
HAPHPIPE: Haplotype Reconstruction and Phylodynamics for
Deep Sequencing of Intrahost Viral Populations

Matthew L. Bendall ,†,1 Keylie M. Gibson ,†,1 Margaret C. Steiner ,1 Uzma Rentia ,1 Marcos P�erez-
Losada ,1,2,3 and Keith A. Crandall *,1,2

1Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
2Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University,
Washington, DC, USA
3CIBIO-InBIO, Centro de Investigaç~ao em Biodiversidade e Recursos Gen�eticos, Universidade do Porto, Vair~ao, Portugal
†These authors contributed equally to this work.

*Corresponding author: E-mail: kcrandall@gwu.edu.

Associate editor: Jeffrey Townsend

Abstract

Deep sequencing of viral populations using next-generation sequencing (NGS) offers opportunities to understand and
investigate evolution, transmission dynamics, and population genetics. Currently, the standard practice for processing
NGS data to study viral populations is to summarize all the observed sequences from a sample as a single consensus
sequence, thus discarding valuable information about the intrahost viral molecular epidemiology. Furthermore, existing
analytical pipelines may only analyze genomic regions involved in drug resistance, thus are not suited for full viral
genome analysis. Here, we present HAPHPIPE, a HAplotype and PHylodynamics PIPEline for genome-wide assembly of
viral consensus sequences and haplotypes. The HAPHPIPE protocol includes modules for quality trimming, error cor-
rection, de novo assembly, alignment, and haplotype reconstruction. The resulting consensus sequences, haplotypes, and
alignments can be further analyzed using a variety of phylogenetic and population genetic software. HAPHPIPE is
designed to provide users with a single pipeline to rapidly analyze sequences from viral populations generated from
NGS platforms and provide quality output properly formatted for downstream evolutionary analyses.

Key words: molecular epidemiology, phylodynamics, HIV, transmission cluster, bioinformatics.

Introduction
Phylogenetics and phylodynamics (see review Volz et al. 2013)
have played a key role across a diversity of aspects for under-
standing viral evolution and population dynamics, including
assessing agents of infection (e.g., the current COVID-19 pan-
demic; Andersen et al. 2020; Wu et al. 2020), intervention
strategies (e.g., Ebola outbreaks; Dellicour et al. 2018), eluci-
dating the origin of epidemics (e.g., HIV; Gao et al. 1999), and
determining how those characteristics relate to host pheno-
typic data (Volz et al. 2013; du Plessis and Stadler 2015).
Additionally, phylogenetic inference has provided critical
insights into HIV biology in particular, from quantifying fitness
costs of drug resistance (Kühnert et al. 2018) to identifying
transmission networks (Ragonnet-Cronin et al. 2018)—even
providing robust legal evidence in criminal trial cases
(Metzker et al. 2002). Although ideally viral phylodynamics
is investigated using whole-genome sequence data, in many
cases and certainly for surveillance efforts, whole-genome se-
quencing is too costly or cumbersome and does not allow for
dense population sampling of viral populations. Population
focused transmission cases and drug resistance surveillance
require denser sampling compared with the more broadly
applied phylogenetic studies. Historically, such sampling was

achieved by diluting viral population samples from infected
individuals to a few viral particles and then using polymerase
chain reaction (PCR) to amplify particular gene fragments to
use in phylogenetics. Ideally, multiple independent dilutions
and subsequent rounds of PCR would occur per infected
individual to achieve population-based sampling within and
among infected individuals. The resulting sequences from
Sanger sequencing would be treated as “haplotypes” (se-
quence variants) for downstream traditional phylogenetic
analyses (alignment, model selection, phylogeny estimation,
etc.). Thus, phylodynamic studies can take advantage of com-
mercial data sets focused on drug resistance screening efforts
(P�erez-Losada et al. 2017).

With the advent of next-generation sequencing (NGS), a
much larger volume of data can be collected for phylody-
namic studies requiring different bioinformatic approaches,
especially for early data treatment in the bioinformatics pipe-
line (P�erez-Losada et al. 2020). With either shotgun sequenc-
ing reads of viral populations or targeted amplicon
sequencing (Bybee et al. 2011) of genes of interest (typically
protease [PR], reverse transcriptase [RT], and integrase [int]
for HIV drug resistance studies, but also envelope [env] for
transmission studies), NGS data require additional steps to
convert these short raw sequence reads into haplotypes for

P
ro

to
co

ls

� The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is
properly cited.

Mol. Biol. Evol. 38(4):1677–1690 doi:10.1093/molbev/msaa315 Advance Access publication December 26, 2020 1677

http://orcid.org/0000-0001-9816-5425
http://orcid.org/0000-0003-1909-3596
http://orcid.org/0000-0002-1062-1228
http://orcid.org/0000-0002-1538-935X
http://orcid.org/0000-0002-2585-4657
http://orcid.org/0000-0002-0836-3389

downstream analyses with tested phylogenetic and popula-
tion genetic software packages (e.g., Gibson et al. 2020a).
Thus, we have created HAPHPIPE—a HAplotype reconstruc-
tion and PHylodynamics PIPEline for genome-wide assembly
of viral consensus sequences and haplotypes from next-
generation viral sequence data (fig. 1). In this protocol, we
provide detailed instructions for executing all available
HAPHPIPE stages (set up in modular format) and present
two example pipelines we have included with this software.
We assume some familiarity with NGS platforms and analyses
(reviewed in Levy and Myers 2016). Additionally, we assume
some familiarity with bash/command line to execute
HAPHPIPE. In addition to the included phylogenetics stages,
output files from HAPHPIPE can be easily used as inputs for
other phylogenetic and phylodynamic software tools such as

BEAST2 (Bouckaert et al. 2014), HIV-TRACE
(Kosakovsky Pond et al. 2018), and DnaSP (Rozas et al.
2017), to name a few.

HAPHPIPE has been thoroughly compared with similar
viral assembly tools and has been validated against two com-
monly used programs: HyDRA and Geneious (Gibson et al.
2020b). Both of these programs use graphical user interfaces,
with HyDRA being free and web-based, and Geneious being
commercial. Briefly, we found that HAPHPIPE performed sig-
nificantly better than HyDRA, comparable to or better than
Geneious (depending on viral gene region) and could accom-
modate larger data sets with a quicker turnaround time.
Furthermore, unlike some programs including HyDRA which
are virus-specific, any virus can be analyzed within HAPHPIPE;
we have validated HAPHPIPE on HIV, HCV, and SARS-CoV-2

�����

������_���	�

�
�����������	��
���������

�������������

��������	
��
�
���
�
�����������	��
���	���

����_���	�

��������	��
���������

�������������

����_���	�

��������	��
���������������

�������������

��_���	�

�����������������
�������	��

�������������

������	�
���
���
�����
�����
�
��
��
�

��������_	��� �

	���� ���������!�
����
���	��

�������������

��������_���������

��������������"��
����
#$##�%�&'
�������������

��������_���(��	

���(��	������"���"������
��)�������
����#$##�%�&'

�������������

���"�_���	�

���"�����	�������)�������
����
*�
���+���	������	

��������*�#

����_ �������

 �������������"�
����,���

*�#���-.�

 �)_��_�������
�

"���������������
����/
�����
)����-.��0��
-.���������

��0��_�������!

�����1������������!�
��0�������

�����2��������������

0����3�_�������!

0����3���������
����/
����

�������������

���
���
���
����
������
��
��
�
����	�	�����
�	�	��	���

����
���_���"�

����!�����	�������!��������
0������/
�����
��������4�56

�7�����_����
���

�7��������/
�������"����

4�56��������

�
����!_�����

��������������!���	�
������!����
����!�����������

�
��
��0�������8�2���-

���	�
��	
���	

�
������
�������	�����

�
������_���"�

�
���������/
��������"������

����#����

�������������

�
��	_����_6,

��!��"��!���������
������

����%�7#�16,
���������%�

���	�
���
�����	��

�
����	���	����
��
����
�����

���	���_�����

�	����)!�������!����
����
���	��������
�������������

��_������

)���������	����������
��
��
0��

�������������

haphpipe_assemble_01
haphpipe_assemble_02
haphpipe demo

Next Generation Sequencing

��	��_����

� ��
������!���	�������������

����#�	������16,
���������8�2���-

���/
���

�	����)!�������!����
���"�
.��/
��6-

�������������

FIG. 1. HAPHPIPE schematic. Each color represents a different stage of the analysis pipeline, with the corresponding modules located within each
stage. Two sample pipelines, haphpipe_assemble_01 and haphpipe_assemble_02, are shown in red- and black-dashed lines, respectively. The
demo pipeline uses haphpipe_assemble_02 and the remaining steps are shown in yellow-dashed lines. Input and output file formats are listed for
each module.

Bendall et al. . doi:10.1093/molbev/msaa315 MBE

1678

data. Although HAPHPIPE is terminal based, we intend for
our User Guide to be an extension of our tool and provide
ample information for any level user to analyze their own data
with HAPHPIPE.

Protocol
HAPHPIPE is constructed in a modular fashion, in which the
different stages are categorized into five main sections: quality
control, assembling sequences, haplotype assembly, descrip-
tion, and phylogenetics. We envision HAPHPIPE to be acces-
sible and helpful to a range of users. Beginning users may rely
heavily on the example pipelines provided, whereas experi-
enced users with expertise in NGS analysis may design new
pipelines using the modules provided and/or swap in/out
alternative software at particular steps in the workflow.
HAPHPIPE is also extensible; users who are familiar with py-
thon can easily create new stages or modules that take ad-
vantage of HAPHPIPE utility functions. We strive to follow
best practices in developing our pipelines and protocol in-
cluding availability of source-code, software indexing, docu-
menting, and management of source code, and providing test
libraries, sample data, and data set repositories (Leprevost
et al. 2014).

HAPHPIPE was conceived to work in Linux and Mac OS X
operating systems, however it can be run on a PC using a
virtual machine (see User Guide at https://gwcbi.github.io/
haphpipe_docs/install/#windows-users for more informa-
tion). HAPHPIPE depends on more than a dozen different
programs, each of which may itself depend on other pro-
grams and libraries. Installing everything separately is complex
and daunting, so we recommend the use of the popular
package manager “Conda” with the channel “Bioconda” to
install HAPHPIPE (Dale et al. 2018). All the packages used in
HAPHPIPE are widely used, open source, and have been pre-
viously validated and available in Bioconda. The User Guide
(https://gwcbi.github.io/haphpipe_docs/install/#haphpipe-
installation-instructions) describes how to download and
install Bioconda and then how to use it to install HAPHPIPE
(i.e., with a single command: conda create -n haphpipe
haphpipe). The User Guide (https://gwcbi.github.io/haph-
pipe_docs/install/#haphpipe-installation-instructions) details
the acquisition and installation of one program, GATK
(McKenna et al. 2010), that is not handled by Bioconda,
and finally the acquisition and installation of HAPHPIPE itself.
Upon completion of the installation, you can test it to ensure
the repository has been installed completely and correctly by
running haphpipe -h. Once HAPHPIPE is installed and per-
forming correctly, there is no need to install it again; simply
activate the conda environment when needed by executing
conda activate haphpipe. At any point, the -h option that
follows any HAPHPIPE modules will output a help message
that provides a description of the module and the desired
input(s) and output(s).

Furthermore, for the haplotype stage (hp_predict_haplo
and hp_ph_parser), users are required to install PredictHaplo
(Prabhakaran et al. 2014) on their own, as there are system-
dependent variables within the installation process. More

information and documentation on how we implemented
PredictHaplo in our system can be found at https://gwcbi.
github.io/haphpipe_docs/install/#predicthaplo-installation-
instructions.

Starting Point for HAPHPIPE
Prior to running HAPHPIPE on any NGS viral samples, we will
first describe the recommended directory structure (see
https://gwcbi.github.io/haphpipe_docs/install/for more de-
tail) for running HAPHPIPE. A directory is synonymous with
a folder on your computer, with folders containing other
subfolders and files (fig. 2). The base, or main, directory should
contain a single subdirectory for the file(s) of viral reference
genome(s) and/or genes and one subdirectory for each sam-
ple (with a unique and descriptive name) containing se-
quence data. The starting point for each sample is a file or
files of sequences in FASTQ format, where the file size
depends on the size of the genome and the sequencing cov-
erage. If coverage is somewhere between 20� and 100�, the
average read is 250 bp, and the genome is 10 kb, there will be
somewhere between 800 and 4,000 sequences in the FASTQ
file. If the reads are paired-end with Illumina sequencing tech-
nology, then there will be two FASTQ files, each with between
400 and 2,000 reads. The purpose of HAPHPIPE is to assemble
these reads into a single FASTA file (no sequencing quality
scores) containing haplotype sequences, which often includes
between one and ten sequences in the resulting FASTA file.
Genome assembly may be assisted by the inclusion of a
closely related genome sequence, that is, reference sequence,
that has already been assembled, or assembly may be “de
novo,” that is, without the assistance of any known genome
sequences. Often a reference sequence may be preferred if
one exists in high quality. We demonstrate both approaches
below with example pipelines and demo data.

The reference directory (refs/) contains files of reference
genomes for reference-based assembly (fig. 2). For this proto-
col, we demo HAPHPIPE using HIV-1 data, and for these
examples, we use the HIV reference using three files:
HIV_B.K03455.HXB2.fasta, HIV_B.K03455.HXB2.amplicons.
fasta, and HIV_B.K03455.HXB2.gtf. All files are available in
the User Guide (https://gwcbi.github.io/haphpipe_docs/in-
stall/#reference-files) and by direct download through the
demo module (using the –refsonly option). The full HIV-1
HXB2 genome reference sequence is located in FASTA format
(Pearson and Lipman 1988) in HIV_B.K03455.HXB2.fasta. This
file is used in the first example pipeline (described below),
where we are using it as the reference genome for assembly.
There are three reference genes (PRRT, int, and gp120) located
in FASTA format in the HIV_B.K03455.HXB2.amplicons.fasta
file, and we use this file in the second example pipeline. Finally,
the GTF file (a gene transfer format file) (Zerbino et al. 2017;
Lopez et al. 2019) is a tab-delimited text file that holds infor-
mation about the gene structure and primer binding sites. In
our case, for the demo data and the example pipelines, we use
the starting and stopping base numbers (based on the num-
bering scheme for HXB2; see information regarding number-
ing scheme below) for the three amplicons of interest. Details
on these HIV reference files can also be found on the User

Haplotype Reconstruction and Phylodynamics of Intrahost Viral Populations . doi:10.1093/molbev/msaa315 MBE

1679

https://gwcbi.github.io/haphpipe_docs/install/#windows-users
https://gwcbi.github.io/haphpipe_docs/install/#windows-users
https://gwcbi.github.io/haphpipe_docs/install/#haphpipe-installation-instructions
https://gwcbi.github.io/haphpipe_docs/install/#haphpipe-installation-instructions
https://gwcbi.github.io/haphpipe_docs/install/#haphpipe-installation-instructions
https://gwcbi.github.io/haphpipe_docs/install/#haphpipe-installation-instructions
https://gwcbi.github.io/haphpipe_docs/install/#predicthaplo-installation-instructions
https://gwcbi.github.io/haphpipe_docs/install/#predicthaplo-installation-instructions
https://gwcbi.github.io/haphpipe_docs/install/#predicthaplo-installation-instructions
https://gwcbi.github.io/haphpipe_docs/install/for
https://gwcbi.github.io/haphpipe_docs/install/#reference-files
https://gwcbi.github.io/haphpipe_docs/install/#reference-files

Guide (https://gwcbi.github.io/haphpipe_docs/install/#refer-
ence-files).

HAPHPIPE Workflow
Here, we detail all of the stages of the HAPHPIPE workflow,
including quality control, sequence assembly, description,
haplotype assembly, and phylogenetics (fig. 1). Additional
options for each module are available by entering a command
with the -h option in the command line (e.g., haphpipe
ec_reads -h) as well as at https://gwcbi.github.io/haphpipe_
docs/install/#quick-start. In HAPHPIPE, modules may be
called either with the addition of “hp_” to the module
name (e.g., hp_sample_reads) or by first calling HAPHPIPE
(e.g., haphpipe sample_reads). For the purposes of this pro-
tocol, we will consistently use the latter. Furthermore, a com-
plete list of the required input format(s) for and the file
outputs from each module are maintained in a table at
https://gwcbi.github.io/haphpipe_docs/inout/. HAPHPIPE
currently contains five stages. Stage 1 involves cleaning the
raw read sequences; Stage 2 involves assembling the clean
read data to produce assembled genome sequences in
FASTA format and generates a consensus sequence; Stage 3
involves generating haplotypes; Stage 4 involves descriptive
options, such as annotating the sequences, extracting gene
regions, and calculating summary statistics; and Stage 5
involves phylogenetic steps, including multiple sequence
alignment, best-fit evolutionary model testing and construct-
ing a phylogenetic tree. Below, we address each stage and
explain each module within the stage. We also split the stages

into basic (Stages 1 and 2) and advanced (Stages 3, 4, and 5)
concepts.

Basic Concepts

Stage 1: Quality Control. The first step in NGS data analysis is
quality control. Modern NGS platforms (i.e., Illumina) output
raw sequencing data in compressed FASTQ format (Cock
et al. 2010), which contains the base calls and a quality score
for each base, reflecting the confidence that the base was
called correctly. For paired-end sequencing runs, the data
are usually split between two files, one for each read. The
error model and biases of Illumina sequencing are well un-
derstood (Schirmer et al. 2015), and several quality control
steps may be needed. For example, read trimming is often
used to remove adapter sequences from the reads and re-
move low-quality bases that occur toward the 30-end of the
read. Other modules for manipulating data at the “read” level
are described below.

Read Trimming (trim_reads). Reads frequently contain flanking
regions of lower sequencing quality base pairs, which must
be removed before continuing with further analysis.
Additionally, a read may have an average quality score below
a given threshold and, thus, removal of that read is desired.
Furthermore, because NGS library preparation utilizes
adapter sequences to bind the target DNA to the sequencing
platform’s chemistry and/or to differentiate samples on a
pooled sequencing run, adapters may remain present in the
reads even after demultiplication steps. This adapter contam-
ination can be handled by trimming the reads of these

Base
Directory

haphpipe_demo

Directory
for Sample
A - Paired

Paired
Read 1
FASTQ

Paired
Read 2
FASTQ

SRR8525886_1
.fastq

SRR8525886_2
.fastq

SRR8525886

Directory for
Reference

Files

Reference
FASTA

Reference
GTF

Reference
Amplicon

FASTA
HIV_B.K03455.

HXB2.fasta
HIV_B.K03455.

HXB2.gtf

HIV_B.K03455.
HXB2.amplicons

.fasta

refs

Directory
for Sample
B - Paired
SRR8525933

Paired
Read 1
FASTQ

Paired
Read 2
FASTQ

SRR8525933_1
.fastq

SRR8525933_2
.fastq

Directory
for Sample
C - Paired
SRR8525938

Paired
Read 1
FASTQ

Paired
Read 2
FASTQ

SRR8525938_1
.fastq

SRR8525938_2
.fastq

Directory
for Sample
D - Paired
SRR8525939

Paired
Read 1
FASTQ

Paired
Read 2
FASTQ

SRR8525939_1
.fastq

SRR8525939_2
.fastq

Directory
for Sample
E - Paired
SRR8525940

Paired
Read 1
FASTQ

Paired
Read 2
FASTQ

SRR8525940_1
.fastq

SRR8525940_2
.fastq

FIG. 2. Example starting directory structure. The base directory should contain one subdirectory for each sample (with a unique and descriptive
name containing sequence data and a separate subdirectory for the file(s) of viral reference genome(s) and/or genes). The example here shows the
structure for the demo data, with each sample used in the demo as an individual subdirectory housing two FASTQ files—one for read1 and another
for read2 (these are paired read files). The reference subdirectory has three files that are used in the demo: a reference FASTA file
(HIV_B.K03455.HXB2.fasta), an amplicon reference FASTA file (HIV_B.K03455.HXB2.amplicons.fasta), and a tab-delimited text file contain ge-
nomic structure information (HIV_B.K03455.HXB2.gtf). The structure of a subdirectory containing only single end reads would be the same,
except there is only one FASTQ file per sample (instead of two show here for paired-end reads).

Bendall et al. . doi:10.1093/molbev/msaa315 MBE

1680

https://gwcbi.github.io/haphpipe_docs/install/#reference-files
https://gwcbi.github.io/haphpipe_docs/install/#reference-files
https://gwcbi.github.io/haphpipe_docs/install/#quick-start
https://gwcbi.github.io/haphpipe_docs/install/#quick-start
https://gwcbi.github.io/haphpipe_docs/inout/

adapter sequences as well. In HAPHPIPE, the hp_trim_reads
module uses Trimmomatic v. 0.39 (Bolger et al. 2014) to
perform quality trimming on reads. This module takes as
input raw reads as FASTQ files, compressed or not, and out-
puts trimmed FASTQ files. Example to execute: haphpipe
trim_reads –fq1 SRR8525886_1.fastq –fq2
SRR8525886_2.fastq.

Error Correction (ec_reads). The goal of error correction is to lo-
cate and remove errors in sequence data introduced into the
sequence reads by the sequencing platform. Error correction
is recommended for some downstream applications, includ-
ing de novo assembly. On the other hand, error correction
may not be appropriate for other applications such as
population-level variant calling. Error correction is performed
in HAPHPIPE through SPAdes v. 3.13.1 (Bankevich et al. 2012).
To run error correction, input FASTQ files, which may be
trimmed beforehand. Error correction can also be performed
during de novo assembly in hp_assemble_denovo. Example
to execute: haphpipe ec_reads –fq1 trimmed_1.fastq –fq2
trimmed_2.fastq.

Joining (join_reads). Joining (or merging) read pairs is an optional
step for paired-end sequencing designs. When the fragment
length is less than the combined read length for both pairs,
the 30-ends will overlap and may be joined to form a single
long read. For example, if a 2� 300 kit is used to sequence
500-bp fragments, read pairs can be joined for an effective
500-bp read length with 100-bp overlap. Longer reads may
improve genome assembly and haplotype reconstruction.
FLASh v. 1.2.11 (Mago�c and Salzberg 2011) is a method to
merge paired-end reads into a single, longer sequence by
identifying overlapping regions, which precludes common
issues in de novo assembly arising from short read lengths.
This step is implemented in HAPHPIPE in the hp_join_reads
module, which outputs a single joined FASTQ file. Example to
execute: haphpipe join_reads –fq1 trimmed_1.fastq –fq2
trimmed_2.fastq.

Subsampling (sample_reads). Due to the large size of NGS data
sets, it may be desirable to randomly subsample a data set for
testing and computational efficiency. The HAPHPIPE module
hp_sample_reads allows users to subsample a given number
or fraction of reads from the file with seqtk v. 1.3 (https://
github.com/lh3/seqtk). To do so, simply input the FASTQ files
(raw, cleaned, or corrected—this is dependent upon your
intentions) and specify the number or fraction of reads to
sample. Example to execute: haphpipe sample_reads –fq1
SRR8525886_1.fastq –fq2 SRR8525886_2.fastq –nreads 1,000
–seed 1234.

Stage 2: Assembling Sequences. Many assembly strategies are
designed for the assembly of a single genome from NGS data
(Nagarajan and Pop 2013; Simpson and Pop 2015). However,
in our case, we are interested in identifying variants and as-
sembling multiple variant genes or genomes—targeted as-
sembly (Warren and Holt 2011). The HAPHPIPE protocol
implements two different strategies for targeted sequence

assembly, namely: reference-based and de novo assembly.
Reference-based assembly involves aligning (or mapping)
reads to a reference sequence then generating a new se-
quence based on the consensus of the alignments.
Compared with de novo assembly, reference-based assembly
is computationally efficient, has lower memory requirements,
and requires reduced sequencing depth. However, this ap-
proach is dependent on the availability of a closely related
reference sequence, and the chosen reference will tend to bias
the final assembly. In contrast, de novo sequence assembly
requires no prior knowledge of the genome. In this approach,
the full sequence is reconstructed by identifying overlaps
among sequence reads. The amount of RAM needed for de
novo assembly can be prohibitive for large genomes or meta-
genomes but is feasible (using a moderate workstation) for
small genomes such as HIV-1.

De novo assembly in HAPHPIPE begins with the hp_as-
semble_denovo module, which uses the SPAdes (Bankevich
et al. 2012) assembler to assemble short sequencing reads into
longer sequences called contigs. The contigs produced may
not span the entire target region or be in reverse orientation
compared with the reference, so we perform a scaffolding
step to orient and merge contigs. HAPHPIPE provides two
options for scaffolding: the hp_assemble_amplicons module
creates one sequence per amplicon region, whereas hp_as-
semble_scaffold creates one sequence with uncovered
regions filled in with “Ns.”

Reference-based assembly begins with the hp_assemble_-
reads module, which aligns all the reads to the provided ref-
erence using Bowtie2 (Langmead and Salzberg 2012). Next,
differences from the reference are called using GATK
(McKenna et al. 2010) in the hp_call_variants module, and
an updated consensus sequence is generated using
hp_vcf_to_consensus. These three modules can be run se-
quentially using the hp_refine_assembly module. The hp_re-
fine_assembly module also enables iterative refinement of the
consensus sequence by using the consensus from one round
as the reference for the next.

De Novo Assembly (assemble_denovo). The hp_assemble_denovo
module is implemented as a convenience wrapper around
the SPAdes assembler. The SPAdes assembler (Bankevich
et al. 2012) uses a De Bruijn graph assembly approach (see
Nagarajan and Pop [2013] for more information on De Bruijn
graph assembly). Inputs for the hp_assemble_denovo mod-
ule are the read files in FASTQ format. With default settings,
this module will automatically run error correction (this may
be turned off using the –no_error_correction option). The
assembled contigs are output in FASTA format. Example to
execute: haphpipe assemble_denovo –fq1 corrected_1.fastq
–fq2 corrected_2.fastq –outdir denovo_assembly –no_er-
ror_correction TRUE.

Amplicon Assembly (assemble_amplicons). After de novo assembly,
contigs are scaffolded with MUMMER 3þ (Kurtz et al. 2004)
to form a consensus sequence in the hp_assemble_amplicons
module. To assemble contigs using both a reference sequence
and amplicon regions, input the contigs and reference

Haplotype Reconstruction and Phylodynamics of Intrahost Viral Populations . doi:10.1093/molbev/msaa315 MBE

1681

https://github.com/lh3/seqtk
https://github.com/lh3/seqtk

sequence in FASTA format and the amplicon regions in GTF
format. Example to execute: haphpipe assemble_amplicons –
contigs_fa denovo_contigs.fa –ref_fa HIV_B.K03455.HXB2.
fasta –ref_gtf HIV_B.K03455.HXB2.gtf.

Scaffolding (assemble_scaffold). In this module, hp_assemble_s-
caffold, contigs are scaffolded, again with MUMMER 3þ,
against a reference sequence. Simply input the contigs and
reference sequence (both in FASTA format) into HAPHPIPE,
as shown below. Example to execute: haphpipe assemble_s-
caffold –contigs_fa denovo_contigs.fa –ref_fa HIV_B.K03455.
HXB2.fasta.

Alignment to Reference (align_reads). Reads may also be mapped to
a reference sequence, instead of running de novo assembly.
This concept is often seen in HIV studies, where if a host’s
virus is known to be subtype B, then the sample’s reads are
simply mapped against the HIV reference sequence HXB2
(Ratner et al. 1985). In this HAPHPIPE module hp_align_-
reads, alignment of the reads to the reference sequence is
performed using Bowtie2 (Langmead and Salzberg 2012). The
alignment files are then scanned for technical duplicates and
indels are realigned using Picard (http://broadinstitute.github.
io/picard/). As shown below, one can input both read files (in
FASTQ format) and the reference file (in FASTA format).
Example to execute: haphpipe align_reads –fq1 corrected_1.-
fastq –fq2 corrected _2.fastq –ref_fa HIV_B.K03455.HXB2.fasta.

Variant Calling (call_variants). Variant calling identifies differences
by nucleotide position between a reference sequence and the
assembly. In the context of HAPHPIPE, the reference se-
quence can either be the sequence used to align the reads
against (reference-based assembly) or the consensus final se-
quence from de novo assembly. The Variant Call Format
(VCF) file (Danecek et al. 2011) produced by this stage rep-
resents intrasample diversity and contains the position of a
variant within a sequence, the reference base, and alternative
bases found along with a quality score for each allele. In
HAPHPIPE, we perform variant calling with GATK v. 3.8 in
the module hp_call_variants by inputting an alignment file
(BAM format) and a reference sequence (FASTA format).
Example to execute: haphpipe call_variants –aln_bam align-
ment.bam –ref_fa HIV_B.K03455.HXB2.fasta.

Consensus Sequence from Variants (vcf_to_consensus). Alternatively,
a VCF file containing information about variants in the se-
quencing data compared with a reference can then be used
to generate a consensus sequence. In the hp_vcf_to_consen-
sus module in HAPHPIPE, input the VCF file as shown.
Example to execute: haphpipe vcf_to_consensus –vcf
variants.vcf.

Refine Assembly (refine_assembly). In the hp_refine_assembly
module, corrected reads are first mapped either to a de
novo assembly or reference sequence and variants are called.
Then, in an iterative process, the reference is updated and the
process repeats. The iteration ends when no improvement is
made after an additional iteration. At this point, the refined

reference sequence is outputted in FASTA format, which is
then used to finalize the assembly (below). The user can
specify the maximum number of steps within the refinement
module, which represents the maximum times the reads will
be mapped to the sequence and updated. If the refined se-
quence reaches a convergence, where the alignment rate and
number of differences between the initial and new refined
sequence do not improve, prior to the number of maximum
steps, then the refinement module ends once this conver-
gence is met. Likewise, if the refined sequence continues to be
improved in each step but hits the maximum step, then the
refined sequence at the last step is considered the final refined
sequence. This option to include a maximum number of
refinement steps is to allow users to specify how many steps
are needed or requested based on available computational
time or user desire. In our validation study, we found that
often two or three refinement steps are efficient in creating a
better, more representative consensus sequence (Eliseev et al.
2020). Example to execute: haphpipe refine_assembly –fq_1
corrected_1.fastq –fq2 corrected_2.fastq –ref_fa
HIV_B.K03455.HXB2.fasta.

Finalize Assembly (finalize_assembly). In the final HAPHPIPE assem-
bly module, hp_finalize_assembly, the consensus sequence is
finalized, reads are mapped to this consensus, and variants are
called relative to the sample’s consensus sequence (final.fna).
The outputs include final versions of the reference sequence,
alignment, and variants (in FASTA, BAM, and VCF formats,
respectively). Example to execute: haphpipe finalize_assembly
–fq_1 corrected_1.fastq –fq2 corrected_2.fastq –ref_fa
refined.fna.

Advanced Concepts

Stage 3: Haplotype assembly. With the aligned reads and
variants, we can generate both a consensus sequence and
haplotypes from the within sample variation. Often haplo-
types are preferred for estimating transmission clusters
(Gibson et al. 2020a), testing for associations between clinical
variables (phenotypes) and genetic variation within individu-
als versus among individuals (Gibson et al. 2020a), and char-
acterizing drug resistance variants (Johnson et al. 2008;
Metzner et al. 2009; Simen et al. 2009; Li et al. 2011) (see
Posada-Cespedes et al. [2017] for brief overview of advantages
to using haplotypes). Thus, we have incorporated the com-
mon haplotype callers PredictHaplo (Prabhakaran et al. 2014)
and CliqueSNV (Knyazev et al. 2018) as modules within
HAPHPIPE. Viral haplotype reconstruction is an area of on-
going research. Alternative haplotype reconstruction pro-
grams, such as QuasiRecomb (Topfer et al. 2013), SAVAGE
(Baaijens et al. 2017), ShoRAH (Zagordi et al. 2011), and others
(see Posada-Cespedes et al. [2017] for review and Eliseev et al.
[2020] for comparison of haplotype reconstruction algo-
rithms) can be utilized outside of HAPHPIPE or advanced
users can swap out an alternative haplotype caller for
PredictHaplo or CliqueSNV. We have incorporated
PredictHaplo and CliqueSNV because those perform best
for viral diversity levels (Eliseev et al. 2020). Many of these

Bendall et al. . doi:10.1093/molbev/msaa315 MBE

1682

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/

haplotype reconstruction programs’ inputs are provided by
the final output of HAPHPIPE—typically, the final consensus
FASTA file, the raw, trimmed, and/or corrected reads, and/or
the final BAM file can be used as input.

PredictHaplo (predict_haplo). Once PredictHaplo is installed on
your device, the required inputs for the HAPHPIPE module
hp_predict_haplo are the paired-end FASTQ read files and a
reference sequence FASTA file. The main outputs from this
module are the longest global haplotype file (in
PredictHaplo’s format) and the HTML file corresponding to
the longest global haplotype file. By default, this module uses
all the amplicons that are present in the reference sequence
file. However, an interval text file can be supplied by the user if
alternative intervals are desired. This file is suitable when a full
genome is constructed but you are only interested in a par-
ticular interval (e.g., gene region, such as protease in HIV).
Along with this module goes its complementary module en-
titled hp_ph_parser (see below), which generates a usable
FASTA file from the output of this module. Example to exe-
cute: haphpipe predict_haplo corrected_1.fastq –fq2 correc-
ted_2.fastq –ref_fa final.fna.

Parsing PredictHaplo Output (ph_parser). PredictHaplo outputs a
“.fas” file containing the reconstructed haplotypes, albeit
this is not a true FASTA file. It contains a frequency for the
reconstructed haplotype, quality scores, and confidence
scores along with the haplotype sequence. Using the longest
global haplotype output from the PredictHaplo module
(hp_predict_haplo) as input for this module hp_ph_parser,
the output is a correctly formatted FASTA file with each
reconstructed sequence. Example to execute: haphpipe
ph_parser PH01.best_1_864.fas.

CliqueSNV (clique_snv). To generate haplotypes using CliqueSNV,
you must first download the CliqueSNV JAR file (available
at https://github.com/vtsyvina/CliqueSNV). Then, the re-
quired inputs to the HAPHPIPE module are FASTQ read
file(s) (if using single read files, additionally use the –fqU
option), a reference FASTA file, and the path to the direc-
tory containing the CliqueSNV JAR file (if not the current
directory). The outputs of this module are one FASTA file
containing reconstructed haplotypes and a TXT file con-
taining CliqueSNV run information and results, as well as
an additional TXT summary file with parsed results from
this file (similar to the output of ph_parser), which pro-
vides the number of haplotypes reconstructed, the haplo-
type diversity estimate, and the nucleotide length of the
haplotypes. Example to execute: haphpipe clique_snv –fq1
corrected_1.fastq –fq2 corrected_2.fastq –ref_fa final.fna –
jardir �/Downloads.

Stage 4: Description. After processing the sequencing data,
postanalyses steps often require specific formatting require-
ments, such as alignment of the sequences or extracting a
particular gene region from all samples for phylogenetic anal-
yses. HAPHPIPE provides a few modules to help with such
data parsing and manipulations. Outputs from these modules

are intended to be correctly formatted for input into different
programs for phylodynamic studies or can be easily adapted
by the user for further analyses, such as complying with pro-
gram specific input requirements or exploring data (e.g., the
BAM file) with SAMtools (Li et al. 2009) or genome browsers,
such as the Integrative Genomics Viewer (IGV) (Robinson
et al. 2011, 2017; Thorvaldsd�ottir et al. 2013). Some programs,
such as LDHat, PAML, and HyPhy, which analyze molecular
epidemiology statistics, require modified FASTA files that can
be edited by the user to satisfy the program’s requirements.
DnaSP, a program that measures genetic diversity estimates,
requires an aligned nucleotide FASTA file, which can be
obtained from the modules below. Furthermore, the FASTA
outputs can be directly input into the Stanford Database
(https://hivdb.stanford.edu) to detect drug resistant muta-
tions (DRMs) in HIV-1 sequences.

Coordinate Orientation (pairwise_align). Because of their high muta-
tion rates and high replication rates, retroviruses in general
and HIV in particular, are prone to insertions and deletions
(indels) in their genomes. Therefore, it was determined by the
HIV community in 1998 that a designated numbering coor-
dinate system was needed for the HIV-1 virus. As a result, the
HIV-1 HXB2 sequence was introduced as to anchor such a
system (Korber et al. 1998). HXB2 (Ratner et al. 1985)
(GenBank accession number: K03455) clearly presents all
the proteins with numbering for both the amino acid and
nucleotide positions. This has provided a single numbering
and reference for all HIV-1 studies, where the precise location
of DNA or protein(s) of interest can be accurately reported.
The concept of a numbering scheme to identify nucleotides
and amino acids corresponding to genes or regions of interest
also applies to other viruses, such as influenza (Burke and
Smith 2014), polyomavirus BK (Luo et al. 2009), and hepatitis
C (Kuiken and Simmonds 2009). In HAPHPIPE, the concept of
this module hp_pairwise_align is to get final sequence(s) into
the corresponding coordinate system to facilitate down-
stream analyses. An amino acid pairwise alignment is com-
pleted with the final sequence and the reference sequence
with annotated gene regions. To run the coordinate orienta-
tion, the final sequence FASTA file, a reference sequence
FASTA file, and a reference GTF file delimiting gene regions
of interest are used as input. The output is a JSON (javascript
object notation) file (Bray 2014), which is used as input for the
following step (hp_extract_pairwise), in which the amplicons
of interest are extracted. Example to execute: haphpipe pair-
wise_align –amplicons_fa final.fna –ref_fa
HIV_B.K03455.HXB2.fasta –ref_gtf HIV_B.K03455.HXB2.gtf.

Extract Sequence Regions from Pairwise Alignment (extract_pairwise).

Phylogenetic analyses of viruses are often focused on individ-
ual genes for different biological reasons, for example, PR for
drug resistance, env for transmission linkages, etc. (Rambaut
et al. 2004; Castro-Nallar et al. 2012). Furthermore, viral
sequences often undergo recombination and these recombi-
nation breakpoints tend to lie at gene boundaries and can
also impact phylogenetic estimation (Posada and Crandall

Haplotype Reconstruction and Phylodynamics of Intrahost Viral Populations . doi:10.1093/molbev/msaa315 MBE

1683

https://github.com/vtsyvina/CliqueSNV
https://hivdb.stanford.edu

2002; Posada et al. 2002). Therefore, the module hp_extract_-
pairwise extracts sequence regions from the pairwise align-
ment produced in the module above (hp_pairwise_align). For
example, you may need this if you are primarily interested in
the protease gene in HIV-1 from the polymerase (pol) align-
ment. The input is the JSON file from the previous step, and
the output can be designated as an unaligned nucleotide
FASTA file, an aligned nucleotide FASTA file, an amino acid
FASTA file, an amplicon GTF file, or a tab-separated values
(TSV) file. By default, a nucleotide FASTA file is the output
and the regions of interest from the GTF file in the module
above is used for the regions. However, a region can be des-
ignated by the name and starting and ending positions.
Example to execute: haphpipe extract_pairwise –align_json
pairwise_aligned.json –refreg HIV_B.K03455.HXB2:2085-5096.

Summary Statistics (summary_stats). When working with and ana-
lyzing NGS data, it is often good practice to evaluate the
number of reads throughout analysis steps. Furthermore, it
is helpful to view a summary of the analysis for each sample
and the statistics associated with that sample. Thus, we have
incorporated a module to summarize and provide quick and
simple data descriptions. The output of this module is a text
file and its corresponding TSV files (for easy uploading into
RStudio; RStudio Team 2015; Excel, or similar programs) that
include for each individual sample: 1) the number of raw
reads, 2) the number of cleaned reads, 3) alignment rate, 4)
amplicon length, 5) amplicon read count, 6) amplicon cov-
erage, 7) number of single nucleotide polymorphisms (SNPs)
in the amplicon, and 8) Watterson’s theta measurement of
genetic diversity. If multiple amplicons are included in the
analyses, each amplicon is reported with its respective sum-
mary statistics. Theta is measured as the number of SNPs
divided by the length of the amplicon. The input is a list of
sample directories which contain the required files, which are:
final_bt2.out (the final Bowtie2 output), trimmomatic_sum-
mary.out (the Trimmomatic summary file), final.fna (the final
consensus file), final.vcf.gz (the final VCF file), and final.bam
(the final BAM file). If using the sample pipelines below (haph-
pipe_assemble_01 and haphpipe_assemble_02), this list of
sample directories will be $sampID/haphpipe_assemble_01
or $sampID/haphpipe_assemble_02, respectively, where
$sampID is the name of the sample directory. Furthermore,
if haplotypes were reconstructed using PredictHaplo (using
the haplotypes modules hp_predict_haplo and
hp_ph_parser), then the output summary files from these
steps can be included in the output summary statistics text
file. To include this information in the summary statistics,
another list of directories which contain the files ph_summar-
y.txt need to be included in the input (e.g., $sampID/haphpi-
pe_assemble_01/PH01). Example to execute: haphpipe
summary_stats –dir_list demo_sra_list.txt –ph_list demo_s-
ra_ph_list.txt –ref_gtf HIV_B.K03455.HXB2.gtf.

Stage 5: Phylogenetics. A significant aspect of phylodynamics
is estimating phylogenetic trees. Phylogenetics is the study of
relationships and evolutionary history among taxa/sequences,
which in our case are viruses or viral strains/haplotypes.

Therefore, we included a stage which contains modules to
complete a multiple sequence alignment, optimize a model
of sequence evolution (Darriba et al. 2020), and generate a
maximum likelihood phylogenetic tree. We plan on including
more evolutionary analysis programs as modules in a future
version of HAPHPIPE. A beginner’s guide to phylogenetic
analysis in HAPHPIPE is available in the User Guide (https://
gwcbi.github.io/haphpipe_docs/phylo/#phylo-quick-start).

Multiple Sequence Alignment (multiple_align). Prior to generating a
phylogeny, a multiple sequence alignment (MSA) needs to be
generated in order to infer homologous regions. Because of
the ability to include a large number of sequences, quick run
time, and high alignment accuracy, we chose to use MAFFT
(Multiple Alignment using Fast Fourier Transform) to gener-
ate a MSA (Katoh et al. 2002, 2005; Katoh and Toh 2008;
Katoh and Standley 2013). Furthermore, MAFFT is open
source, maintained, and included as a recipe in Bioconda.
The input for this module can be a list of directories which
contain all the final.fna files or a FASTA file, or both (in which
case the sequences in the FASTA file are combined with the
final.fna files retrieved before alignment). If the final.fna con-
tains amplicons or separate MSAs are desired for amplicons, a
GTF file can be supplied as well. However, if a GTF file is not
supplied, then the option –alignall needs to be specified, and
then all input sequences will be aligned together. The outputs
of this module located in the subdirectory hp_alignments are
alignments in FASTA format; if PHYLIP formatted files (a dif-
ferent format to store an MSA; derived from Felsenstein 2005)
are desired, the option –phylipout can be included in the
command. PHYLIP or FASTA output may be used to run
the build_tree module. Similarly, CLUSTAL format
(Thompson et al. 1994; Sievers et al. 2011) can be used by
including the –clustalout option. A variety of other options
for MAFFT can be found in the User Guide (https://gwcbi.
github.io/haphpipe_docs/phylo/#multiple_align). Example to
execute: haphpipe muliple_align –dir_list demo_sra_list.txt –
ref_gtf HIV_B.K03455.HXB2.gtf –phylipout –logfile
demo_multiple_align.log.

Model of Evolution Selection Test (model_test). To select models of
evolution, we implement ModelTest-NG (Darriba et al. 2020),
which analyzes a multiple sequence alignment and deter-
mines the best-fit model of evolution based on statistical
criteria (criteria being: AIC—Akaike 1974; AICc—Hurvich
and Tsai 1989; BIC—Schwarz 1978; and DT—Minin et al.
2003) as the module model_test. The primary and only re-
quired input for this module is an alignment file (either in
FASTA or PHYLIP format), which is generated from the pre-
vious module muliple_align. As the next module, build_tree,
builds a phylogenetic tree using RAxML, an option to output
a command with the corresponding evolutionary model can
be executed by using the option –template raxml. Partitions
(such as different codon positions or gene regions) can be
specified as input as well. The outputs of this module are a
text file containing the test results and a summary TSV file
that contains the input file and the corresponding best-fit

Bendall et al. . doi:10.1093/molbev/msaa315 MBE

1684

https://gwcbi.github.io/haphpipe_docs/phylo/#phylo-quick-start
https://gwcbi.github.io/haphpipe_docs/phylo/#phylo-quick-start
https://gwcbi.github.io/haphpipe_docs/phylo/#multiple_align
https://gwcbi.github.io/haphpipe_docs/phylo/#multiple_align

evolutionary model for each statistical criterion. An example
of both output files are in the User Guide (https://gwcbi.
github.io/haphpipe_docs/phylo/#model_test). Example to
execute: haphpipe muliple_align –seqs alignment_region00.-
fasta –template raxml –run_id alignment_region00.

Phylogenetic Tree (build_tree). To estimate a phylogenetic tree, we
implement RAxML-NG (Kozlov et al. 2019), an open-source,
well-maintained, and efficient phylogenetic analysis tool.
RAxML-NG includes a variety of options on reconstructing
trees for both nucleotides and amino acids. The input for this
module can be either a multiple sequence aligned FASTA file
or a PHYLIP formatted file (both can be outputted from the
module multiple_align). The number of bootstrap replicates
and a partition file are among the common options included
as a part of this module. A partition file is often used for
denoting different evolutionary models for different genes
or codon positions, whereas bootstrap replicates are used
to determine the support for nodes within the phylogeny.
There are a variety of other options, which are discussed in
more detail in the User Guide (https://gwcbi.github.io/haph-
pipe_docs/phylo/#build_tree_NG). The outputs for this
module are located in the subdirectory hp_tree and are for-
matted specifically for phylogenetic trees. For example, the
“raxml.bestTree” file contains the best scoring maximum like-
lihood tree; the “raxml.boostraps” file contains all trees con-
structed for bootstrap analysis; the “raxml.support” file
contains the best tree with bootstrap support values. This
final file (raxml.support) is the tree file that should be used to
visualize the tree using visualization programs such as iTOL
(Letunic and Bork 2019) or FigTree (https://github.com/ram-
baut/figtree). Example to execute: haphpipe build_tree –all –
seqs alignment_region00.fasta –output_name alignment_
region00.

Example Pipelines
Two example pipelines have been included in the documen-
tation of HAPHPIPE, both of which are for amplicon assembly
(fig. 1): one that implements de novo assembly (haphpipe_as-
semble_01) and one that uses reference-based mapping
(haphpipe_assemble_02).

De Novo Assembly
The de novo assembly begins with 1) trimming the raw reads
(haphpipe trim_reads), then 2) error-correction (haphpipe
ec_reads) using the trimmed reads as input. The trimmed
reads are used as input for the 3) de novo assembly step using
SPAdes (haphpipe assemble_denovo). The trimmed reads are
used here, because SPAdes automatically completes an error
correction step during de novo assembly. Hence, we do not
want to do error-correction twice on the reads. The assem-
bled contigs (denovo_contigs.fa) are used as input for 4) as-
sembling the amplicons (haphpipe assemble_amplicons),
where a reference sequence FASTA file and reference GTF
file are also required as inputs. The assembly is then 5) refined
(haphpipe refine_assembly) iteratively, with a maximum re-
finement of five steps, until there is no improvement to the

refined sequence. The corrected FASTQ reads are used as
input, along with the reference FASTA file this time being
the assembled FASTA file (amplicon_assembly.fna). The final
step for the de novo assembly pipeline is 6) finalizing the
assembly. Here, we used the corrected FASTQ reads again
as input with the reference sequence FASTA file being the
final refined FASTA file (refined.fna). The final output for a
sample is an aligned BAM file (reads relative to final.fna), a
FASTA file with the final consensus sequences for the ampli-
cons (final.fna), and a VCF file containing the variants relative
to the sample’s consensus sequence (final.fna). Example to
execute: haphpipe_assemble_01 SRR8525886_1.fastq
SRR8525886_2.fastq HIV_B.K03455.HXB2.fasta HIV_B.K03455.
HXB2.gtf PL12.

Reference-Based Assembly
The reference-based mapping assembly also begins with 1)
trimming the raw reads (haphpipe trim_reads), followed by
the trimmed reads then being 2) error-corrected (haphpipe
ec_reads). These preliminary cleaning steps are standard prac-
tice in the analysis of NGS data. The corrected FASTQ reads
are used as input for 3) the reference-based mapping assem-
bly step (haphpipe refine_assembly), with a maximum refine-
ment of five iterative steps, until there is no improvement to
the refined sequence. The reference FASTA file contains the
reference sequences for the amplicons. The 4) final step is
finalizing the assembly, where the corrected FASTQ reads are
used again as input with the reference sequence FASTA file
being the final refined FASTA file (refined.fna). The final out-
put for a sample is an aligned BAM file (reads relative to the
reference amplicon sequences), a FASTA file with the final
consensus sequences for the amplicons, and a VCF file con-
taining the variants relative to the reference FASTA file
sequences (in the demo, we used HXB2). Example to execute:
haphpipe_assemble_02 SRR8525886_1.fastq SRR8525886_2.fastq
HIV_B.K03455.HXB2.amplicons.fasta PL12.

The example pipelines are written in bash scripting lan-
guage. To execute the de novo assembly pipeline on your
own data, simply state haphpipe_assemble_01, read_1 file,
read_2 file, the reference FASTA file for the assembly, the
reference GTF file for your amplicons of choice, and the sam-
ple name (see User Guide at https://gwcbi.github.io/haph-
pipe_docs/expipes/). Alternatively, for the reference-based
mapping assembly pipeline, state haphpipe_assemble_02,
read_1 file, read_2 file, the reference amplicon FASTA file
for the assembly (this can have multiple sequences in the
same file), and the sample name. Use the examples given
above as a guide. The reference files used in the example
pipelines (HIV_B.K03455.HXB2.fasta, HIV_B.K03455.HXB2.gtf,
and HIV_B.K03455.HXB2.amplicons.fasta) are included within
the demo data when downloaded from GitHub. If you prefer
whole-genome assembly and still want to use the pipelines we
have included, state the starting position and ending position
in your GTF file relative to your virus of choice’s reference
sequence FASTA file (i.e., for HIV-1, the numbering would be
1 and 9,719).

Haplotype Reconstruction and Phylodynamics of Intrahost Viral Populations . doi:10.1093/molbev/msaa315 MBE

1685

https://gwcbi.github.io/haphpipe_docs/phylo/#model_test
https://gwcbi.github.io/haphpipe_docs/phylo/#model_test
https://gwcbi.github.io/haphpipe_docs/phylo/#build_tree_NG
https://gwcbi.github.io/haphpipe_docs/phylo/#build_tree_NG
https://github.com/rambaut/figtree
https://github.com/rambaut/figtree
https://gwcbi.github.io/haphpipe_docs/expipes/
https://gwcbi.github.io/haphpipe_docs/expipes/

Advanced Users: Creating Your Own Pipeline
Advanced users can easily build their own pipeline using any
of the stages described above in any order they choose or
even swapping out particular algorithms at particular steps
(e.g., alternative haplotype callers, alternative multiple se-
quence alignment algorithms, alternative phylogenetic esti-
mators, etc.). However, familiarity with general NGS analysis
and bash scripting practices are essential to developing your
own pipeline. The modular state of HAPHPIPE and the start-
ing directory structure facilitates bash scripting (see the code

for the example pipelines) by using the outputs of one mod-
ule for input into another (see https://gwcbi.github.io/haph-
pipe_docs/inout/for list of the files output by every module).
To run a pipeline on multiple samples with one script, you
can easily implement a bash array or loop. Additionally, every
module can be called from the command line or within py-
thon as a function. The function returns all outputs to the
specified output directory, so you can also make a pipeline in
python without using bash scripts. Furthermore, a combina-
tion of bash and python can be used to construct a

hp_
multple_

align

RAxML_
bipartitions

Branch
Labels.

alignment_
region00

final
.fna

final
.vcf.gz

final
.bam

hp_
build_
tree

demo_
multiple_
align.log

alignment_
region00

.fasta

alignment_
region01

.fasta

alignment_
region02

.fasta

alignment_
region00

.phy

alignment_
region01

.phy

alignment_
region02

.phy

ph_
haplotypes

.fna

PH01_
PRRT

ph_
haplotypes

.fna

PH02_
INT

ph_
haplotypes

.fna

PH03_
gp120

RAxML_
bipartitions

Branch
Labels.

alignment_
region01

RAxML_
bipartitions

Branch
Labels.

alignment_
region02

Base
Directory

Directory for
Reference

Files

Reference
FASTA

Reference
GTF

Reference
Amplicon

FASTA
HIV_B.K03455.

HXB2.fasta
HIV_B.K03455.

HXB2.gtf

HIV_B.K03455.
HXB2.amplicons

.fasta

Directory
for Sample
A - Paired

haphpipe_
assemble_

02

Paired
Read 1
FASTQ

Paired
Read 2
FASTQ

SRR8525886_1
.fastq

SRR8525886_2
.fastq

SRR8525886 refs

haphpipe_demo

alignment_
region00_
modeltest_
results.out

alignment_
region00_
modeltest_

results_
summary.tsv

alignment_
region01_
modeltest_
results.out

alignment_
region01_
modeltest_

results_
summary.tsv

alignment_
region02_
modeltest_
results.out

alignment_
region02_
modeltest_

results_
summary.tsv

FIG. 3. Directory structure after running the demo for one sample. The base directory (haphpipe_demo) should contain one subdirectory for each
sample (with a unique and descriptive name) containing sequence data and a separate subdirectory (refs) for the file(s) of viral reference
genome(s) and/or genes. The example here shows the structure for the demo data with an example for one sample (SRR8525886). After running
the demo, the sample subdirectory will contain three new subdirectories: 1) haphpipe_assemble_02, 2) hp_multiple_align, and 3) hp_build_tree.
If PredictHaplo is installed, the haphpipe_assemble_02 subdirectory will contain subdirectories for each region reconstructed. In the case for this
demo, there are three amplicon (gene) regions: PRRT, INT, and gp120. A full list of all files present can be found in the User Guide (https://gwcbi.
github.io/haphpipe_docs/demos/).

Bendall et al. . doi:10.1093/molbev/msaa315 MBE

1686

https://gwcbi.github.io/haphpipe_docs/inout/for
https://gwcbi.github.io/haphpipe_docs/inout/for
https://gwcbi.github.io/haphpipe_docs/demos/
https://gwcbi.github.io/haphpipe_docs/demos/

“Snakefile” to use Snakemake (Köster and Rahmann 2012),
which is a workflow management system. A great starting
point for creating your own pipeline is to view the example
pipeline codes and adjust each one to your own needs. For
example, if you have a large number of reads in your samples,
you may want to add a sample_reads step before running de
novo assembly. This can be done by adding a sample_reads
command to hp_assemble_01 before trim_reads and chang-
ing the input files for trim_reads to sample_1.fastq and sam-
ple_2.fastq. An example for creating a new custom pipeline
for analyzing SARS-CoV-2 can be found in the User Guide
(https://gwcbi.github.io/haphpipe_docs/adv/).

Demo
We provide more details, links, and basic commands for
downloading the demo data in the User Guide (https://
gwcbi.github.io/haphpipe_docs/demos/). We also describe
two strategies to complete the demo: 1) automatically, which
is to ultimately test if HAPHPIPE has been installed correctly
and 2) interactively, to acquire experience running HAPHPIPE
yourself. The demo consists of real HIV-1 data (SRA acces-
sions: SRR8525886, SRR8525933, SRR8525938, SRR8525939,
SRR8525940) (Jair et al. 2019) and is processed through haph-
pipe_assemble_02 amplicon assembly. After running the
demo, the files 1) final.fna, 2) final.vcf.gz, and 3) final.bam
should be present for each SRA sample within the subdirec-
tory haphpipe_assemble_02 (fig. 3). The FASTA files contain
the protease, reverse transcriptase, and gp120 gene regions. If
PredictHaplo is loaded, the haplotype stages will also run, and
the files 4) ph_summary.txt and 5) ph_haplotypes.fna for the
amplicons should be present within each PH0# subdirectory
within each SRA sample directory as well (fig. 3). Finally, the

first directory 6) hp_multiple_align should contain the files:
demo_multiple_align.log, alignment_region00.fasta, align-
ment_region00.phy, alignment_region01.fasta, alignment_re-
gion01.phy (fig. 3). If PredictHaplo is loaded,
alignment_region02.fasta and alignment_region02.phy
should also be present. These files for this region (02), which
corresponds to gp120, is not present when not including the
haplotypes, because only three samples are in the alignment
and that is too few samples to build a tree in build_tree
module with RAxML. Two files 7) alignment_region##_mo-
deltest_results.out and 8) alignment_region##_modeltes-
t_results_summary.tsv should be present for each
alignment. The second directory (ix) ph_build_tree should
contain the files: RAxML_bipartitionsBranchLabels.alignment_
region00 and RAxML_bipartitionsBranchLabels.alignment_
region01 (fig. 3). Again, if PredictHaplo is loaded and run, then
a third file, RAxML_bipartitionsBranchLabels.alignment_
region02, should be present because there were enough
samples to build a tree with. Finally, after the demo is com-
pleted, the TRE files can be visualized, which we completed
with iTOL (fig. 4). The demo runs quickly (around 15–
20 min using a single CPU with 16 Gb of RAM) (i.e., available
memory). The time speeds up when more CPUs are used,
such as when on a high-performance cluster. After a com-
plete run, regardless of if PredictHaplo is installed or not,
only 100 Mb of storage is needed. See the User Guide for
examples to execute the demo and for more details (https://
gwcbi.github.io/haphpipe_docs/demos/).

Discussion
Here, we introduced HAPHPIPE, a HAplotype and
PHylodynamics PIPEline for viral assembly, population

sid|SRR8525886 PH01 reconstructed 0
sid|SRR8525886

sid|SRR8525940 PH01 reconstructed 1

sid|SRR8525933

sid|SRR8525939
sid|SRR8525938
sid|SRR8525933 PH01 reconstructed 0

sid|SRR8525940 PH01 reconstructed 0
sid|SRR8525940

sid|SRR8525939 PH01 reconstructed 0

sid|SRR8525940
sid|SRR8525938
sid|SRR8525938 PH02 reconstructed 0

sid|SRR8525940 PH02 reconstructed 0
sid|SRR8525886 PH02 reconstructed 0

sid|SRR8525933 PH02 reconstructed 0

sid|SRR8525886

sid|SRR8525933

sid|SRR8525939
sid|SRR8525939 PH02 reconstructed 0

sid|SRR8525886 PH03 reconstructed 0

sid|SRR8525938 PH03 reconstructed 2

sid|SRR8525938 PH03 reconstructed 6

sid|SRR8525939 PH03 reconstructed 0

sid|SRR8525938 PH03 reconstructed 3

sid|SRR8525938 PH03 reconstructed 4
sid|SRR8525938 PH03 reconstructed 5

sid|SRR8525939
sid|SRR8525886

sid|SRR8525938 PH03 reconstructed 0

sid|SRR8525938 PH03 reconstructed 1

sid|SRR8525938

PRRT

int

gp120

FIG. 4. The phylogenetic trees from the competition of the demo. PredictHaplo was installed, so haplotypes were reconstructed for each gene
region. Phylogenies for each amplicon genes in the demo (PRRT, int, and gp120) are presented with each sample represented by a different color.
Dots correspond to �70 bootstrap support.

Haplotype Reconstruction and Phylodynamics of Intrahost Viral Populations . doi:10.1093/molbev/msaa315 MBE

1687

https://gwcbi.github.io/haphpipe_docs/adv/
https://gwcbi.github.io/haphpipe_docs/demos/
https://gwcbi.github.io/haphpipe_docs/demos/
https://gwcbi.github.io/haphpipe_docs/demos/
https://gwcbi.github.io/haphpipe_docs/demos/

genetics, and phylodynamics. This protocol is constructed in
a modular fashion such that individual components can be
easily replaced with improved methodology or updated ver-
sions of the incorporated software. The modular setup facil-
itates the software’s fluidity to fulfill the needs of the users,
who may not need all of the modules or the modules in a
particular predefined order to complete their analyses.
HAPHPIPE is designed to provide users with an integrated
workflow to rapidly analyze viral sequences generated from
NGS platforms and provide quality output properly format-
ted for downstream evolutionary analyses.

To place our software in the context of existing bioinfor-
matics tools, we discuss and compare several alternative viral
assembly pipelines all with respect to HAPHPIPE in our val-
idation study (Gibson et al. 2020b). In addition to HIV-1,
HAPHPIPE has been tested on other viruses, including HCV
and SARS-CoV-2. Each module and both example pipelines
were tested on these viruses, and an example of how to build
a custom pipeline is included in the User Guide. As most
existing viral NGS platforms focus on HIV-1 exclusively, this
represents a significant advantage of HAPHPIPE for users an-
alyzing many different viral species. For a thorough compar-
ison of HAPHPIPE’s methods with those of other tools, please
see Gibson et al. (2020b). Briefly, we found that HAPHPIPE
performed as well or significantly better than each of the
other programs tested, while also being able to handle larger
amounts of data in a shorter time frame.

We contend that the primary advantages of HAPHPIPE
over existing platforms stem from its flexibility, extensibility,
and ease of use. HAPHPIPE is open-source and does not con-
tain any requirements or implementation of commercial soft-
ware or licenses, thus, facilitating its access by a wider
community of researchers. In addition, by wrapping multiple
programs into convenient and fast pipelines, we greatly sim-
plify the NGS analysis workflow for users at the beginner
stage. HAPHPIPE incorporates standardized bioinformatics
software through the package manager Conda and the chan-
nel Bioconda, which allows for multiple users to access and
run HAPHPIPE and greatly simplifies the installation process.
Due to the modular system and easily extensible source code,
users can customize analyses through a variety of applications
and future versions of HAPHPIPE can be readily adapted to
include new and updated bioinformatic tools.

Our main goal in writing this protocol is to facilitate the
usage of HAPHPIPE to researchers with varying levels of cod-
ing experience. Additionally, our commitment to ensuring
the public availability of best practices for genomics work-
flows is carried out through our choice of Bioconda for instal-
ling HAPHPIPE. HAPHPIPE provides a user-friendly
framework for operating many community-supported open
source tools, the underutilization of which, and the resulting
implications for rigor and reproducibility in viral genomics,
have been brought to light by scientific response to the recent
COVID-19 pandemic (Baker et al. 2020). It is our hope that
our efforts will further support use, maintenance, and avail-
ability of open-source tools within the bioinformatics
community.

Acknowledgments
The authors thank Pengfei Li for his help in developing the
User Guide. This study was supported by a DC D-CFAR pilot
award, a 2015 HIV Phylodynamics Supplement award from
the District of Columbia for AIDS Research, an National
Institutes of Health (NIH) funded program (AI117970), and
NIH grants AI076059 and UL1TR001876. The content is solely
the responsibility of the authors and does not necessarily
represent the official views of the NIH.

References
Akaike H. 1974. A new look at the statistical model dentification. IEEE

Trans Automat Contr. 19(6):716–723.
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. 2020. The

proximal origin of SARS-CoV-2. Nat Med. 26:450–452.
Baaijens JA, Aabidine AZE, Rivals E, Schonhuth A, Zine A, Aabidine E,

Rivals E, Schönhuth A, Wiskunde C, Amsterdam XG, et al. 2017. De
novo assembly of viral quasispecies using overlap graphs. Genome
Res. 27(5):835–848.

Baker D, van den Beek M, Blankenberg D, Bouvier D, Chilton J, Coraor N,
Coppens F, Eguinoa I, Gladman S, Grüning B, et al. 2020. No more
business as usual: Agile and effective responses to emerging patho-
gen threats require open data and open analytics. PLoS Pathog.
16(8):e1008643.

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS,
Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. 2012. SPAdes: a
new genome assembly algorithm and its applications to single-cell
sequencing. J Comput Biol. 19(5):455–477.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 30(15):2114–2120.

Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard MA,
Rambaut A, Drummond AJ. 2014. BEAST 2: a software platform for
Bayesian evolutionary analysis. PLoS Comput Biol. 10:1–6.

Bray T. 2014. The javascript object notation (json) data interchange
format. doi: 10.17487/RFC7158.

Burke DF, Smith DJ. 2014. A recommended numbering scheme for in-
fluenza A HA subtypes. PLoS One 9(11):e112302.

Bybee SM, Bracken-Grissom H, Haynes BD, Hermansen RA, Byers RL,
Clement MJ, Udall JA, Wilcox ER, Crandall KA. 2011. Targeted ampli-
con sequencing (TAS): a scalable next-gen approach to multilocus,
multitaxa phylogenetics. Genome Biol Evol. 3:1312–1323.

Castro-Nallar E, P�erez-Losada M, Burton GF, Crandall KA. 2012. The
evolution of HIV: inferences using phylogenetics. Mol Phylogenet
Evol. 62(2):777–792.

Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM. 2010. The Sanger
FASTQ file format for sequences with quality scores, and the
Solexa/Illumina FASTQ variants. Nucleic Acids Res. 38(6):
1767–1771.

Dale R, Grüning B, Sjödin A, Rowe J, Chapman BA, Tomkins-Tinch CH,
Valieris R, Batut B, Caprez A, Cokelaer T, et al. 2018. Bioconda: sus-
tainable and comprehensive software distribution for the life scien-
ces. Nat Methods. 15(7):475–476.

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA,
Handsaker RE, Lunter G, Marth GT, Sherry ST, et al. 2011. The variant
call format and fVCFtoolsg. Bioinformatics 27(15):2156–2158.

Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. 2020.
ModelTest-NG: a new and scalable tool for the selection of DNA and
protein evolutionary models. Mol Biol Evol. 37(1):291–294.

Dellicour S, Baele G, Dudas G, Faria NR, Pybus OG, Suchard MA,
Rambaut A, Lemey P. 2018. Phylodynamic assessment of interven-
tion strategies for the West African Ebola virus outbreak. Nat
Commun. 9(1):2222.

du Plessis L, Stadler T. 2015. Getting to the root of epidemic spread with
phylodynamic analysis of genomic data. Trends Microbiol.
23(7):383–386.

Bendall et al. . doi:10.1093/molbev/msaa315 MBE

1688

Eliseev A, Gibson KM, Avdeyev P, Novik D, Bendall ML, P�erez-Losada M,
Alexeev N, Crandall KA. 2020. Evaluation of haplotype callers for
next-generation sequencing of viruses. Infect Genet Evol. 82:104277.

Felsenstein J. 2005. PHYLIP (Phylogeny Inference Package) version 3.6.
Available from: https://evolution.genetics.washington.edu/phylip.
html.

Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF,
Cummins LB, Arthur LO, Peeters M, Shaw GM, et al. 1999. Origin
of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature
397(6718):436–441.

Gibson KM, Jair K, Castel AD, Bendall ML, Wilbourn B, Jordan JA,
Crandall KA, P�erez-Losada M, the DC Cohort Executive
Committee. 2020a. A cross-sectional study to characterize local
HIV-1 dynamics in Washington, DC using next-generation sequenc-
ing. Sci Rep. 10:1–18.

Gibson KM, Steiner MC, Rentia U, Bendall ML, Per�ez-Losada M, Crandall
KA. 2020b. Validation of variant assembly using HAPHPIPE with next
generation sequence data from viruses. Viruses 12(7):758.

Hurvich CM, Tsai C. 1989. Regression and time series model selection in
small samples. Biometrika 76(2):297–307.

Jair K, McCann CD, Reed H, Castel AD, P�erez-Losada M, Wilbourn B,
Greenberg AE, Jordan JA, the DC Cohort Executive Committee. 2019.
Validation of publicly-available software used in analyzing NGS data
for HIV-1 drug resistance mutations and transmission networks in a
Washington, DC, Cohort. PLoS One 14(4):e0214820–e02148916.

Johnson JA, Li JF, Wei X, Lipscomb J, Irlbeck D, Craig C, Smith A, Bennett
DE, Monsour M, Sandstrom P, et al. 2008. Minority HIV-1 drug
resistance mutations are present in antiretroviral treatment-naı̈ve
populations and associate with reduced treatment efficacy. PLoS
Med. 5(7):1122.

Katoh K, Kuma K, Miyata T, Toh H. 2005. Improvement in the accuracy
of multiple sequence alignment program MAFFT. Genome
Informatics 16(1):22–23.

Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for
rapid multiple sequence alignment based on fast Fourier transform.
Nucleic Acids Res. 30(14):3059–3066.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment soft-
ware version 7: improvements in performance and usability. Mol Biol
Evol. 30(4):772–780.

Katoh K, Toh H. 2008. Improved accuracy of multiple ncRNA alignment
by incorporating structural information into a MAFFT-based frame-
work. BMC Bioinformatics 9(1):13.

Knyazev S, Tsyvina V, Melnyk A, Malygina T, Porozov YB, Campbell E,
Switzer WM, Skums P, Zelikovsky A. 2018. CliqueSNV: scalable re-
construction of intra-host viral populations from NGS reads.
bioRxiv:1–8.

Korber B, Foley BT, Kuiken C, Pillai SK, Sodroski JG. 1998. Numbering
positions in HIV relative to HXB2CG. AIDS Res Hum Retroviruses.
3:102–111.

Kosakovsky Pond SL, Weaver S, Leigh Brown AJ, Wertheim JO. 2018. HIV-
TRACE (Transmission Cluster Engine): a tool for large scale molec-
ular epidemiology of HIV-1 and other rapidly evolving pathogens.
Mol Biol Evol. 35(7):1812–1819.

Köster J, Rahmann S. 2012. Snakemake – a scalable bioinformatics work-
flow engine. Bioinformatics 28(19):2520–2522.

Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A, Wren J. 2019.
RAxML-NG: a fast, scalable and user-friendly tool for maximum
likelihood phylogenetic inference. Bioinformatics 35(21):4453–4455.

Kühnert D, Kouyos R, Shirreff G, Pe�cerska J, Scherrer AU, Böni J, Yerly S,
Klimkait T, Aubert V, Günthard HF, et al. 2018. Quantifying the
fitness cost of HIV-1 drug resistance mutations through phylody-
namics. PLoS Pathog. 14(2):e1006895.

Kuiken C, Simmonds P. 2009. Nomenclature and numbering of the
hepatitis C virus. Methods Mol Biol. 510:33–53.

Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C,
Salzberg SL. 2004. Versatile and open software for comparing large
genomes. Genome Biol. 5(2):R12.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with
Bowtie2. Nat Methods. 9(4):357–359.

Leprevost FDV, Barbosa VC, Francisco EL, Perez-Riverol Y, Carvalho PC.
2014. On best practices in the development of bioinformatics soft-
ware. Front Genet. 5:199.

Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates
and new developments. Nucleic Acids Res. 47(W1):W256–W259.

Levy SE, Myers RM. 2016. Advancements in next-generation sequencing.
Annu Rev Genom Hum Genet. 17(1):95–115.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R, 1000 Genome Project Data Processing
Subgroup. 2009. The Sequence alignment/map (SAM) format and
SAMtools. Bioinformatics 25(16):2078–2079.

Li JZ, Paredes R, Ribaudo H, Svarovskaia ES, Ostergaard L, Masquelier B.
2011. Minority HIV-1 drug resistance mutations and the risk of
NNRTI-based antiretroviral treatment failure: a systematic review
and pooled analysis. Jama 305(13):1327–1335.

Lopez F, Charbonnier G, Kermezli Y, Belhocine M, Ferr�e Q, Zweig N, Aribi
M, Gonzalez A, Spicuglia S, Puthier D. 2019. Explore, edit and lever-
age genomic annotations using Python GTF toolkit. Bioinformatics
35(18):3487–3488.

Luo C, Bueno M, Kant J, Martinson J, Randhawa P. 2009. Genotyping
schemes for polyomavirus fBKg, using gene-specific phylogenetic
trees and single nucleotide polymorphism analysis. J Virol.
83(5):2285–2297.

Mago�c T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads
to improve genome assemblies. Bioinformatics 27(21):2957–2963.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M, et al. 2010. The Genome
Analysis Toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res. 20(9):1297–1303.

Metzker ML, Mindell DP, Liu X-M, Ptak RG, Gibbs RA, Hillis DM. 2002.
Molecular evidence of HIV-1 transmission in a criminal case. Proc
Natl Acad Sci U S A. 99(22):14292–14297.

Metzner KJ, Giulieri SG, Knoepfel SA, Rauch P, Burgisser P, Yerly S,
Günthard HF, Cavassini M. 2009. Minority quasispecies of drug-re-
sistant HIV-1 that lead to early therapy failure in treatment-naive
and -adherent patients. Clin Infect Dis. 48(2):239–247.

Minin V, Abdo Z, Joyce P, Sullivan J. 2003. Performance-based selection
of likelihood models for phylogeny estimation. Syst Biol.
52(5):674–683.

Nagarajan N, Pop M. 2013. Sequence assembly demystified. Nat Rev
Genet. 14(3):157–167.

Pearson WR, Lipman DJ. 1988. Improved tools for biological sequence
comparison. Proc Natl Acad Sci U S A. 85(8):2444–2448.

P�erez-Losada M, Arenas M, Gal�an JC, Bracho MA, Hillung J, Garc�ıa-
Gonz�alez N, Gonz�alez-Candelas F. 2020. High-throughput sequenc-
ing (HTS) for the analysis of viral populations. Infect Genet Evol.
80:104208.

P�erez-Losada M, Castel AD, Lewis B, Kharfen M, Cartwright CP, Huang B,
Maxwell T, Greenberg AE, Crandall KA, on behalf of the DC Cohort
Executive Committee. 2017. Characterization of HIV diversity, phy-
lodynamics and drug resistance in Washington, DC. PLoS One
12(9):e0185644.

Posada-Cespedes S, Seifert D, Beerenwinkel N. 2017. Recent advances in
inferring viral diversity from high-throughput sequencing data. Virus
Res. 239:17–32.

Posada D, Crandall KA. 2002. The effect of recombination on the accu-
racy of phylogeny estimation. J Mol Evol. 54(3):396–402.

Posada D, Crandall KA, Holmes EC. 2002. Recombination in evolutionary
genomics. Annu Rev Genet. 36(1):75–97.

Prabhakaran S, Rey M, Zagordi O, Beerenwinkel N, Roth V. 2014. HIV
haplotype inference using a propagating dirichlet process mixture
model. IEEE/ACM Trans Comput Biol Bioinf. 11(1):182–191.

Ragonnet-Cronin M, Jackson C, Bradley-Stewart A, Aitken C, McAuley A,
Palmateer N, Gunson R, Goldberg D, Milosevic C, Leigh Brown AJ.
2018. Recent and rapid transmission of HIV among people who
inject drugs in Scotland revealed through phylogenetic analysis. J
Infect Dis. 217(12):1875–1882.

Rambaut A, Posada D, Crandall KA, Holmes EC. 2004. The causes and
consequences of HIV evolution. Nat Rev Genet. 5(1):52–61.

Haplotype Reconstruction and Phylodynamics of Intrahost Viral Populations . doi:10.1093/molbev/msaa315 MBE

1689

https://evolution.genetics.washington.edu/phylip.html
https://evolution.genetics.washington.edu/phylip.html

Ratner L, Haseltine W, Patarca R, Livak KJ, Starcich B, Josephs SF, Doran
ER, Rafalski JA, Whitehorn EA, Baumeister K, et al. 1985. Complete
nucleotide sequence of the AIDS virus, HTLV-III. Nature
313(6000):277–284.

Robinson JT, Thorvaldsd�ottir H, Wenger AM, Zehir A, Mesirov JP. 2017.
Variant review with the integrative genomics viewer. Cancer Res.
77(21):e31–e34.

Robinson JT, Thorvaldsd�ottir H, Winckler W, Guttman M, Lander ES,
Getz G, Mesirov JP. 2011. Integrative genome viewer. Nat Biotechnol.
29(1):24–26.

Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P,
Ramos-Onsins SE, Sanchez-Gracia A. 2017. DnaSP 6: DNA sequence
polymorphism analysis of large data sets. Mol Biol Evol.
34(12):3299–3302.

RStudio Team. 2015. RStudio: integrated development for R.
Boston. Available from: https://rstudio.com/

Schirmer M, Ijaz UZ, D’Amore R, Hall N, Sloan WT, Quince C. 2015.
Insight into biases and sequencing errors for amplicon sequencing
with the Illumina fMiSeqg platform. Nucleic Acids Res. 43(6):e37.

Schwarz G. 1978. Estimating the dimension of a model. Ann Statist.
6(2):461–464.

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R,
McWilliam H, Remmert M, Söding J. 2011. Fast, scalable generation
of high-quality protein multiple sequence alignments using Clustal
Omega. Mol Syst Biol. 7:539.

Simen BB, Simons JF, Hullsiek KH, Novak RM, Macarthur RD, Baxter JD,
Huang C, Lubeski C, Turenchalk GS, Braverman MS, et al. 2009. Low-
abundance drug-resistant viral variants in chronically HIV-infected,

antiretroviral treatment-naive patients significantly impact treat-
ment outcomes. J Infect Dis. 199(5):693–701.

Simpson JT, Pop M. 2015. The theory and practice of genome sequence
assembly. Annu Rev Genom Hum Genet. 16(1):153–172.

Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through se-
quence weighting, position-specific gap penalties and weight matrix
choice. Nucleic Acids Res. 22(22):4673–4680.

Thorvaldsd�ottir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics
Viewer (IGV): high-performance genomics data visualization and
exploration. Brief Bioinform. 14(2):178–192.

Topfer A, Zagordi O, Prabhakaran S, Roth V, Halperin E, Beerenwinkel N.
2013. Probabilistic inference of viral quasispecies subject to recom-
bination. J Comput Biol Internet. 20(2):113–123.

Volz EM, Koelle K, Bedford T. 2013. Viral phylodynamics. PLoS Comput
Biol. 9(3):e1002947.

Warren RL, Holt RA. 2011. Targeted assembly of short sequence reads.
PLoS One 6(5):e19816.

Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW,
Tian JH, Pei YY, et al. 2020. A new coronavirus associated
with human respiratory disease in China. Nature
579(7798):265–269.

Zagordi O, Bhattacharya A, Eriksson N, Beerenwinkel N. 2011.
ShoRAH: estimating the genetic diversity of a mixed sample
from next-generation sequencing data. BMC Bioinformatics
12(1):119.

Zerbino DR, Achuthan P, Akanni W. 2017. Ensembl 2018. Nucleic
Acids Res. 46(D1):D754–D761.

Bendall et al. . doi:10.1093/molbev/msaa315 MBE

1690

https://rstudio.com/

