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Abstract
Optimizing land-use allocation is important to regional sustainable development, as it pro-

motes the social equality of public services, increases the economic benefits of land-use

activities, and reduces the ecological risk of land-use planning. Most land-use optimization

models allocate land-use using cell-level operations that fragment land-use patches. These

models do not cooperate well with land-use planning knowledge, leading to irrational land-

use patterns. This study focuses on building a heuristic land-use allocation model (PSOLA)

using particle swarm optimization. The model allocates land-use with patch-level operations

to avoid fragmentation. The patch-level operations include a patch-edge operator, a patch-

size operator, and a patch-compactness operator that constrain the size and shape of land-

use patches. The model is also integrated with knowledge-informed rules to provide auxil-

iary knowledge of land-use planning during optimization. The knowledge-informed rules

consist of suitability, accessibility, land use policy, and stakeholders’ preference. To validate

the PSOLA model, a case study was performed in Gaoqiao Town in Zhejiang Province,

China. The results demonstrate that the PSOLA model outperforms a basic PSO (Particle

Swarm Optimization) in the terms of the social, economic, ecological, and overall benefits

by 3.60%, 7.10%, 1.53% and 4.06%, respectively, which confirms the effectiveness of our

improvements. Furthermore, the model has an open architecture, enabling its extension as

a generic tool to support decision making in land-use planning.

1. Introduction
Land-use allocation is a process of allocating different activities or uses to specific units of area
within a geospatial context, to maximize a spectrum of social, economic, and ecological benefits
[1]. It is a complicated resource allocation problem involving large volumes of data, complex
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spatial operations, and multi-objective trade-offs. There are tons of land use simulation models
in literatures such as cellar automaton (CA) [2], Land Use Scanner [3], CLUE-S [4], Land
Transformation Model (LTM) [5], Classification And Regression Trees (CART) and Multivari-
ate Adaptive Regression Splines (MARS) [6]. However, these simulation models are aim to pre-
dict future land use, not to optimize land use spatial configuration. These models are limited to
optimize land use for only generate few land use scenarios. Optimization methods, such as
exact methods and heuristic methods, can generate much more land use schemes to search for
a better solution. In this paper, we focus on land use models with optimization methods.

Exact methods, such as linear programing (LP) [7–11] and integer programing (IP) [12–
15], have been utilized to solve land-use allocation problems. However, land-use allocation is
always a non-linear, multi-peak, geospatial-related problem. In most cases, it is impossible to
generate optimal solutions using exact methods over a large area with non-linear objectives.
Such complicated non-linear multi-objective optimization problems, as a form of non-deter-
ministic polynomial (NP) hard problem, require heuristic methods for executing the optimiza-
tion processes [1].

Heuristic methods are capable of generating near-optimal solutions with an acceptable time
cost. They have no limitations to the form of the objectives and constraints. Many land-use
allocation models have been developed using heuristic methods: Aerts [16] applied simulated
annealing (SA) to the multi-objective site selection problem; Cao and Batty [17] utilized a
genetic algorithm (GA) to generate several optimized solutions in urban land-use allocation;
Liu [18] introduced ant colony optimization (ACO) for zoning protected ecological areas; and
Hu [19] developed a particle swarm optimization (PSO) model for the optimal allocation of
earthquake emergency shelters.

Most land use optimization models with heuristic methods, however, allocate land use
using cell-level operations. These models divide land-use patches into isolated grids to allocate
land use cell by cell. When the models operate at a fine resolution such as 25m � 25m, 50m �

50m, fragmentation happens. In practice, local authorities manage land use at the patch level;
therefore, there is a gap between theory and practice in the level of operations. Masoomi [20]
developed a model to optimize urban land-use at the patch level using polygon-representation.
But the model was limited to combining, splitting, or otherwise modifying the shapes of land
use patches, whereas these modifications are potentially desirable in practice [21]. Liu [22]
used cell-level operations to modify land use patches with grid-representation. The cell-level
operations with a fine resolution overlooked patch-level constraints, breaking down land-use
adjacency and connectivity. Fragmented land-use was observed in some local areas. It is a chal-
lenge to reconcile the desire of modifying land use patches and the demands of keeping land
use adjacency and connectivity.

Another deficiency in these land use optimization models is the absence of land-use plan-
ning knowledge. The models are stochastic without possessing an understanding of the under-
lying mechanisms of land-use change [18]. Land-use transitions are heavily reliant on
transition probabilities, which inevitably misdirect land-use conversions in certain local areas.
Land-use planning knowledge such as conversion costs, suitability, and land use policies should
be integrated to help the optimization models to do land use transitions. Liu [23] proposed a
model integrated with social-economic driving forces to transform land use, but the model
only utilized the driving forces to adjust transition probabilities, while the transitions were still
random. Liu [24] coordinated land-use competitions using game theory to direct land-use
transitions, but the coordination of incompatible land uses was a form of post-processing that
was loosely coupled in the model, which is hard to operate in practice. Other modellers draw
attention to the design of various encoding schemas and spatial operators, without realizing
the importance of land-use planning knowledge [17, 25–28].
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This study focuses on building a heuristic land-use allocation model using particle swarm
optimization (PSO). To overcome the aforementioned shortcomings, the model is integrated
with patch-level operations and knowledge-informed rules. The patch-level operations rebuild
land-use patches from land-use grids, making it possible to implement patch-level constraints.
The patch-level operations include a patch-edge operator, a patch-size operator, and a patch-
compactness operator that constrain the size and shape of land-use patches. With patch-level
operations, the model is capable of optimizing at the patch level without losing the ability of
land-block modification.

Knowledge-informed rules provide priori knowledges to help optimization models generate
better land use scheme with less time consumption. Empirical evidence indicates that spatial
allocation problems can be solved faster and more easily using knowledge-informed rules [29].
Knowledge-informed spatial optimization is a promising approach to improving the efficiency
and effectiveness of spatial allocation solutions [30]. In this study, knowledge-informed rules
are infused to provide the domain knowledge of land-use planning during optimization. We
consulted departments of land management and experts in relevant fields to acquire a knowl-
edge base of land-use planning. A set of knowledge-informed rules was constructed on the
aspects of suitability, accessibility, land use policy, and stakeholders’ preferences.

In this article, a land-use allocation model (PSOLA) with particle swam optimization is pro-
posed to assist with decision-making in land-use planning. The rest of the article is organized as
follows. Section 2 formulates the land-use allocation problem. The techniques to build the model,
especially the patch-level operations and the knowledge-informed rules, are described in Section
3. In Section 4, we applied the model in a study area, and the results and discussion are presented
in the following section. Finally, the conclusions and future work are presented in Section 6.

2. Land-Use Allocation Problem Formulation
Land-use allocation is a type of resource allocation problems (RAP) [31]. The resource is the
land, which is subdivided into a finite number of units within a region. The purpose is to allo-
cate various land use activities to suitable locations to maximize a spectrum of social, economic,
and ecological objectives. A land-use allocation problem can be defined as [32, 33]:

M ¼ ðX; S;O; FÞ ð1Þ
where X is the decision variable, which stands for the land-use type of each spatial unit. S is the
solution space representing all feasible land-use alternatives. When allocating K types of land-
use to N spatial units, S increases to N^K.O are the spatial and non-spatial constraints in the
allocation, and F is a spectrum of objectives. The goal of optimizing the land-use allocation is
choosing some solutions sopt that satisfy the condition:

FðsoptÞ � FðsÞ; 8s 2 S ð2Þ

In this study, the land-use allocation problem is described as allocating K land-use types to a
grid space with R rows and C columns, to maximize the land-use benefits F. F is a vector of
objectives f that evaluates the social, economic, and ecological benefits of the candidate solu-
tions. The land use type of each cell is represented by a binary variable xijk. When cell (i, j) is
allocated with land-use k, xijk = 1; otherwise xijk = 0 (Eq 4). The formulation of the land-use
allocation problem is:

Maximize : FðxÞ ¼ ðf1ðxÞ; f2ðxÞ; � � �; fNðxÞÞ ð3Þ

Subject to : xijk 2 f0; 1g; 8i 2 R; 8j 2 C; 8k 2 K ð4Þ
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XK

k¼1

xijk ¼ 1 ð5Þ

Lk �
XR

i¼1

XC

j¼1

xijk ¼ Qk � Uk ð6Þ

x
ijk
� Ok ð7Þ

Eq 5 regulates that a land unit can be allocated with only one land-use type. Eq 6 defines the
lower bound L and the upper bound U of each land-use type. The quantity of each land-use is
prescribed by the local bureau of land-use planning, which balances the land-use supply and
demand for future development. Eq 7 states that the land use allocation should comply with
other spatial and non-spatial constraints such as soil conditions, transportation requirements,
and land use policy.

The land use benefits F involve a set of sustainability objectives related to social equality,
economic development, and ecological protection [27]. To constitute a specific understanding
of sustainable development, some metrics are proposed to quantify these objectives:

Maximization of social benefit
A social sustainable system should emphasize the well-being of people and their communities
to promote social equality in living, health and education [27]. Compact land use leads to the
effective utilization of land resources, increasing the accessibility and convenience to public
services. Conversely, extremely compact land-use is undesirable, as it causes a reduction in
dwelling size, health risk from overcrowding, and higher crime rates associated with high-
density living [34]. Determining the compactness that is sustainable is highly subjective,
involving combinations of people's preferences on population density and commuting [35].
China is promoting the building of a new socialist countryside, aiming to improve the living
environment in rural areas and accelerating development of rural public services. Scattered
rural settlements are consolidated for compact land use, so the compactness of rural settle-
ments is used to quantify the social benefit. The basic neighbour method is chosen to evaluate
the compactness for simplicity (Eq 8).

fsocial ¼
X

ði;jÞ2O
xijk=NO ð8Þ

where O is the neighbours of the focused cell, usually a 3�3 Moore neighbourhood.

Maximization of economic benefit
GDP is a widely used metric to evaluate economic benefit. However, it is hard to estimate the
profit of each land use, as it varies with location and time. The urban area is a major contribu-
tion to the economic growth, whereas unlimited urban expansion would cause many side
effects, such as a grain production decrease and environmental pollution. Generally, the local
government sets an urban growth boundary to control urban expansion and ensure the
demands of economic development. So, the economic benefit is evaluated by Eq 9.

feconomic ¼ e�
ðx�mÞ2
2s2 ð9Þ
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Eq 9 is a normal distribution with the expectation of u, where u is the permissible maximum
urban area. σis a stretch factor controlling the extent of the normal distribution.

Maximization of ecological benefit
Forests provide enormous ecological benefits by reducing air pollution, slowing storm water
runoff, helping conserve energy, and providing wildlife habitats. The forest core area is the
interior area of a homogenous mature forest patch, which is very important because many spe-
cies primarily inhabit or reach their highest abundance in the forest core area. The core area
index (CAI) of a forest is utilized to quantify the ecological benefit, which equals the percentage
of the core area (Eq 10),

fecological ¼ Ncore=Nforest ð10Þ

where Ncore is the area of the forest core area, and Nforest is the total area of the forest.
Based on the previous metrics, the fitness function (Eq 11) is constructed using a weighted

sum method.

F ¼ w1 � fsocial þ w2 � feconomic þ w3 � fecological ð11Þ

where w1 + w2 + w3 = 1.

3. Specification of the PSOLAModel
In this section, we will provide the specifications to build the PSOLA model. The procedure for
optimizing land-use allocation using patch-level operations and knowledge-informed rules is
illustrated in Fig 1. First, a set of particles is initialized on the basis of the actual land-use map.
Each particle denotes a candidate land-use spatial pattern. Then, the particles are evaluated by
a fitness function composed of allocating objectives. Every particle updates its velocity and
position through a learning procedure from its own experience and those of its companions.
The learning procedure is iterated until some terminal conditions such as maximum genera-
tions or time consumption are fulfilled. To improve the ability of searching for optimal land-
use allocation schemes, the model is integrated with patch-level operations and knowledge-
informed rules. The patch-level operations equip the model with patch-level optimization and
the knowledge-informed rules direct rational land-use transitions. More details will be pro-
vided in Section 3.2 and Section 3.3.

3.1 A new discrete PSO for land-use allocation
Particle swarm optimization is inspired by the scattering and regrouping behaviour in bird
flocking or fish schooling [31]. It is a population and evolution based optimization technique
using a heuristic search [23]. In PSO, a candidate solution for a specific problem is called a par-
ticle. Each particle moves through the multi-dimensional problem space with a velocity that is
dynamically adjusted by its own experience and those of its companions [36]. Finally, particles
cooperate on exploring the problem space to find near-optimal solutions.

In a D-dimensional search space, the population is I. For the i-th particle in the d-th dimen-
sion, its position and velocity are x and v, respectively. The best position found by the particle
is the personal best pi, and the best position of the swarm is the global best pg. At time step t,
the particle updates its velocity and position as

vðt þ 1Þ ¼ wvðtÞ þ c1r1ðpi � xðtÞÞ þ c2r2ðpg � xðtÞÞ ð12Þ

xðt þ 1Þ ¼ xðtÞ þ vðt þ 1Þ ð13Þ
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Fig 1. Optimizing procedure of the PSOLAmodel.

doi:10.1371/journal.pone.0157728.g001

Fig 2. Process of a spatial unit converting its current land-use type to a new type.

doi:10.1371/journal.pone.0157728.g002
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where w is the inertia weight, which is employed to maintain the current speed; c1 is the cogni-
tive learning coefficient, which controls the tendency of approaching pi; c2 is the social learning
coefficient, which control the tendency of approaching pg; and r1 and r2 are random numbers
in [0, 1]. The particle is then evaluated by a fitness function. The PSO algorithm iterates the
process until reaching terminal conditions such as maximum generations or time
consumption.

The aforementioned algorithm is the basic PSO meant to solve problems in a continuous
solution space. However, the land-use allocation is a combinatorial optimization problem with
a discrete solution space [37]. To build a discrete PSO, the velocity v is modified to a K-dimen-
sional (K is the number of all land-use types) vector v, which represents transition probabilities
(Eq 14). The transition process is illustrated in Fig 2. A land unit updates its transition proba-
bilities through a learning process of the personal best type pi and the global best type pg (Eq
15). Then, the land unit converts to a new land-use type through a mutation process with a
roulette wheel based on its transition probabilities (Eq 16).

~vðtÞ ¼ ½P1; P2; � � �; PK 	 ð14Þ

~vðt þ 1Þ ¼ w~vðtÞ þ c1r1ðpi 
 xðtÞÞ þ c2r2ðpg 
 xðtÞÞ ð15Þ

xðt þ 1Þ ¼ xðtÞ �~vðt þ 1Þ ð16Þ
where⊝ is a learning operator, which acts to increase the probability of transforming to the
personal best type pi and the global best type pg, and� is a mutation operator, which mutates
to a new land-use type by a roulette wheel.

3.2 Patch-level operations
In previous works [24, 38, 39] on a heuristic model for land-use allocation using raster datasets,
they allocated land-use with cell-level operations (Fig 3A). Land parcels are divided into iso-
lated cells to be allocated cell by cell. This method of allocation has two main disadvantages.
First, algorithm suffers from low efficiency when the model is employed in a large region, as
the computational burden increases exponentially as the area grows. Many researchers have
found that a model takes hours to generate satisfactory solutions [25, 27]. Second, the model
breaks down land-use adjacency and connectivity, causing fragmentation and a low-intensity
land-use pattern.

Considering the disadvantages of cell-level operations, the PSOLA model allocates land use
using patch-level operations (Fig 3B). The procedure of allocating land use with patch-level

Fig 3. Cell-level operations (A) versus patch-level operations (B).

doi:10.1371/journal.pone.0157728.g003
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operations is illustrated in Fig 4. To support patch-level operations, the model first rebuilds
land-use patches by reclassifying land grids. Then, an upper level interface is provided for mod-
elers to design spatial operators. In this research, we designed three patch-level operators: a
patch-edge operator, a patch-size operator, and a patch-compactness operator. The operators
constrain the size and shape of land-use patches during optimization. Further details on these
operators will be provided in the following paragraph. Finally, a land use scheme is reallocated
until all patches are optimized by the patch-level operators.

Patch-edge operator (Fig 4A). In landscape ecology, it is a consensus that many ecosys-
tem processes respond differently to the interior and exterior of a forest parcel [40]. This fact
inspired us to suppose that land use activities also react differently to the core and edge of a
land-use patch. The core area is more stable due to its homogeneous surroundings, whereas
the edge area is volatile because of the edge effects at the boundary. The patch-edge operator
was designed to vary the reactions in the core and edge area. The operator splits a land use
patch into two distinct areas: a core area and an edge area. The core area is the inner part of a
land-use patch and the edge area is the boundary part. The operator only permits land-use
transitions in the edge area, while keeping the core area unchanged. During optimization, a
land use patch would expand or shrink from the edge area.

Fig 4. Procedure of allocating land use with patch-level operations.

doi:10.1371/journal.pone.0157728.g004
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Patch-size operator (Fig 4B). Patch size strongly governs the effectiveness of land use activ-
ities. Large arable land patches are propitious for mechanized farming, and large orchards are
convenient to be managed uniformly. Patch size can also affect species habitats, resource avail-
ability, competition, and recolonization. Many species are sensitive to the size of the habitat
because they need an area large enough to hunt for food. The patch-size operator constrains the
size of a land use patch, to guarantee that an area is large enough to support its land use activities.

Patch-compactness operator (Fig 4C). Compact land use increases the accessibility and
convenience of public services, leading to an intensive land-use pattern. The patch-compact-
ness operator optimizes the shape of a land use patch to increase the compactness of the patch.
A shape index (Eq 17) is used to evaluate the compactness of a patch.

SHAPE ¼ pi=min pi ð17Þ

where pi is the perimeter of land use patch i, and min pi is the minimum perimeter of this patch.

3.3 Knowledge-informed rules
Many heuristic land-use allocation models such as the genetic algorithm (GA) [1, 17, 28, 41],
ant colony optimization (ACO) [18], artificial immune systems (AIS) [33, 42] and particle
swarm optimization (PSO) [19, 20, 22], are global optimization models that pursue overall
optimal solutions to satisfy a host of global objectives. Those global optimization models are
limited in their understanding of the underlying mechanisms of land-use change [38], so the
domain knowledge of land-use planning should be integrated into the allocation models to
guide land-use transitions.

The PSOLA model introduces knowledge-informed rules to provide land-use planning
knowledge. According to Eq 16, the mutation process is driven only by transition probabilities.
It is a stochastic process leading to irrational land-use transitions. Hence, it is necessary to reg-
ulate these random land-use transitions using land-use planning knowledge to ensure a ratio-
nal land use pattern. Knowledge-informed rules are the auxiliary knowledge of the nature and
structure of spatial configurations. Knowledge-informed spatial optimization is a promising
approach to improving the efficiency and effectiveness of spatial allocation solutions. The
PSOLA model integrates the knowledge-informed rules T to guide the land-use transitions
during optimization. The mutation process is modified to consider the coupled effects of the
transition probabilities and knowledge-informed rules (Eq 18).

xðt þ 1Þ ¼ xðtÞ �~vðt þ 1Þ � T ð18Þ
The definition of knowledge-informed rules is a challenging task because of the many spatial

variables and parameters involved [43]. There are many ways to define knowledge-informed
rules such as artificial neural network (ANN), classification and regression trees (CART), mul-
tivariate adaptive regression splines (MARS) [6], multi-criteria evaluation (MCE) [44], ant col-
ony optimization (ACO) [45], and artificial immune system (AIS) [46]. In the PSOLA model,
we used a simple and direct method to acquire knowledge-informed rules. A questionnaire sur-
vey was distributed to the Bureau of Land and Resources, the Bureau of Land Use Planning,
and experienced experts in agriculture, forestry, and ecology, and we analyzed their suggestions
to produce a set of knowledge-informed rules. The knowledge-informed rules consist of suit-
ability, accessibility, land use policy, and stakeholders’ preferences, showed in Table 1:

According to the aforementioned techniques, we implemented the PSOLA model in C++.
The model uses the geospatial data abstraction library (GDAL) to access GIS data. The model
is also paralleled with the message passing interface (MPI) for efficiency. We open-sourced the
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model on GitHub (http://jingsam.github.io/PSOLA/) so that anyone who is interested in land-
use allocation using a PSO algorithm could use, modify or share it for free.

4. Case Study

4.1 Study area
Gaoqiao, an eastern coastal town in China, was taken as the study area. Gaoqiao is located 20
km to the southwest of Hangzhou City in Zhejiang Province (Fig 5). The landscape of this region
is mainly made up of plains and hills. The area has a monsoon climate of the subtropical temper-
ature zone, enjoying a temperate climate with plenty of rainfall and sunshine. Gaoqiao has 16
administrative villages, with a total area of 104.03 square kilometres and a population of 58600.

Gaoqiao boasts a rapidly developing economy and has become one of the most developed
towns in China. However, its blooming economic development activities also cause side effects.
A large amount of cultivated land has been arbitrarily converted to construction land to fulfil
the demands of economic development. This activity has caused some undesirable phenomena,
such as land waste, soil pollution, and ecological damage. For the purpose of sustainable devel-
opment, there is an urgent need to optimize the land-use allocation to balance the benefits of
social equality, economic development, and ecological protection.

4.2 Data processing
The data related to the land-use allocation are presented in Table 2. The land-use map pro-
duced by the Second National Land Survey was used as the base map. The period of land-use
planning is 2009–2020. Data are fused to the year 2009. A grey model GM(1,1) was used to pre-
dict the population in 2020 according to the socioeconomic data from 1996–2010. All spatial
data were rasterized or resampled to a resolution of 25 m. Each map was converted to a
515�545 grid with 280,675 cells. The suitability data were divided into four grades: highly suit-
able, suitable, marginally suitable, and unsuitable. The land-use was reclassified into 9 types:

Table 1. Knowledge-informed rules for land-use allocation.

Category Rule If Then

Suitability Suitability Target land-use type = arable land, orchard, forest, or grass AND
Suitability = highly suitable or suitable

OK for target land-use

Accessibility Farming radius Target land-use type = arable land AND Distance to residential
area � 1000m

OK for arable land use

Transportation Target land-use type = orchard AND Distance to roads � 500m OK for orchard land-use

Land-use policy Grain for Green Current land-use type = arable land AND Slope � 25 degrees Convert to forest land use

Max area Area of target land-use type < Qk
a OK for target land-use

Undeveloped area Current land-use type = grass, developed urban, mining area,
roads, water, or barren land

Keep current land-use status

Soil and water
conservation

Current land-use type = forest AND Distance to river � 50m Protected for forest land-use

Stakeholders’
preferences

Rural settlement
consolidation

Current land-use type = rural settlement AND Patch size � 10000
m2

Move to the nearest centralized
residential area

Density based design
constraint b

Neighborhood with target land-use type � 4 OK for target land use

a Qk is predefined by local general land-use planning.
bDensity-based design constraint (DBDC) is a spatial operator developed by Ligmann-Zielinska [47, 48] that facilitates compact neighborhood

development.

doi:10.1371/journal.pone.0157728.t001
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arable land, orchard, forest, grass, urban, rural settlements, mining area, roads, water, and bar-
ren land.

5. Results and Discussion

5.1 Model comparison
As described in Section 3, the PSOLA model has two improvements: the patch-level operations
and the knowledge-informed rules. To verify the effectiveness of these improvements, we built
four models with different improvement strategies as follows:

• Model A: with patch-level operations and knowledge-informed rules;

• Model B: with patch-level operations;

• Model C: with knowledge-informed rules;

• Model D: basic PSO.

Table 2. Data for the PSOLAmodel.

Data Source

Land-use map, road map Second National Land Survey (2007–2009)

DEM, slope map ASTER GDEM V1 (2009, 30 m, http://giscloud.cn/)

Suitability dataa, urban growth
boundaries

Gaoqiao Town Land Use General Plan (2010–2020)

Socioeconomic data Published statistical yearbooks (1996–2010, Bureau of
Statistics)

aSuitability data include the suitability evaluation map of arable land, orchard, forest, and construction.

doi:10.1371/journal.pone.0157728.t002

Fig 5. Study area.

doi:10.1371/journal.pone.0157728.g005
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The models were configured with the same parameters as shown in Table 3.
The convergence curves (Fig 6) show that Model A results in the highest fitness, while

Model D has the lowest. Model D converges after 15 iterations, while Model A needs 20 itera-
tions. Models B and C have the slowest convergence speeds, requiring 40 iterations. Model A
balances the needs of efficiency and effectiveness. Models B and C both have a good fitness at
the price of low convergence efficiency. Model D converges prematurely, resulting in its
remarkable disparity of fitness compared to the others. Hence, through the comparative analy-
sis of the convergence curves, it is evident that the improvements are effective.

For more evidence, we also examined the statistics of the result maps of the four models
(Table 4). Model A dominates the performance in the terms of the social, economic, ecological,
and overall benefits. The increases are 3.60%, 7.10%, 1.53% and 4.06%, respectively, when
model A is compared with model D. The time consumption of model A is 24.01% more than

Table 3. Parameters of Models A, B C, and D.

w c1 c2 w1 w2 w3 Population Iteration

1.0 2.0 2.0 0.33 0.33 0.33 128 50

doi:10.1371/journal.pone.0157728.t003

Fig 6. Convergence curves of Models A, B, C, D.

doi:10.1371/journal.pone.0157728.g006
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the fastest model C, as the improvements increase the computation complexity. Model B per-
forms slightly worse than model A but surpasses model C. This is because the metrics evaluat-
ing the social and ecological benefits promote compact development, and the patch-level
operation in model B preserve the patchiness of the land-use landscape to avoid fragmentation
and propel intensive land use. Model C attains 99.79% of the fitness of model A while only
needing 80.64% of the time consumption. This indicates that the knowledge-informed rules
help the model efficiently optimize land use. Model D, without any improvements, performs
the worst in every aspect. However, it is odd that model D does not spend the least time,
although it has the lowest computation complexity. The reason is that the algorithm will check
if a land-use transition is suitable before it accepts it. Without the guidance of knowledge-
informed rules, model D often fails to convert land use and dissipates much time on this check-
ing procedure.

From a comparative analysis of the models, it is clear that the improved PSOLA model
shows a significantly enhanced ability to solve complicated land-use allocation problems, with
better effectiveness.

The local government have provided a favorable quantity structure in Gaoqiao Land Use
Planning (2006–2020). It says: the area of arable land should greater than 1871.50 ha, orchard
should be less than 394.75 ha, forest should be greater than 6814 ha, and construction land
(including urban and rural settlements) should be less than 996.94 ha. Table 5 shows that
Model A performs better than Model B, C, and D in fulfilling the quantity constraints. So, it is
another sign that our improvements in patch-level operations and knowledge-informed rules
are effective.

Percent Correct Match (PCM; [49, 50]) can be used to quantify the goodness-of-fit between
a reference map and a simulated map. Although there is no reference map in our optimization
model, but if we set the result map of Model A as the reference map, PCM will stand for the
similarity between Model A and other models. If the PCM is large, it means that the result

Table 4. Statistics for the result maps of Model A, B, C, D.

Model F fsocial feconomic fecological Time(s)a

A (both improvements) 0.827408 0.776701 0.873476 0.857119 320.21

B (patch-level units) 0.826208 0.775629 0.873476 0.854555 305.68

C (knowledge-informed rules) 0.825637 0.774915 0.873476 0.853540 258.21

D (basic PSO) 0.795118 0.749695 0.815549 0.844205 273.11

Status quo 0.784666 0.743359 0.794207 0.840209 —

aAll benchmark tests were performed on a Dell PowerEdge R910 (Xeon E7520*4/16GB).

doi:10.1371/journal.pone.0157728.t004

Table 5. Quantity structures of the result maps of Model A, B, C, D (Unit: ha).

Current Model A Model B Model C Model D Planning

Arable land 1667.69 1863.31 1804.06 1797.06 1674.31 > = 1871.50

Orchard 681.25 415.63 477.38 488.00 639.88 < = 394.75

Forest 6654.00 6772.19 6748.00 6744.25 6698.13 > = 6814.00

Urban 162.81 179.06 179.06 179.00 169.13 < = 996.94*

Rural settlements 828.25 783.38 785.50 785.69 812.56

*Including the area of urban and rural settlements

doi:10.1371/journal.pone.0157728.t005
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maps are identical in four models, leading to the conclusion that our improvements are unnec-
essary and invalid. On the other hand, if the PCM is low, it means that the result maps are dif-
ferent, proving that our improvements are indeed effective.

In Fig 7, it clearly shows that Model B, C, and D have lower PCM_Ps than Model A. Model
B and C have lower PCM_Ps of arable land, orchard, and forest. Model D, which is a random
model, performs the worst in all five land use types. As noted that, all the PCM_Ns are close to
100% for the reason of the most area keeping unchanged. All in all, the disparities of the
PCM_Ps reveals that our improvements have taken effects on the result maps.

5.2 Model effectiveness analysis
A reasonable land-use allocation model should generate global optimized schemes while
guaranteeing a rational land-use pattern in local areas. In this section, we will analyse the effec-
tiveness of the model on both global and local scales through a comparative analysis of the land
use status quo and the optimal solution (Fig 8).

In the global aspect, the optimal solution attains more benefits than the status quo. The
increases are 4.49%, 9.98%, 2.01% and 5.45% for the social, economic, ecological and overall
benefits, respectively (Table 4). The land use conversion matrix (Table 6) shows that the areas of
arable land, forest and urban zones are increased by 11.73%, 1.48%, and 9.98%, while orchard
and rural settlements decreased by 38.99% and 5.37%, respectively. The quantity of arable land

Fig 7. Histogram of PCM_Ps of land uses in Model A, B, C, D.

doi:10.1371/journal.pone.0157728.g007
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is enlarged for food security for the future population growth. The urban area is expanded to
support economic development. The rural settlements are decreased because of the consolida-
tion of scattered villages. A large percentage of the orchard is converted to arable land and forest.
This is because the local government has a priority to develop the fruit industry, which leads to
an inferior status when orchards conflict with other land uses. We also evaluated the suitability
and compactness of the status quo and optimal solution (Figs 9 and 10). The graphs indicate
that the optimal solution is more suitable and compact than the status quo.

In the local aspect, we made a cell-by-cell comparison to determine the disparity between
the status quo and optimal solution (Fig 11). The conversion rates are 2.51%, 44.44%, 0.78%,

Fig 8. Land use status quo versus optimal solution.

doi:10.1371/journal.pone.0157728.g008

Table 6. Contingency table of land-use conversions.

Status quo Optimal solution (ha)

Arable land Orchard Forest Urban Rural settlements Total

Arable land 1625.88 26.31 10.94 4.56 1667.69

Orchard 177.81 378.50 123.56 0.81 0.56 681.25

Forest 11.81 37.13 6602.31 0.38 2.38 6654.00

Urban 162.81 162.81

Rural settlements 47.81 4.13 776.31 828.25

Totala 1863.31 415.63 6752.19 179.06 783.81 9994.00

aUndeveloped land-uses such as grass, mining area, roads, water, and barren land are excluded.

doi:10.1371/journal.pone.0157728.t006
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0.00% and 6.27% on arable land, orchard, forest, urban, and rural settlements, respectively.
Due to the Grain for Green policy, a 26.31 hectares of arable land whose slope is greater than
25 degrees was converted to forest (Fig 11A). A large amount of orchard with poor road acces-
sibility was transformed to arable land and forest (Fig 11B). The urban area expanded to the
north under the constraint of the urban growth boundaries (Fig 11C). Some small scattered vil-
lages are merged into the nearest large rural settlements to reduce land consumption (Fig
11D). Through the analysis of the changed areas, it is confirmed that the local land-use

Fig 9. Suitability of the status quo and optimal solution.

doi:10.1371/journal.pone.0157728.g009

Fig 10. Compactness of the status quo and optimal solution.

doi:10.1371/journal.pone.0157728.g010
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transitions are rational and reasonable by following the predefined knowledge-informed rules
(Table 1).

According to the two aspects of the analysis, the optimal solution shows overall benefits on
the global scale and rational land-use patterns in the local areas. Therefore, we can conclude
that the PSOLA model is effective for both global and local-scale optimization.

6. Conclusions
In this study, we developed a new land-use allocation model with PSO. In the new PSOLA
model, two significant improvements have been made to overcome its shortcomings. One
improvement is applying patch-level operations. Compared to the conventional cell-level oper-
ations, patch-level operations preserve landscape patchiness to avoid fragmented and extensive

Fig 11. Areas of change between the status quo and optimal solution.

doi:10.1371/journal.pone.0157728.g011
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land-use pattern. The other is introducing knowledge-informed rules to provide land-use plan-
ning knowledge to guide land-use transitions. The knowledge-informed rules are extracted
from a questionnaire survey administered to departments of land management and expert in
relevant fields.

To validate the PSOLA model, Gaoqiao Town in China was used as the study area. Four
models with different improved strategies were implemented with same parameters. The
results show that the model with patch-level operations and knowledge-informed rules could
generate a better solution than the others. Therefore, it is concluded that these two improve-
ments enhance the ability to solve land-use allocation problems, with a better efficiency and
effectiveness. To further evaluate the effectiveness of the model, a comparative analysis of the
status quo and optimal solution was made on the aspects of global optimization and local ratio-
nality. The optimal solution shows better overall benefits on the global scale and rationality in
local areas. Overall, this case study confirms the capacity of the model to handle complex land-
use allocation problems. The new PSOLAmodel could provide a useful tool to support decision
making in land-use planning.

Although the model has shown its practicability in land-use planning, it still has some short-
comings. The objectives in the model are inadequate to describe the goal of regional develop-
ment. The knowledge-informed rules are also not comprehensive to meet all requirements for
decision makers. Due to the diversity of regional development preferences, it is impossible to
enumerate all of the knowledge-informed rules. However, the model has an open and extensi-
ble architecture. It is convenient for modelers to define appropriate objectives and knowledge-
informed rules according to actual conditions. Hence, we are glad to see that the PSOLA model
(http://jingsam.github.io/PSOLA/) could help planners and researchers solve their land-use
allocation problems.

Supporting Information
S1 Code. Source code of the PSOLA model. The source code is also available on http://
jingsam.github.io/PSOLA/.
(ZIP)

S1 Dataset. Dataset used in the case study. This dataset includes the land-use map (DLTB.
tif), digital evaluation model (DEM.tif), slope (SLOPE.tif), road accessibility (ROAD.tif), urban
boundaries (URBAN.tif), suitability of arable land (GDSYX.tif), suitability of orchard (YDSYX.
tif), suitability of forest (LDSYX.tif), suitability of construction (JSSYX.tif).
(ZIP)
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