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Nine out of 10 people breathe air that does not meet World Health Organization pollution

limits. Air pollutants include gasses and particulate matter and collectively are responsible

for ∼8 million annual deaths. Particulate matter is the most dangerous form of air

pollution, causing inflammatory and oxidative tissue damage. A deeper understanding

of the physiological effects of particulate matter is needed for effective disease

prevention and treatment. This review will summarize the impact of particulate matter

on physiological systems, and where possible will refer to apposite epidemiological and

toxicological studies. By discussing a broad cross-section of available data, we hope

this review appeals to a wide readership and provides some insight on the impacts of

particulate matter on human health.
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INTRODUCTION

In preindustrial civilizations, domestic combustion of biomass was the primary source of hazardous
anthropogenic air pollution; the lungs of exhumed Ancient Egyptian mummies have been found
blackened by it (1, 2). In Airs, waters and places written around the 4th century BCE, Hippocrates
considered the relationship between air quality and health, whilst in the 1st century AD, Seneca The
Younger wrote about the health benefits of escaping Rome’s “ruinousmess of steam and soot” (3, 4).
In response to Queen Eleanor’s objections to the “unendurable smoke” emitted from bituminous
sea coal fires, English Parliament passed the Smoke Abatement Law in 1273 (5). Nonetheless,
London’s air quality remained poor for centuries and was made significantly worse by the 12-
fold increase in coal consumption during the Industrial Revolution (6). In Bleak House, Charles
Dickens described the environment as “. . . Smoke lowering down from chimney-pots, making a
soft black drizzle, with flakes of soot in it as big as full-grown snow-flakes gone into mourning,
one might imagine, for the death of the sun. . . ” (7). As well as increased respiratory disease risk, air
pollution in Victorian Britain served as a selection pressure for peppered moth pigmentation. Here,
predators could easily distinguish light-colored wings set against surfaces blackened by soot, and
so over time darker wings were selected for and became the most common phenotype (8). After
World War II, mass-export of high-quality coal left Londoners with little choice but to burn low-
quality, high-sulfur lignite. In December 1952, cold weather increased coal use and a patch of high
air pressure prevented dissipation of the soot and sulfur dioxide filled smoke (9).Within 5 days, The
Great Smog of London killed around 12,000 people and precipitated the implementation of the UK
Clean Air Act 1956, which was shortly followed by similar legislation in Europe andNorth America.
In 1950, Europe and the United States contributed 85% of global CO2 emissions and by 2000
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this figure was closer to 50% (10). Throughout the second half
of the 20th century and beyond, industrialization of the Global
South resulted in East Asia and South-East Asia becoming major
contributors to global emissions (10). Today, of the 10 countries
with the highest pollution-associated death rates, two are in
South-East Asia (Bangladesh and India), two are in Europe
(Georgia and Bosnia and Herzegovina) and six are in Africa
(Chad, Nigeria, Somalia, Sierra Leone, Cote d Ivoire and Central
African Republic) (11). In these countries (and many others)
morbidity and mortality are driven by high population densities,
traffic emissions, coal-fueled power stations and domestic use of
biomass (12). Global socioeconomic inequity is a critical driver
of air pollution-associated deaths; low- and middle-income
countries account for 91% of the 8 million annual air pollution-
associated deaths (12). This review provides an overview of
the multiple physiological effects of particulate matter (PM)
air pollution, including those on the respiratory cardiovascular,
metabolic, endocrine, neurological and reproductive systems.
The authors’ intent has been to summarize a combination of
recent and significant work in this growing research field.

PARTICULATE MATTER

Particulate matter (PM) are solid compounds suspended
in air that are sufficiently small to be inhaled (Figure 1).
PM is categorized by particle diameter (measured in µm);
PM0.1, PM2.5 and PM10 whilst ambient concentration is
usually quantified as µg/m3. Some PM are of natural origin
(bushfires, dust, sea spray, aerosols, etc.) but anthropogenic
PM (diesel, coal and biomass combustion and emissions
from metal refineries etc.) are the most dangerous to health
(13). High atmospheric concentrations of human-made PM,
and toxic and oxidative chemical characteristics render them
disproportionately hazardous (13). Elemental and complex
chemical species of PM are diverse, with surface shape, chemistry
and charge impacted by emission source and environmental
conditions. PM chemistry can change through reactions with
other airborne PM and be affected by the oxidative effects of
ozone and low ambient pH (14, 15).

In air sampled from 187 counties in the USA between 2000
and 2005, 52 PM2.5 species were identified (16). Of this number,
only seven species made up 83% of total PMmass (Figure 2). PM
composition was found to be 28% organic carbon, 26%, sulfate,
12% nitrate, 11% ammonia, 5% elemental carbon, 1% silicon and
1% sodium (16). Components of the remaining 17% included
alkali metals (K, Cs & Rb), alkaline earth metals (Ca, B, Mg & Sr),
transition metals (Fe, Zn, Hf, Ta, V, Cd, Ti, Ag, Cu, Ir, M, Mn, Au,
Mg, Hg, W, Sc, Cr, Nb, Zr, Ni, Y, and Co) basic metals, (Al, Sn,
In, Pb, and Ga) semimetals (Sb), non-metals (P and Se), halogens
(Cl and Br) and lanthanides (Ce, La, Eu, Tb, Sm and As) (16).

PM EXPOSURE

When inhaled, larger diameter PM (>PM10) is limited to the
upper airway whilst smaller particulates (<PM2.5) can access
alveoli (Figure 3). PM2.5 can also cross respiratory endothelium,

enter capillaries and systemic circulation thereafter (17). From
the blood, PM2.5 can once again translocate endothelia once
more and get into multiple extrapulmonary organs. In addition
to inhalation exposure, particulates can enter circulation by
crossing olfactory epithelia and via the gastrointestinal tract
when swallowed after mucociliary removal from the lungs (18,
19). PM can damage endothelial cell layers as well as cross
them; PM2.5 has been shown to compromise nasal epithelia
intercellular tight junctions and reduce trans-epithelial resistance
(20). A study in humans using gold nanoparticles as an inert
proxy for PM demonstrated particles in the circulation as early
as 6 h post inhalation (21). Nanoparticles were also detectable in
the liver and in aortic atherosclerotic plaques and were detectable
in participants’ blood and urine for 3 months (21). In humans
and animals PM has been found in multiple organs including the
liver, kidneys and brain (17, 22–24).

DISEASE MECHANISMS

According to the World Health Organization, air pollution
and climate change are the collective No. 1 threat to human
health (25). Air pollution contributes to 9% of all global human
deaths, and of these, 58% are from ischemic heart disease
and cerebrovascular disease, 18% are from chronic obstructive
pulmonary disease and acute lower respiratory tract infections,
6% are from lung cancer. Causes of death in the remaining
18% are mixed and many (12). Not all PM equally toxic, with
the pathophysiological mechanisms varying between PM species
(26). PM are mutagenic, can cause oxidative damage, activate
inflammatory signal cascades and induce cell death (27–30).
Toxicological research has investigated the differential oxidative
and inflammatory effects of PM species (including black carbon,
ammonia, nitrate and sulfate) and PM of varying origin (13). A
common anthropogenic source of PM is incomplete combustion
of diesel, gasoline, coal, and biomass (13). Trace metal content
significantly contributes to the oxidative potential of PM (13,
26). The oxidative effects of PM can damage mitochondria,
endoplasmic reticulum and DNA, can be carcinogenic and
activate cell death signaling pathways (26). Inside cells, iron-
based PM can overwhelm superoxide dismutase and glutathione
peroxidase activity, inducing ferroptosis (29). PM2.5 can activate
cytokine-dependent autophagy pathways, signaling through toll-
like receptors, the Janus kinase-signal transducer and activator
of transcription (JAK-STAT) pathway, and via cyclooxygenase
2-mitochondrial and prostaglandin E synthase. Here, increased
tissue levels of C-reactive protein, tumor necrosis factor-α,
interleukins 1, 6 and 8 (31–34). Inflammatory, oxidative, and
toxic mechanisms are the primary effectors of PM-induced
cell damage. Tissue-specific pathophysiology is an important
determining factor in health outcomes, is discussed below and
outlined in Figure 4.

RESPIRATORY DISEASE

The lungs are the primary site of PM-induced pathophysiology
and best characterized in terms of the effects of PM
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FIGURE 1 | To scale illustration of the relative sizes of PM10, PM2.5, and PM0.1. Representative macrophage and mitochondria are included to scale for reference.

FIGURE 2 | Annual averages of major PM2.5 components (>1 total mass%)

in 187 USA counties between 2000 and 2005. Values from (16).

exposure. Each 10 µg/m3 increase in ambient PM10 has
been linked to a 0.58% increase in respiratory mortality,
whist the same increase of PM2.5 has been associated
with a 2.07% increase in respiratory disease hospitalization
(35, 36). Research has shown human exposure to PM to
be associated with multiple respiratory diseases including
chronic obstructive pulmonary disease, asthma, interstitial
lung damage and lung cancers (37–39). For patients
with idiopathic pulmonary fibrosis, PM exposure has

been shown to correlate with reduced lung forced vital
capacity (39).

Ex vivo analysis of mouse lungs exposed to PM2.5 for
three months exhibited significantly elevated levels of PM2.5,
carbon monoxide, nitrogen oxides, interleukin-4, tumor necrosis
factor-α and transforming growth factor-β1 when compared
to controls (40). Of these circulating factors, interleukin-4 is

known to promote B lymphocyte production of immunoglobulin

E; a driver of allergic diseases including asthma and chronic
obstructive pulmonary disease (41). PM2.5 exposure has been
shown to induce pulmonary fibrosis both in vivo and in vitro
experiments (42). PM2.5 increased tissue concentrations of
transforming growth factor-β1; a fibroblast chemokine that can
decrease protease secretion and increase extracellular expression
of collagen and fibronectin (43). In a mouse model of idiopathic
pulmonary fibrosis, ex vivo histological analysis revealed that
exposure to black carbon PM2.5 aggravated lung inflammation
and exacerbated histopathological changes to lung tissue
including increased inflammatory cell infiltration and epithelial
cell hyperplasia (44). This study also found that exposure to black
carbon PM2.5 exacerbated already elevated interleukin-6 mRNA
and reduced interferon-γmRNA expression (44). Together, these
preclinical studies not only highlight the potential danger of
PM to health but also suggest that PM can increase the severity
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FIGURE 3 | PM 10 is restricted to the upper airway and digestive system whilst PM2.5 and PM0.1 can be inhaled deeply into the lungs, translocate epithelial barriers

and gain access to multiple organ systems.

of existing health conditions like idiopathic pulmonary fibrosis.
Increased counts of neutrophils, lymphocytes, eosinophils, M1
andM2macrophages have been found in PM-exposed lung tissue

(40). Whilst M1 macrophages can induce oxidative damage to
lung epithelia, chronic elevation of M2 macrophages can cause
pulmonary fibrosis and lung cancer (45–47). Mechanisms by
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FIGURE 4 | Summary of organ systems exposed to airborne PM and diseases positively correlated with PM exposure.

which PM may induce fibrosis include increased intracellular
edema, microvilli density, lamellar bodies and the density of
macrophages containing endocytosed PM (40). In mice, PM2.5
exposure reduced mitochondrial density, increased NADPH
oxidase 2 expression, significantly reduced total lung capacity,
inspiratory capacity, and lung compliance (48). This same study
found that PM2.5 exposure increased lung epithelia expression
of N-Cadherin and reduced that of E-Cadherin; markers of
epithelial-mesenchymal transition, a process common to cancer
metastasis (48).

CARDIOVASCULAR DISEASE

Air pollution is associated with elevated cardiovascular disease
risk and cardiovascular disease-related mortality (49). PM2.5
exposure is linked to higher risk of heart attack, heart failure,
ischemic heart disease, stroke, atherosclerosis, arrhythmia,
hypertension, preeclampsia and neonatal hypertension (50–
52). Air pollution exacerbates cardiovascular mortality risk
for people with pre-existing cardiopulmonary disease (49).
In adults, exposure to PM exposure has been linked to
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elevated systolic blood pressure and elevated pulse pressure,
whilst in children, it has been found to associate with
increased mean pulmonary arterial pressure and increased
plasma endothelin-1 concentration (53, 54). Endothelin-1 is
an endogenous atherogenic vasoconstrictor and may contribute
to PM induced atherosclerotic plaque accumulation (55). The
Multi Ethnic Study of Atherosclerosis (MESA) found short-term
PM2.5 exposure to associate with to decreased flow-mediated
vasodilation and vasoconstriction, indicating that particulates
may impair endothelial function (56). Analysis of the sameMESA
cohort revealed a correlation between exposure to black carbon
PM and pulmonary vascular remodeling (57). Here, changes
in vascular volume – indicative of elevated blood pressure –
were comparable to the effect of >15 pack years of cigarette
smoking (57). PM exposure has been found to exacerbate high-
risk atherosclerotic plaque progression, plaque destabilization
and coronary calcification (58). PM exposure has also been
linked to atrial fibrillation and reduced heart rate variability, with
the later exacerbated by pre-existing diabetes (59). Preclinical
models have demonstrated that PM can induce hypertension in
healthy animals, secondary disease in animal models of heart
failure and hypertension, and induce symptoms of cardiovascular
dysfunction via central and renal cardiovascular regulation
disruption (60–63). Exposure of rats to black carbon PM for
4 weeks dose and time dependently increased blood pressure
(60). Four-day PM2.5 exposure to spontaneously hypertensive
rats significantly increased heart rate and blood pressure and
reduced heart rate variability (61). In a mouse model of chronic
left ventricular heart failure, PM2.5 exposure significantly
exacerbated lung oxidative stress, lung fibrosis, inflammation,
vascular remodeling, and right ventricle hypertrophy (62, 63).
Hypertensive, angiotensin II-infused apoe−/− mice, exposed to
PM2.5 for 4 weeks had a significantly increased incidence of
abdominal aortic aneurysm compared to controls (64). Here,
aortic aneurysm was associated with significant vascular elastin
degradation, increased maximal abdominal aortic diameter and
elevated expression of senescence proteins P16 and P21 (64).
Increased vascular P21 is implicated in the development
of atherosclerosis, causes of which include inflammation,
hemodynamic damage and aberrant lipid metabolism (65, 66).
Multiple models have shown PM2.5 exposure to stimulate
endothelial release of inflammatory cytokines and adhesion
molecules, promote macrophage infiltration, vascular smooth
muscle cell dysfunction and plaque formation (67). Hypertensive,
apolipoprotein-deficient mice exposed to PM2.5 for 3 months
exhibited increased atherosclerotic lesion area, hepcidin and
iron plaque depositions, increased plasma iron, ferritin, total
cholesterol, low density cholesterol, vascular endothelial derived
growth factor, monocyte chemoattractant protein-1 and pro-
atherosclerotic cytokines interleukin 6 and tumor necrosis
factor-α (64). Both blood pressure and heart rate are partially
regulated by the central nervous system, with sympathetic output
from the hypothalamus significantly impacting cardiovascular
tone (68). In wild-type mice, long-term PM2.5 exposure
has been found to increase basal blood pressure; an effect
that was reversed with central alpha-2 adrenergic receptor
antagonism. Concurrent inflammation of the hypothalamic

arcuate nucleus was observed in hypertensive PM2.5-exposed
mice (69). Increased noradrenergic signaling in the hypothalamic
periventricular nucleus is known to increase sympathetic output
and cardiovascular tone (70). Exposure of lean Brown Norway
rats to PM for 1 day increased noradrenaline concentrations in
the paraventricular nucleus and corticotropin releasing hormone
concentration in the median eminence (71).

RENAL DISEASE

Human kidneys filter ∼180 L of blood each day and are
therefore vulnerable to PM exposure (21, 72). In people,
PM2.5 exposure has been linked to an accelerated decline
in glomerular filtration rate, diminished glomerular function
during pregnancy, increased risks of chronic kidney disease,
end stage renal disease, renal failure and chronic kidney disease
mortality (72–74). Human studies have also revealed that
PM2.5 exposure to positively correlate with risk of albuminuria;
a marker of glomerular disfunction (72). A comparison of
renal biomarkers in welders and office workers revealed that
welders - exposed to much higher levels of PM2.5 that office
worker controls – had elevated plasma markers of renal
tubule damage; urinary kidney injury molecule-1 and neutrophil
gelatinase-associated lipocalin (75). Another study investigating
the potential for tubule damage in humans revealed a 10
µg/m3 increase in PM2.5 exposure to be associated with
increased nephritis hospital admissions (76). PM2.5 exposure
is associated with an elevated risk of adverse post kidney
transplant outcomes, including acute rejection, graft failure
and death (73, 74). A study specifically investigating the
impact of PM on post-transplant outcomes found a 10 µg/m3

increase of PM2.5 to correlate with a 1.31-fold increase in
the odds of transplant failure, a 1.59-fold increase in odds
of delayed graft function and a 1.15-fold increase in all-
cause mortality within 1 year of surgery (77). A similar
study revealed an increase of 1 µg/m3 in PM10 exposure to
be associated with increased risk of biopsy proven rejection,
graft failure and mortality (78). Intratracheal exposure of
PM2.5 to immunodeficient mice revealed no obvious renal
histopathology. However, PM exposure was associated with
elevated serum markers of renal damage including kidney
injury molecule-1, cystatin C and uric acid. Moreover, 14-day
PM exposure progressively increased renal concentrations of
malondialdehyde, hydrogen peroxide, glutathione peroxidase,
nuclear factor kappa-β, tumor necrosis factor-α, transcription
factor protein-65, NADPH oxidase 4 and heme oxygenase-1 (79).
In rats, sub-chronic exposure of PM2.5 resulted in elevated
plasma β-2-microglobulin and cystatin-C; serum markers of
early-stage kidney damage (80–82). PM exposure has also been
found to induce histopathological lung damage, increase median
blood pressure, increase urine volume and water consumption
(80–82). Exposure of rats to diesel emission PM significantly
reduced renal blood flow in controls and to a greater extent in
rats with adenine-induced chronic kidney disease (81). Similar
work in a mouse model of adenine-induced CKD revealed
that PM exposure elevated renal tumor necrosis factor-α,
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lipid peroxidation, reactive oxygen species, collagen deposition,
necrotic cell counts, dilated tubules cast formation and collapsing
glomeruli (49).

ENDOCRINE DISEASE

The known effects of cigarette smoke on reproductive and
thyroid hormones provide indications of the risks associated
with PM exposure. Cigarette smoke is a risk factor in Graves
hypothyroidism and is associated with elevated plasma cortisol,
aldosterone, adrenal androgens and impacts female fertility by
increasing steroid hormone binding globulin and decreasing
circulating free estrogens (83–86). Several PM species have been
identified as endocrine disrupting chemicals (87). In humans
PM exposure is linked to insulin resistance, elevated circulating
adipokines, hypothyroidism and (mixed) estrogenic effects (88).
Thyroid hormones triiodothyronine (T3) and thyroxine (T4)
regulate metabolic rate, cardiovascular tone and promote growth
rate during fetal development and early life (89). In humans,
PM exposure is associated with decreased plasma T4 both
in pregnant women and new-borns, as well as congenital
hypothyroidism and reduced infant birth weight (90). Black
carbon, ammonia, organic matter and nitrate PM species appear
to have the strongest links to thyroid dysfunction (91–94).
Effective insulin signaling is required for glucose homeostasis,
and insulin resistance is closely associated with obesity and
is a risk factor for the onset of type-2 diabetes (95). PM
exposure is associated with insulin resistance and non-alcoholic
fatty liver disease, driven by oxidative stress and dyslipidaemia
(96, 97). Together these studies highlight the link between
air pollution and metabolic diseases including diabetes. Of
>106 chemicals to which gas and oil extraction workers are
exposed, 21 have been shown to exert estrogenic, androgenic
and/or steroidogenic effects (98). Some chemicals identified
as impacting endocrine function include benzene, toluene,
ethylbenzene xylene, mercury, polychlorinated dibenzodioxins
(PBDDs) and several polycyclic aromatic hydrocarbons (PAH)
(88, 98, 99). Atmospheric sources of PAHs are vehicle emissions
and biomass and coal combustion. Low molecular weight PAHs
are in gas phase whereas high molecular weight PAHs are bound
to the surface of PM (100). PAHs are classed as endocrine
disrupting compounds and have been found to both increase
and decrease estrogen receptor mRNA expression and function
(REF). Estrogenic dysfunction has been shown to be both
direct at estrogen receptors and indirect via aryl hydrocarbon
receptor (AhR) signaling (101, 102). PBDDs also exert endocrine
effects via AhRs, and preclinical experiments have shown AhR-
mediated effects of dioxin exposure to include weight loss,
reproductive and developmental toxicity, tumorigenesis and
immune system dysfunction (103). PM contains many metal
elements, some of which interfere with estrogenic signaling
by mimicking endogenous estrogens (104). Metalloestrogens
include aluminum, selenium, antimony, arsenic (arsenite;
NaAsO2), barium, cadmium, chromium, cobalt, copper, lead,
mercury, nickel, tin and vanadium (vanadate; V2O5) (16,
104).

OBESITY AND DIABETES

In humans, the association between PM2.5 exposure and obesity
is dependent on age, gender and socioeconomic demographic
(105, 106). A growing body of evidence indicates that PM2.5
exposure is a risk factor for reduced skeletal muscle mass, obesity,
diabetes and hypertension (107–109). Long-term PM exposure is
associated with a high risk for type 2 diabetes, and road traffic-
specific PM is correlated with an elevated risk (110). Increased
incidence of type-2 diabetes remains when adjusted for age,
body mass index (BMI), and socioeconomic status (111, 112).
PM exposure is associated with higher levels of circulating
complement factor 3 (C3c), andwomenwith elevated plasmaC3c
are more susceptible to diabetes than those with low C3c (112).
PM2.5 exposure is associated with a faster decline in insulin
sensitivity during childhood and higher BMI by age 18 (113–
115). The associated between PM exposure and hypertension
is greater in overweight and obese children (116). In animal
studies, exposure of rats to PM increased chocolate consumption
whereas in chow-fed wild-type mice, 10-week PM2.5 exposure
increased visceral fat mass, insulin resistance and adipose tissue
inflammation (117, 118). In mice, short-term PM exposure
increased food intake, fat mass and UCP-1 expression in brown
adipose tissue (119). PM exposure also induced hypothalamic
inflammation indicated by increased microglia density, increased
toll-like receptor-4 and elevated inhibitory nuclear factor-
kappa-B-kinase-epsilon expression (119). After 12 weeks of PM
exposure, mice exhibited increased food intake and elevated
fat mass and had lower energy expenditure. Mice had elevated
levels of plasma leptin and insulin and increased Homeostatic
Model Assessment for Insulin Resistance (HOMA-IR) indicators
of insulin resistance (119). This same study also revealed that
PM exposure decreased hypothalamic satiety markers, including
reduced levels of phosphorylated STAT 3, and diminished
proopiomelanocortin expression (119).

PM exposure to mice was found to induce hepatic oxidative
stress, inflammation, negatively affect glucose tolerance and
induce insulin resistance (96, 120). Interestingly PM exposure
has been found to increase hepatic triacylglycerols, free fatty
acids and cholesterol levels in female but not in male mice
(96). In addition to insulin resistance, PM exposure has
been shown to exert toxic effects directly on the pancreas
(121). In a streptozotocin-induced mouse model of type-1
diabetes, PM from diesel exhaust fumes exacerbated pancreatic
cell vacuolation and islet cell apoptosis, increased pancreatic
amylase activity, increased expression of oxidative stress markers
8-isoprostane and superoxide dismutase and reduced levels
of the antioxidant glutathione peroxidase (121). In a rat
model of gestational diabetes PM exposure induced maternal
pancreatic inflammation indicated by diminished pancreatic
glucose transporter-2 expression (122).

GASTROINTESTINAL DISEASE

Mucociliary clearance of PM from the lungs followed by its
ingestion within saliva leads to gastrointestinal PM exposure.
A growing body of preclinical data has revealed PM-induced
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gastrointestinal inflammation and gut microbiome changes
(123–125). In mice, PM exposure altered the relative proportions
of microbiota component species, impaired gut permeability
through oxidative stress and increased proinflammatory cytokine
expression in an interleukin-10 knock outmodel of inflammatory
bowel disease (123–125). However, epidemiological studies have
not yet identified a clear link between PM exposure and
inflammatory bowel disease (126).

NEUROLOGICAL DISEASE

Increased ambient PM concentration positively correlates with
the incidence of Alzheimer’s disease, Parkinson’s disease,
Multiple Sclerosis, dementia and autism spectrum disorder
(Figure 2) (127). Long-term PM2.5 exposure significantly
increased age adjusted risk of mortality and hospital admission
for Alzheimer’s disease, Parkinson’s disease and non-Alzheimer’s
disease dementia (128). This study found the strongest
correlation to exist between PM2.5 and Alzheimer’s disease
(128). One longitudinal study found that people living within 50
meters of a main road had a 12% greater chance of dementia
diagnosis (129). PM2.5 exposure is linked to faster decline in
new learning and immediate recall, as well as MRI-detected gray
matter atrophy in brain areas vulnerable to Alzheimer’s disease
pathology (130). PM2.5 exposure has been linked to Alzheimer’s
specific cognitive impairments (CERAD score but not ABC
score) however post-mortem analysis of neuropathology in the
brains of Alzheimer’s disease patients failed to reveal any link
between PM2.5 exposure 10 years before death, and disease
progression indicated by Braak stage (131). The impact of specific
PM (including black carbon, organic matter, nitrate, sulfate,
sea salt and soil) exposure on the rate of initial Parkinson’s
disease hospitalization in New York State was investigated. This
study revealed that with each standard deviation increase in
either nitrate or organic matter PM, the risk of hospitalizations
increased 1.06-fold (132).

PM 0.1 can cross the blood brain barrier and cause
inflammatory and oxidative tissue damage as well as microglial
activation (133). Glutamatergic excitotoxicity is a common
reported endpoint for acute PM induced pathophysiology in
the central nervous system. PM has been found in neurons,
glia, endothelium, choroid plexus ependymal cells, cerebrospinal
fluid, nasal epithelium, and olfactory epithelium of individuals
subjected to PM exposure (134). PM2.5 has been found to reduce
nervous system expression of the tight junction proteins, zonula
occludens 1 and 2 (135). This study found a compromised blood
brain barrier permeable to macrophage infiltration, and nervous
system tissue subject to glutamatergic excitotoxicity, triggered
by macrophage-derived glutamate (135). In mice, PM2.5 has
been shown to reach the olfactory bulb and induce microglial
activation and glutamatergic excitotoxicity that could be blocked
with the antioxidant N-acetylcysteine (136).

Alzheimer’s disease is characterized by cortical and
hippocampal amyloid-β plaque and tau tangle deposition.
Amyloid-β plaque formation and gliosis underlie at least some
of the cognitive deficits associated with AD progression (137).

In a transgenic mouse model of Alzheimer’s disease, exposure to
diesel emission PM2.5 exacerbated amyloid-β plaque deposition,
and increased astrocytosis and microgliosis. Additionally,
elevated inflammatory cytokines including tumor necrosis
factor, nuclear factor-α, interleukins 1β and 6, interferon-γ
and macrophage inflammatory protein-3α were identified
in the cortices of double transgenic mice (138). In a similar
study, 13-week exposure to diesel exhaust PM also accelerated
cortical amyloid-β plaque deposition, an effect associated
with significant impairments to motor coordination (139).
Parkinson’s disease is caused by loss of dopaminergic neurons
in the substantia nigra of the basal ganglia. Neuron loss results
in diminished cortical input and associated behavioral and
cognitive deficits. In a rotenone-induced mouse model of
Parkinson’s disease, PM2.5 exposure induced mitochondrial
dysfunction, oxidative stress and apoptosis in the substantia
nigra. In the same study, PM exposure also exacerbated motor
and somatosensory deficits (140). Multiple Sclerosis (MS) is a
progressive, demyelinating and neurodegenerative disease of
the CNS. Short-term PM exposure is associated with increased
MS hospital admissions and relapse (127). In a mouse model of
lipophosphatidylcholine-induced demyelination, PM exposure
impairs myelin repair and sustains astroglia and microglia
dependent neuroinflammation. PM2.5 exposure to rats impaired
spatial learning and memory, inquiring ability and sensory
function, these changes were related to ultrastructural changes to
mitochondria and myelin (141). Mice exposed to PM2.5 for 10
months developed structural hippocampal alterations including
diminished apical spine density and dendritic branching of
hippocampal neurons and behavioral studies revealed reduced
spatial learning and memory impairments (142).

DEVELOPMENTAL AND GESTATIONAL
DISEASE

PM2.5 has been found on the fetal side of the placenta.
Given the ability of PM to cross endothelial barriers, it is
possible that during pregnancy, PM impacts gestation at the
level of the mother, the fetus and the placenta. The placenta
is critical to fetal development and dysfunction can lead to
preeclampsia, gestational diabetes, fetal growth restriction fetal
thrombotic vasculopathy, congenital heart defects, reduced birth
size, birth weight, preterm birth, and infant mortality (143–
151). Pathophysiological mechanisms of PM-induced placental
damage may include oxidative stress, inflammation, coagulation
and endothelial dysfunction (152).

In rodents, PM exposure at later gestational stages has
been shown to decrease gestational duration and birth weight
(153). A similar study also found that this lower body weight
was exacerbated during lactation. Here, pups exposed to PM
in utero were even lighter relative to controls by time of
weaning (154). In rats, PM exposure increased blastocyst
absorption, reduced maternal weight gain and fetal weight
(155). PM2.5 exposure to pregnant Sprague Dawley rats caused
increased blood pressure of pups as well as reduced sodium
excretion, reduced renal dopamine 1 receptor expression and
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dopamine 1 receptor-mediated natriuresis and diuresis (156).
The placentas of mice exposed to PM during gestation, exhibited
increased inflammation and embolism, furthermore maternal
blood contained elevated circulatory mononuclear cells, platelets
and levels of interleukin-6 (155). At the embryonic level,
trophoblasts have been shown to endocytose PM and when
exposed to PM, human trophoblasts have been found to exhibit
reduced cell growth, endoplasmic reticulum stress and decreased
beta-human chorionic gonadotropin secretion (157).

PERSPECTIVE AND CONCLUSIONS

It is well documented that PM is associated with harmful
outcomes to animal and human health. In addition to direct
exposure of the respiratory system, airborne particulates can
cross endothelial barriers, enter circulation, and accumulate in
multiple organ systems. As we integrate current environmental
changes in our research a rigorous multidisciplinary approach
is necessary to ascertain the extent to which individual
and relevant combinations of PM impact human health.
Understanding the exact inflammatory, toxic and oxidative
mechanisms of pathophysiology in all exposed physiological

systems is needed in order to improve global health outcomes.
More preclinical research into the respiratory, cardiovascular,
endocrine, metabolic, digestive, reproductive and neurological
effects of PM exposure is required to inform prevention,
treatment, and policy change. Future work in the field of
pollution and physiology should determine the extent of damage,
mechanisms of pathophysiology, time course and reversibility
of PM induced health outcomes. Due to the ubiquity of PM in
the organs of exposed subjects, the extent of required research is
vast, but will undoubtedly expedite improved methodologies of
prevention and treatment for PM associated diseases.
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