellow: no interaction. The numbers 1 – 4 indicate the reactors with the respective stressors: 1: control; 2: perturbation with nalidixic acid;
3: γ-aminobutyric acid (GABA; FG); 4: sodium phosphate (FP).

negative interactions detected in the reactors with nalidixic acid
(23), GABA (34) and sodium phosphate (31) than in the control
(22). These results suggest that the perturbations introduced
in the system tend to create a more competitive environment,
in which microorganisms are more likely to interact negatively
with each other.

Apart from the total number of microbial interactions
(positive, negative, or neutral), it is important to determine
which types of pairwise interaction are observed among the
taxa in the different set conditions (Figure 7). Interactions
involving Trichococcus spp. or DMER64, in general, were stable
in the four conditions. In other words, Trichococcus spp. and
DMER64 tend to behave the same way (positively, negatively, or
neutrally) with the rest of the studied taxa in all the conditions.
However, the pairwise relationships involving other taxa were less
homogeneous (i.e., Cloacimonadaceae W5 negatively interacted
with Trichococcus in the control experiment, but positive
interactions between these two taxa were detected in the rest of
the conditions).

Of all the alternative perturbations, the treatment with
nalidixic acid proved to be the one with the deepest effects
in the interaction patterns compared with the control, whereas
the treatments with GABA and sodium phosphate tended to
reproduce the same microbial interactions observed in the
control (shared interactions of the control with: GABA = 26;
sodium phosphate = 27; nalidixic acid = 20). Indeed, the
treatment with nalidixic acid displayed a higher number of
interactions that were not found in the rest of the conditions
(unique interactions in the treatments with nalidixic acid = 11;
GABA = 5; sodium phosphate = 0).

Together, our results suggest that antibiotic treatment affects
the community interactions present in the anaerobic digesters in
a deeper way. Interestingly, all the applied digester conditions
resulted in changes in the interaction patterns of the studied
microbial taxa. This is of interest in terms of a work from
Scherlach and Hertweck (2018), which highlights that microbe–
microbe interactions can shape the specific “microenvironment”
due to the secretion of chemical mediators. In the context

mentioned above, therefore, it would be a promising approach
to combine the Lotka–Volterra model (based on 16S-rRNA gene
amplicon sequencing) with transcriptomics and metabolomics
in future works.

Although the Lotka–Volterra model does not guarantee
causality, the high number of genera for which the described
correlational behavior was observed suggests that this reflects a
biological relationship.

It should be highlighted that the present work was not
focused on methanogenic archaea, but rather, it concentrated
on bacteria. In the past, the stress responses of methanogenic
archaea were extensively investigated using stressors, such as
ammonium (Dai et al., 2016), light (Olson et al., 1991),
pH and VFAs (Staley et al., 2011). The common view
of such works is that, when comparing them to involved
bacteria, methanogenic archaea show high sensitivity. Although
methanogenic archaea are the most important microorganisms
in methane production, since they are performing the final step
of anaerobic digestion (methanogenesis), bacteria are key players.
Bacteria are responsible for the hydrolysis of complex polymers
and the conversion of resulting monomers into hydrogen,
acetate, and carbon dioxide, which are the main substrates for
methanogenic archaea (Robles et al., 2018). This degradation
process involves three phases (hydrolysis, acidogenesis, and
acetogenesis). Especially during acidogenesis, various metabolic
intermediates are formed; these are of high value for the
bio-based industry (Wainaina et al., 2019). The possibility of
producing such metabolites during anaerobic digestion also
raises the question of how the robustness of the involved bacteria
might be overcome in order to manipulate the spectrum of
yielded metabolites. In this vein, a recent review article from
Strous and Sharp (2018), which explained the importance of
‘designer microbiomes for environmental, energy and health
biotechnology,’ can be highlighted.

Results from applying the Lotka–Volterra model for the first
time on anaerobic digestion show that microbiomes of anaerobic
digesters are not only robust and redundant, but also surprisingly
flexible in terms of microbial interactivity. This flexibility
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indicates that the manipulation of anaerobic microbiomes at the
level of microbial interactivity is an ambitious goal that may be
achieved more easily with constant digester conditions to prevent
the alteration of microbial interaction patterns.

CONCLUSION

Emanating from the same microbiome and using different
stressors (nalidixic acid, GABA and sodium phosphate), multiple
taxonomic shifts were caused for subsequent analysis of
populational dynamics. Although the aim of the present work
was not to characterize the respective stressors in detail, it can be
concluded that sodium phosphate has a particularly strong effect
on the bacterial biocenosis, and in contrast, taxonomic profiles
were surprisingly stable after addition of nalidixic acid and GABA
(in spite of a clear acidosis for the latter case). Taxonomic
profiles on phylum level were surprisingly robust. At the genus
level, important taxonomic variations were observed especially
for the genera Trichococcus, Candidatus Caldatribacterium,
Phascolarctobacterium, Proteiniphilum, Gracilibacter, Geobacter,
Syntrophobacter, and Fermentimonas. Therefore, these genera
may be promising targets for the surveillance of anaerobic
digester microbiomes.

Main objective in the present study was to trigger —and thus
shed light— on microbial interactions, based on the gLV model.
Except for sodium phosphate, the addition of the respective
stressors did not alter taxonomic profiles drastically, indicating
a high robustness for the bacterial biocenosis in digested sewage
sludge. Interestingly, potential ecological interactions among the
key players were strongly affected by all treatments, and in
some cases, two pairs of genera showed negative, positive or no
correlation, depending on the treatment. Although the presented
work suggests a massive resilience and stability of the underlying
bacterial biocenosis in respect to the relative abundance of
involved bacteria, a highly flexible behavior was observed in
terms of microbial interactivity.”

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in the https:
//www.ncbi.nlm.nih.gov/bioproject/PRJNA554976.

AUTHOR CONTRIBUTIONS

BS and CA performed anaerobic digestions experiments. AL-P,
CV, and CA performed the taxonomic analyses. BS, CA, AL-P,
MP, CV, and CD were writing the manuscript.

FUNDING

This research was funded by the German Ministry of
Economic Affairs and Energy (grant numbers 16KN070128
and 16KN070126). Funding by the European Union

through the BioRoboost project, H2020-NMBP-TR-IND-
2018-2020/BIOTEC-01-2018 (CSA), Project ID 210491758
is acknowledged.

ACKNOWLEDGMENTS

We are grateful for funding of the work by the German
Ministry of Economic Affairs and Energy (grant numbers
16KN070128 and 16KN070126). Moreover, we thank the
Spanish Ministry of Science, Innovation and Universities
for funding the Ph.D. of Adriel Latorre-Pérrez (Doctorado
Industrial Fellowship, reference DI-17-09613). Finally, we are
grateful for open access funding by the publication fund of
the TU Dresden and for funding by the European Union
through the BioRoboost project, H2020-NMBP-TR-IND-2018-
2020/BIOTEC-01-2018 (CSA), Project ID 210491758.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmicb.2020.
00867/full#supplementary-material

FIGURE S1 | Analysis of total volatile fatty acids (TVFAs): The concentrations of
formic acid, acetic acid, lactic acid, propionic acid, iso-butyric acid, butyric acid
and valeric acid are shown for the control (A), and for the reactions including
nalidixic acid (B), GABA (C), and sodium phosphate (D).

TABLE S1 | Differential abundance analysis at the phylum level to compare the
control and the reactor receiving nalidixic acid: The log2FoldChange of the
normalized abundance was calculated using the DESeq2-package (Love et al.,
2014). p-values of the respective changes were adjusted using the
Benjamini-Hochberg method.

TABLE S2 | Differential abundance analysis at the phylum level to compare the
control and the reactor receiving γ-aminobutyric acid (GABA): The
log2FoldChange of the normalized abundance was calculated using the
DESeq2-package (Love et al., 2014). p-values of the respective changes were
adjusted using the Benjamini–Hochberg method.

TABLE S3 | Differential abundance analysis at the phylum level to compare the
control and the reactor receiving sodium phosphate: The log2FoldChange of the
normalized abundance was calculated using the DESeq2-package (Love et al.,
2014). p-values of the respective changes were adjusted using the
Benjamini–Hochberg method.

TABLE S4 | Differential abundance analysis at the genus level to compare the
control and the reactor receiving nalidixic acid. The log2FoldChange of the
normalized abundance was calculated using the DESeq2-package (Love et al.,
2014). The p-values of the respective changes were adjusted using the
Benjamini–Hochberg method.

TABLE S5 | Differential abundance analysis at the genus level to compare the
control and the reactor receiving γ-aminobutyric acid (GABA). The
log2FoldChange of the normalized abundance was calculated using the
DESeq2-package (Love et al., 2014). The p-values of the respective changes were
adjusted using the Benjamini–Hochberg method.

TABLE S6 | Differential abundance analysis at the genus level to compare the
control and the reactor receiving sodium phosphate. The log2FoldChange of the
normalized abundance was calculated using the DESeq2-package (Love et al.,
2014). The p-values of the respective changes were adjusted using the
Benjamini–Hochberg method.

MATERIAL S1 | Calculations.
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