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HIGHLIGHTS

� Stat3, a major signaling molecule for proinflammatory cytokines including IL-6, was activated both in inflammatory cells

and in SMC in the aortic walls of human AD and mouse AD model.

� SMC-specific deletion of Socs3 enhanced Stat3 activation in SMC, induced moderate proinflammatory response in the aortic

walls, and ameliorated AD in mice.

� SmSocs3-KO aortas showed increases in fibroblasts, adventitial collagen fibers, and tensile strength of the aortic walls.

� IL-6-stimulated SMC in culture secreted humoral factor(s) that promoted proliferative response of fibroblasts.
https://doi.org/10.1016/j.jacbts.2019.10.010

https://doi.org/10.1016/j.jacbts.2019.10.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jacbts.2019.10.010&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


BR EV I A T I ON S

J A C C : B A S I C T O T R A N S L A T I O N A L S C I E N C E V O L . 5 , N O . 2 , 2 0 2 0 Hirakata et al.
F E B R U A R Y 2 0 2 0 : 1 2 6 – 4 4 Role of Smooth Muscle Socs3 in Aortic Dissection

127
SUMMARY
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AND ACRONYMS

AD = aortic dissection

AngII = angiotensin II

BAPN = b-aminopropionitrile

ECM = extracellular matrix

IL = interleukin

Jnk = c-Jun N-terminal kinases

KO = knockout

Lox = lysyl oxidase

p = phosphorylated
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Aortic dissection (AD) is the acute destruction of aortic wall and is reportedly induced by inflammatory

response. Here we investigated the role of smooth muscle Socs3 (a negative regulator of Janus kinases/

signal transducer and activator of transcription signaling) in AD pathogenesis using a mouse model

generated via b-aminopropionitrile and angiotensin II infusion. Socs3 deletion specifically in smooth muscle

cells yielded a chronic inflammatory response of the aortic wall, which was associated with increased

fibroblasts, reinforced aortic tensile strength, and less-severe tissue destruction. Although an acute

inflammatory response is detrimental in AD, smooth muscle-regulated inflammatory response seemed

protective against AD. (J Am Coll Cardiol Basic Trans Science 2020;5:126–44) © 2020 The Authors.

Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

= smooth muscle myosin

y chain
SM2
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SMA = smooth muscle a-actin

SMC = smooth muscle cell

SMemb = embryonic isoform

of myosin heavy chain

smSocs3-KO = knockout of

the smooth muscle cell Socs3

Socs = suppressor of cytokine

signaling

Stat = signal transducer and

activator of transcription

WT = wild type
A ortic dissection (AD), which is among themost
serious forms of aortic disease, occurs when
the intima-media complex in the aortic wall

is torn, leading to rapid destruction of the tunicamedia
and the consequent formation of a pseudolumen. The
clinical manifestation of AD is abrupt, severe chest or
back pain, with no preceding symptoms. In AD
involving the ascending aorta—known as a Stanford
type A dissection—progression of dissection
commonly causes life-threatening complications,
including ischemia in critical organs, cardiac tampo-
nade, aortic valve insufficiency, and aortic rupture
(1). Type A dissections account for 67% of AD cases ac-
cording to the IRAD (International Registry of Acute
Aortic Dissection) (2), and emergency surgery is rec-
SEE PAGE 145
ommended in these cases as it can reduce 1-month
mortality from 90% to 30% (1). Dissections not
involving the ascending aorta are termed Stanford
type B dissections. Surgery does not improvemortality
rates in type B dissections (1); thus, medical
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management is recommended over surgery
in this situation. Notably, approximately
50% of patients who survive the acute phase
of AD experience long-term complications
due to progressive destruction of aortic tissue
(1). Such long-term complications remain
problematic despite substantial advance-
ments in surgical techniques, therapeutic de-
vices, andmedical management strategies (3).
Recent studies have highlighted the importance of
destructive inflammation during AD development.
Tieu et al. (4) reported a murine model of AD devel-
oped by subcutaneously infusing angiotensin II
(AngII) into mice. They demonstrated that the
proinflammatory cytokine interleukin(IL)-6, together
with the monocyte chemoattractant protein1, pro-
moted monocyte infiltration and differentiation into
proinflammatory macrophages, ultimately resulting
in AD development (4). Other studies have shown
that AD development involves proinflammatory re-
sponses and tissue destruction, including induction
of neutrophil-derived matrix metalloproteinase-9 (5),
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granulocyte-macrophage colony-stimulating factor
(6), and granulocyte colony-stimulating factor (7), as
well as the production of reactive oxygen species
(8,9). Extracellular matrix (ECM) integrity also seems
to be important in AD pathogenesis, as exemplified by
the AD susceptibility of mice deficient in ECM com-
ponents, including collagen-1a and -3a, tenascin C
(10–12), and the ECM cross-linking enzyme lysyl oxi-
dase (Lox) (13). Notably, loss of Lox function is
causally involved in human AD (14). Compared with
healthy tunica media, the tunica media in human AD
exhibits lower abundances of collagen (15) and elastin
fibers (16). The ECM in the aortic wall is maintained
by smooth muscle cells (SMC) and fibroblasts (17), but
the roles of these cells and their cell-cell interactions
in the context of AD and inflammation remain
unclear.

We recently found that mice showed increased
susceptibility to AD when they carried a macrophage-
specific deletion of Socs3, which encodes a negative
regulator of the Janus kinases/signal transducer and
activator of transcription, or Jak/Stat, pathway (18).
This deletion skewed macrophage differentiation to-
ward the proinflammatory M1 phenotype. Addition-
ally, the AD-susceptible phenotype was associated
with altered SMC differentiation, suggesting that
maladaptive SMC differentiation may be involved in
AD pathogenesis. In the present study, we aimed to
investigate the molecular mechanism underlying the
imbalance in aortic tissue integrity in AD develop-
ment. Based on the importance of SMC in aortic tissue
homeostasis (19), we focused on the role of the sup-
pressor of cytokine signalling-3 (Socs3) in SMC. We
generated mice with a specific knockout of the SMC
Socs3 (smSocs3-KO), and then induced AD in
smSocs3-KO and wild-type (WT) mice to compare the
AD phenotype.

METHODS

ANIMAL EXPERIMENTS. All animal experimental
protocols were approved by the Animal Experiments
Review Boards of Kurume University. All mice were
maintained with normal chow and freely available
drinking water, unless otherwise stated. Male mice of
11 to 14 weeks of age were used for all of the animal
experiments. We used exclusively male mice because
AD predominantly affects men (20). To achieve the
smooth muscle–specific deletion of Socs3, or smSocs3-
KO, we crossed mice that were homozygous for the
floxed allele of Socs3 (Socs3fl/fl) (21) and that had been
backcrossed to C57BL/6J for 3 generations, with
SM22-Cre mice (JAX Mice, stock no. 004746; The
Jackson Laboratory, Bar Harbor, Maine) that carried a
Cre recombinase transgene under control of the
smooth muscle SM22 promoter. The mice were
maintained in the mixed background. Socs3fl/fl litter-
mate mice lacking the SM22-Cre transgene served as
WT control animals.

A recent report described an AD model induced by
administration of b-aminopropionitrile (BAPN) in
drinking water for 4 weeks, followed by AngII admin-
istration using an osmotic minipump (5). Although
this model is excellent for evaluating the mechanism
of AD rupture, the high mortality precludes a detailed
study of the progression of aortic wall destruction.
Additionally, AD induction is achieved by 2 different
stimuli with different time courses (long-term BAPN
administration and short-term AngII administration),
which complicates analysis of the molecular events
preceding AD dissection. Here we created a more
tunable AD model with simultaneous stimuli for AD
induction, to enable evaluation of the molecular
events both before and after AD onset. To this end,
BAPN (150 mg/kg/day) and AngII (1,000 ng/kg/min)
were simultaneously administered using osmotic
minipumps (Alzet model 1002, Durect Corporation,
Cupertino, California). Mice were anesthetized with
2% isoflurane, and then we implanted 2 pumps: 1 for
BAPN and another for AngII. Aortic samples were ob-
tained at the indicated times. Under this experimental
condition, the mouse genotype or BAPNþAngII
administration did not significantly alter systolic blood
pressure, heart rate, or body weight (Supplemental
Figure S1). In this model, AD development began
approximately 7 days after starting the BAPNþAngII
infusion, allowing analyses of tissues and molecular
phenotypes before AD development. We empirically
determined that this experimental condition could
achieve an AD incidence of approximately 70% to 80%
within 14 days, thus enabling detection of improve-
ment or worsening of the AD condition.

MACROSCOPIC ANALYSIS. Mice were sacrificed by
intraperitoneal injection of pentobarbital overdose at
the indicated time points, and blood and tissue sam-
ples were collected. Perfusion fixation was performed
using 4% paraformaldehyde in phosphate-buffered
saline at a pressure of 60 cm H2O. To analyze the AD
phenotype, we acquired aortic samples before and
14 days after starting the BAPNþAngII infusion. In
this model, AD lesions were associated with medial
layer disruption (a hallmark of AD) and both intra-
mural and adventitial hematomas, which led to an
increased aortic diameter (22). Therefore, we defined
an AD lesion as the appearance of an enlarged aortic
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section of over 1.5-fold the diameter at the distal end
of each segment. The aortic segments included the
arch, descending aorta, suprarenal aorta, and
infrarenal aorta. The AD lesion length in each
segment served as an indicator of the severity of AD-
induced tissue destruction.

CELL CULTURE EXPERIMENTS. Mouse aortic SMC
(no. JCRB0150) were obtained from the National In-
stitutes of Biomedical Innovation, Health and Nutri-
tion (Tokyo, Japan) and maintained in Dulbecco’s
modified Eagle medium with high glucose and fetal
bovine serum. Before starting the experiments,
confluent SMC were serum-starved for 24 h, and then
incubated for 24 h with or without stimulation with
20 ng/ml recombinant mouse IL-6 (R & D Systems,
Minneapolis, Minnesota). After thoroughly washing
out IL-6, the SMC were cultured for an additional 24 h
to obtain SMC-conditioned media. Confluent NIH3T3
mouse fibroblasts were serum-starved for 24 h, fol-
lowed by treatment with SMC-conditioned media for
1 h. After thorough washing with phosphate-buffered
saline, the cellular proteins were solubilized in radi-
oimmunoprecipitation assay buffer and subjected
to immunoblotting.

PROTEIN EXPRESSION ANALYSIS. To analyze the
morphological and molecular phenotypes before AD
development, we obtained aortic samples before and
3 days after starting BAPNþAngII infusion. Aortic
tissues were quick-frozen in liquid nitrogen, and
then pulverized with an SK mill (Tokken, Kashiwa,
Japan). Proteins were extracted using radio-
immunoprecipitation assay buffer, and then resolved
on a NuPage system (Invitrogen, Thermo Fisher Sci-
entific, Waltham, Massachusetts). Western blots were
performed using antibodies specific for Stat3 (no.
#4904; Cell Signaling Technology, Danvers, Massa-
chusetts), phospho-Stat3 (pStat3, recognized
phospho-Tyr705, no. 9145, Cell Signaling Technol-
ogy), Jnk (no. ab112501, Abcam, Cambridge, United
Kingdom), phospho-Jnk (recognized phospho-
Thr183/Tyr185, no. 4671, Cell Signaling Technology),
Smad2 (no. 5339, Cell Signaling Technology),
phospho-Smad2 (no. 3108, Cell Signaling Technol-
ogy), Lox (no. ab31238, Abcam), cyclin D3 (no. 2936,
Cell Signaling Technology), and phosphotyrosine
(PY20, no. ab16389, Abcam).

TISSUE STAINING AND IMAGING CYTOMETRY. Para-
formaldehyde-fixed, paraffin-embedded tissue sec-
tions were immunostained with antibodies specific
for a-smooth muscle actin (SMA) (no. A5228,
Sigma-Aldrich, St. Louis, Missouri), pStat3 (no. 9145,
Cell Signaling Technology), and Ki67 (no. ab16667,
Abcam). To assess collagen deposition, the tissue sec-
tions were processed to enable picrosirius red staining.
We used fresh-frozen and optical coherence
tomography–embedded sections to perform immu-
nostains with antibodies specific for the fibroblast
marker ER-TR7 (no. sc-73355, Santa Cruz Biotech-
nology, Dallas, Texas) and SMA (no. A5228,
Sigma-Aldrich).

Tissue samples that were double stained for either
SMA and phospho-Smad2 (no. 3108, Cell Signaling
Technology) or SMA and Ki67 were analyzed by im-
aging cytometry on an ArrayScan XTI (Thermo Fisher
Scientific), followed by data analysis using FlowJo
software (FlowJo LLC, Ashland, Oregon). The stain-
ing conditions were determined by staining with a
single antibody and were validated when we
observed identical results with 3-color staining. All
samples in a given set of analyses were processed
simultaneously, under the same staining conditions,
and photomicrographs were acquired under the same
exposure conditions to obtain consistent results. In
the imaging cytometry analyses using the
ArrayScan XTI, each cell was identified by nuclear
4’,6-diamidino-2-phenylindole staining, and was then
arbitrarily gated to separate the positive (SMC) and
negative (non-SMC) populations, based on SMA sig-
nals surrounding the nucleus. We also arbitrarily
determined the gates for detecting the nuclear signal
intensity of pStat3 or Ki67. These gates remained
constant for all experimental groups in a given set of
analyses. Each experimental group included 3 mice,
and we obtained 2 aortic sections from eachmouse. All
of the counted cells were combined to generate a
histogram.

TRANSCRIPTOME ANALYSIS. From aortic samples
that had been quick-frozen in liquid nitrogen, we
extracted total ribonucleic acid using TRIzol (Invi-
trogen) and the RNeasy kit (Qiagen, Hilden, Ger-
many), following the manufacturers’ instructions.
Transcriptome analyses were performed with a
SurePrint G3 Mouse GE microarray 8x60K (Agilent
Technologies, Santa Clara, California). We obtained
functional annotation clusters from the DAVID
(Database for Annotation, Visualization, and Inte-
grated Discovery, version 6.8) (23,24), with the
Gene Ontology terms set to GOTERM_BP_FAT,
GOTERM_CC_FAT, and GOTERM_MF_FAT.

HUMAN AD TISSUE. All human specimens were ob-
tained with informed consent from the patients, and
all protocols involving human specimens were



FIGURE 1 Activation of Stat3 in AD

(A) Representative images of a human aortic dissection (AD). (Top) Elastica Van Gieson (EVG) staining reveals a break in the aortic wall. Rectangle indicates the area

magnified in the bottom panel. (Bottom) Brown color indicates immunohistochemical staining of activated phosphorylated signal transducer and activator of

transcription-3 (pSTAT3). Bars ¼ 2 mm for EVG and 0.5 mm for pSTAT3. (B) Macroscopic images of normal aorta (Pre) and aorta from the AD model after 14 days of

b-aminopropionitrile plus angiotensin II infusion (day 14). Bar (yellow) ¼ 1 mm. (C) Representative images of aortic section from normal aorta (Pre) and a mouse AD

model on day 14, immunostained to show pStat3 (green) and a-smooth muscle actin (SMA) (red) expression. Nuclei were stained with 4’,6-diamidino-2-phenylindole

(DAPI) (blue). Arrows indicate media breakage. White rectangle in the left panel indicates the area of the magnified images in the right panels. Arrowheads indicate

pStat3-positive nuclei in smooth muscle cells. Bar ¼ 200 mm.
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approved by the Institutional Review Board at Kur-
ume University Hospital. Human AD tissue was ob-
tained from patients during surgery for AD. Aortic
tissues were fixed in 4% paraformaldehyde, paraffin-
embedded, and sliced into 5-mm-thick tissue sections.
The tissue sections were processed for either elastica
Van Gieson staining or immunohistochemical stain-
ing with antibodies specific for pStat3 (no. 9145, Cell
Signaling Technology).

MECHANICAL PROPERTIES OF THE AORTIC WALLS.

To assess the mechanical properties of the aortic wall,
we devised a blood vessel tensile tester. Briefly, an
aortic ring was immersed in phosphate-buffered sa-
line containing 10 mmol/l 2,3-butanedione monoxime
to suppress SMC contraction (25), and placed around 2
tungsten rods (0.25-mm diameter) set at opposite
sides of the ring. The rods were pulled apart at a con-
stant speed (0.1 mm/s) under a microscope equipped
with a video camera, a force gauge, and an actuator,
connected to a controller. We simultaneously recor-
ded signals from the force gauge and video camera
(Supplemental Figure S2A). Aortic rings were obtained
from the end of the aortic arch, distal to the branch
point at the left subclavian artery, and were cut to a
width of 2 mm. Based on the simultaneous video and
force recordings, we found that the sharp and blunt
peaks in the force record indicated themaximal tensile
forces of the medial layer and the adventitial layer,
respectively (Supplemental Figures S2B and C).

STATISTICAL ANALYSES. Animals were randomly
assigned to the experimental groups, and animal
experimental data were acquired by researchers or
technicians who were blinded to the genetic modi-
fication and experimental interventions. Statistical
analyses were performed using GraphPad Prism
(version 5, GraphPad Software, San Diego, Califor-
nia). We tested normality with the D’Agostino and
Pearson normality test, and then evaluated the data
using Bartlett test for equal variances. Normally
distributed data were analyzed using 1-way analysis
of variance to compare 3 or more groups, and those
not normally distributed were evaluated using the
Kruskal-Wallis test, followed by Bonferroni multiple
comparison test. Data are shown as mean � SEM. A
p value of <0.05 was considered statisti-
cally significant.

RESULTS

STAT3 ACTIVATION IN AD. We first examined
STAT3 activation in human AD tissue (Figure 1A)
and detected activated phosphorylated (p) STAT3
(pSTAT3) in the adventitial and medial layers of the
damaged aortic wall. Phosphorylated STAT3–positive
medial cells with elongated nuclei exhibited orderly
layering between the elastic lamellae, indicating
that they were SMC. We next examined Stat3
activation in our mouse AD model induced via
continuous infusion of BAPNþAngII (Figure 1B).
Immunofluorescence staining revealed Stat3 activa-
tion in both SMC of the media and non-SMC in the
adventitia (Figure 1C).

We created a mouse AD model by treating both
WT and smSocs3-KO mice with continuous infusion
of BAPNþAngII (Figure 1, Supplemental Figure S3).
To investigate phenomena before AD development,
we analyzed morphologically intact aorta samples
before and 3 days after starting BAPNþAngII infu-
sion. The aortic sections were labeled with anti-
bodies against pStat3 and SMA (Figure 2), and
imaging cytometry analysis revealed a higher pro-
portion of SMA-negative non-SMC in the smSocs3-
KO aortas compared with in the WT aortas, both at
baseline (pre-infusion) and after 3 days of
BAPNþAngII infusion. Among the total cell popula-
tion, the baseline proportion of pStat3-positive cells
was higher in smSocs3-KO samples (10.0%) than in
WT samples (6.7%). BAPNþAngII infusion induced a
slight increase in the pStat3-positive population in
WT samples (from 6.7% to 8.5%) and a greater in-
crease in smSocs3-KO samples (from 10.0% to
18.8%). In the smSocs3-KO aortic samples, the
pStat3-positive population increased among both
SMA-positive SMC (from 1.4% to 8.9%) and SMA-
negative non-SMC (from 27.0% to 33.0%). These re-
sults indicated that Socs3 deletion in SMC caused
Stat3 activation in both SMC and non-SMC. More-
over, this effect was enhanced by BAPNþAngII
treatment. Socs3 deletion in SMC also led to
increased non-SMC in the aorta.

ROLE OF SMOOTH MUSCLE SOCS3 IN AD PATHO-

GENESIS. Next, we evaluated the macroscopic
phenotype of AD in WT and smSocs3-KO mice.
BAPNþAngII infusion induced AD development in 10
of 12 WT mice and 6 of 8 smSocs3-KO mice, with no
significant difference between the 2 groups. We
divided the aorta into 4 parts: the aortic arch and
ascending aorta; descending thoracic aorta; suprare-
nal aorta; and infrarenal aorta (Figure 3). To evaluate
the severity of AD-induced aortic wall destruction, we
measured the lengths of aortic lesions that caused
vessel enlargement to over 1.5-fold the reference

https://doi.org/10.1016/j.jacbts.2019.10.010
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FIGURE 2 Effects of SMC-Specific Socs3 Deletion on Stat3 Activation

(A) Representative images of mouse aortas with immunofluorescent staining to show expressions of pStat3 (green), SMA (red), and nuclei (DAPI; blue).

Aortic samples were obtained from wild-type (WT) or smooth muscle Socs3-knockout (KO) mice, before (Pre) and after (day 3) continuous b-amino-

propionitrile plus angiotensin II (BAPNþAngII) infusion. Arrowheads indicate pStat3-positive nuclei. All samples are shown with the luminal side up,

adventitial side down. Bar ¼ 100 mm. (B) Imaging cytometry results for aortic tissues stained with (left) SMA and (right) pStat3 (as in A). Upper and lower

histograms show results for WT and KO aortas, respectively, before (Pre) (blue) and after 3 days of BAPNþAngII infusion (red). (Left) SMA detection:

negative staining indicates non–smooth muscle cells (SMC) and positive staining indicates SMC, as defined with arbitrarily delineated gates (horizontal

bars) that remained constant for all samples. (Right) pStat3 detection among all aortic cells (total cells), SMC, and non-SMC. Percentage values indicate

the proportions of cells within the gated sections among all the analyzed cells in Pre (blue) and BAPNþAngII (red) samples. Numbers in parentheses

under each histogram indicate the counted cell numbers without (blue) and with (red) BAPNþAngII. Abbreviations as in Figure 1.
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TABLE 1 Functional Annotation Clusters for Genes That Were

Up-Regulated in smSocs3-KO Aortas

GO Terms Gene Count p Value

Annotation cluster 1 (enrichment score: 4.64)

GO:0034097, response to cytokine 32 <0.001

GO:0071345, cellular response to cytokine
stimulus

21 <0.001

GO:0071310, cellular response to organic
substance

46 0.005

Annotation cluster 2 (enrichment score: 3.91)

GO:0005615, extracellular space 57 <0.001

GO:0005576, extracellular region 105 <0.001

GO:0044421, extracellular region part 89 <0.001

GO:0070062, extracellular exosome 60 0.003

GO:1903561, extracellular vesicle 60 0.003

GO:0043230, extracellular organelle 60 0.004

GO:0031988, membrane-bounded vesicle 71 0.009

Annotation cluster 3 (enrichment score: 3.65)

GO:0006952, defense response 49 <0.001

GO:0006955, immune response 39 <0.001

GO:0002682, regulation of immune system
process

36 <0.001

GO:0002684, positive regulation of immune
system process

26 <0.001

GO:0045087, innate immune response 22 <0.001

GO:0050776, regulation of immune response 21 <0.001

Annotation cluster 4 (enrichment score: 3.63)

GO:0006952, defense response 49 <0.001

GO:0006954, inflammatory response 28 <0.001

GO:0050727, regulation of inflammatory
response

14 <0.001

GO:0032101, regulation of response to
external stimulus

24 <0.001

GO:0050729, positive regulation of
inflammatory response

8 0.001

GO:0031349, positive regulation of defense
response

12 0.003

GO:0031347, regulation of defense response 19 0.004

GO:0080134, regulation of response to
stress

27 0.027

GO ¼ Gene Ontology; smSocs3-KO ¼ knockout of the smooth muscle cell Socs3.
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diameter in each portion of the aorta. In this
model, the infrarenal aorta did not show AD devel-
opment. The aortic arch exhibited significantly more
severe tissue destruction in WT mice (2.463 � 0.456;
n ¼ 12) compared with that in smSocs3-KO mice
(0.426 � 0.302 mm; n ¼ 8; p ¼ 0.011). These results
indicated that Socs3 deletion in SMC prevented AD
aggravation in the aortic arch, but did not affect
AD prevalence.

To investigate the molecular mechanism under-
lying the smSocs3-KO phenotype, we performed
transcriptome analyses and functional annotation
analyses in DAVID (25). We focused on the genes
that showed changes in expression that differed
between WT and smSocs3-KO at baseline (before
BAPNþAngII). Among the 55,681 probes in the
deoxyribonucleic acid microarray, 337 genes showed
increased expression (fold change >2; p < 0.05)
(Supplemental Table S1) and 132 genes showed
decreased expression (fold change <0.5; p < 0.05)
(Supplemental Table S2) in smSocs3-KO mice
compared with in WT mice. Functional annotation
analyses revealed that the genes with higher
expression in smSocs3-KO aortas were located in 4
annotation clusters, comprising 167 genes with
enrichment scores over 3 (Table 1). Representative
Gene Ontology terms for these clusters were
“response to cytokines,” “extracellular space,” “de-
fense response,” “immune response,” and “inflam-
matory response.” Among genes that were
suppressed in smSocs3-KO aortas, the highest
enrichment score was only 1.49. Therefore, we did
not attribute specific functions to this set of genes.
These findings suggested that Socs3 deletion in SMC
caused activation of the inflammatory response and
changes in the extracellular environment in the
aorta. Notably, the pattern of gene expression
changes observed in smSocs3-KO aorta showed sig-
nificant correlation with the pattern induced by
BAPNþAngII challenge (p < 0.001; R2 ¼ 0.229;
slope, 0.322 � 0.020) (Supplemental Figure S4),
indicating that Socs3 deletion in SMC yielded a
response similar to the changes induced by
BAPNþAngII, albeit to a lesser extent.

To verify the transcriptome findings, we performed
quantitative reverse transcription polymerase chain
reaction analysis of selected genes (Figure 4) with
altered expressions among the experimental groups.
We also evaluated the inflammatory response by
examining the expressions of macrophage and T-cell
subset markers. Aorta samples from smSocs3-KO mice
exhibited induction of messenger ribonucleic acids
encoding the acute phase proteins IL-6, serum amy-
loid A3, and lipocalin-2, supporting the notion that
Socs3 deletion in SMC caused inflammatory response
activation. With regard to macrophage markers,
BAPNþAngII induced Cd68 in both WT and smSocs3-
KO and induced the M1 macrophage marker Cd80
only in WT. The M2 macrophage marker Cd206 was
induced at baseline in smSocs3-KO. In the presence
of BAPNþAngII, expression of the M2 marker
Cd163 was higher in smSocs3-KO than in WT, sug-
gesting M2-skewed macrophage differentiation in
the smSocs3-KO aorta. Among T-cell markers, the
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FIGURE 3 Effects of SMC-Specific Socs3 Deletion on AD

Representative images show aortas from AD models induced in (left) WT and (middle) KO mice. (Right) We assessed the lengths of AD lesions in the depicted aortic

segments: the arch and ascending aorta, descending thoracic, suprarenal, and infrarenal aorta. Bars ¼ 1 mm (yellow) and 2 mm (black). (B) Quantitative analysis of the

lengths (mm) of tissue destruction lesions found in the indicated aortic segments. The numbers of mice in each group are shown in parentheses. Red bars indicate mean

values. *p < 0.05. Abbreviations as in Figures 1 and 2.
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FIGURE 4 Expression Analysis of the Selected Genes

Analysis of messenger ribonucleic acid expression before and 3 days after BAPNþAngII treatment in aortic tissue from WT (open columns) and KO (solid columns)mice.

The data were normalized against Gapdh expression as an internal control and expressed relative to the WT samples without any intervention (pre). The numbers of

mice in each group are shown in parentheses. *p < 0.05; **p < 0.01. NS ¼ not significant; other abbreviations as in Figure 2.
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pan-T-cell marker Cd3e, T helper 17 cell marker Rorc,
and regulatory T marker Foxp3 showed a trend of
increased expression in the smSocs3-KO aorta,
although none of these differences reached statisti-
cal significance. The smSocs3-KO aorta also showed
higher expression of Wnt4, which reportedly pro-
motes myofibroblast differentiation and fibrosis (26).
Socs3 expression was lower in smSocs3-KO samples,
possibly reflecting the effective Socs3 deletion in
SMC of the aortic tissue.

SIGNALING PATHWAYS AND SMC PHENOTYPE IN

THE AORTA. We performed Western blots with
samples from WT and smSocs3-KO aortas isolated
before and 3 days after BAPNþAngII infusion
(Figure 5). Using specific antibodies, we examined
signaling pathways involved in inflammation, ECM
metabolism, and the cell cycle—which contribute to
the molecular pathogenesis of AD (18,27). Stat3 ac-
tivity was significantly higher in smSocs3-KO aortas
than in WT aortas, indicating that smooth muscle
Socs3 deletion effectively activated the Stat3
pathway in the aorta in vivo. This Stat3 activation
was accompanied by c-Jun N-terminal kinases (Jnk)
activation. Jnk expression and activity levels in the
aorta tended to be higher after BAPNþAngII chal-
lenge than pre-challenge, but these differences were
not statistically significant.

At 3 days after BAPNþAngII infusion, WT aortas
exhibited significantly increased expression levels
of Smad2, Lox, and cyclin D3. Consistently, in WT
aortas, BAPNþAngII infusion led to increased
expression of embryonic isoform of myosin heavy
chain (SMemb), a marker for the synthetic pheno-
type of SMC. Matrix metalloproteinase-2 and -9
were undetectable with gelatin zymography, even
after prolonged incubation of the gel for 3 days.
These findings revealed that 3 days of BAPNþAngII
challenge induced activation of the cell cycle, ECM
synthesis, and phenotypic modulation of SMC to-
ward the embryonic phenotype. However, infusion
did not induce significant inflammatory or tissue-
destructive responses in the WT aortas at this
time point.

In contrast to WT aortas, smSocs3-KO aortas did
not exhibit changes in cyclin D3 or Lox expression
following BAPNþAngII infusion. Notably, compared
with WT aortas, smSocs3-KO aortas showed higher
expression levels of both smooth muscle myosin
heavy chain (SM2, a marker for the contractile
phenotype of SMC) and SMemb. However,
BAPNþAngII infusion did not alter the SM2 or SMemb
expression levels in smSocs3-KO aortas. These find-
ings suggested that, although the baseline inflam-
matory response was higher in smSocs3-KO aortas
than in WT aortas, the smSocs3-KO aortas were
insensitive to the BAPNþAngII challenge.

CELLULAR COMPOSITION AND PROLIFERATIVE

RESPONSE IN AD. To observe the early response
during AD development, we double stained samples
to detect SMA and the proliferative cell marker Ki67
in WT and smSocs3-KO aortas, with or without
BAPNþAngII infusion (Figure 6). The histogram of
SMA signals showed that approximately 80% of WT
aortic wall cells were SMA-positive SMC. BAPNþAngII
infusion caused a slight increase of non-SMC,
concomitant with reduced SMA expression within
the SMA-positive population. In smSocs3-KO aortas,
over 30% of aortic wall cells were SMA-negative non-
SMC at baseline. Ki67 signals indicated that the cell
proliferative response was negligible at baseline in
WT aortas. BAPNþAngII treatment led to increased
Ki67-positive cells in the SMA-negative population,
from 4.9% at baseline to 26.7% after infusion. At
baseline, the Ki67-positive cell population was
slightly larger in smSocs3-KO aortas (2.4%) compared
with in WT aortas (1.2%). After BAPNþAngII treat-
ment, the cell proliferative response was lower in
smSocs3-KO aortas than in WT aortas, among both
SMC (1.0% smSocs3-KO vs. 2.4% WT) and non-SMC
(16.6% smSocs3-KO vs. 26.7% WT). These findings
indicated that non-SMC were more abundant in
smSocs3-KO aortas than in WT aortas before
BAPNþAngII infusion, and that smSocs3-KO aortas
exhibited a blunted cell proliferative response
following BAPNþAngII infusion.

ELEVATED COLLAGEN DEPOSITION AND AORTIC

TENSILE STRENGTH IN smSocs3-KO MICE. The
above-described results indicated that the baseline
proportion of non-SMC was higher in smSocs3-KO
aortas compared with in WT aortas. To identify the
cell types within this SMA-negative population, we
stained aortas with antibodies specific for various
cell-type markers. The fibroblast marker ER-TR7
stained more intensely in the adventitia and part
of the media in smSocs3-KO compared with in
those regions in WT samples (Figure 7A). We next
used picrosirius red staining to detect collagen fibers
in WT and smSocs3-KO aortas, before and after
BAPNþAngII treatment (Figure 7B). Collagen



FIGURE 5 Protein Expression Levels Before AD Development

(A)Western blot shows expression levels of the indicated proteins in aortas fromWT andKOmice, isolated before (pre) and 3 days after BAPNþAngII infusion.

(B)Quantitative analyses of the relative expressions of aortic proteins, measured before and 3 days after BAPNþAngII infusion in aortic tissue fromWT (open

columns) and KO (solid columns) mice. All data are normalized to b-actin levels (internal loading control). The numbers of mice in each group are shown in

parentheses. *p < 0.05; **p < 0.01; and ***p < 0.001. Jnk ¼ c-Jun N-terminal kinases; Lox ¼ lysyl oxidase; SM2 ¼ smooth muscle myosin heavy chain;

Smad2 ¼ Mothers Against Decapentaplegic Homolog 2; SMemb ¼ embryonic isoform of myosin heavy chain; other abbreviations as in Figures 1 and 2.
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FIGURE 6 Cell Proliferative Response in Aortic Tissue

(A) Representative immunofluorescence-stained images show Ki67 (green) and SMA (red) expression, and nuclei (DAPI; blue) in aortic sections from (upper) WT or

(lower) KO mice, before (Pre) and 3 days after BAPNþAngII infusion. Arrowheads indicate Ki67-positive nuclei. Bar ¼ 50 mm. (B) Imaging cytometry results for SMA

expression in aortic tissue from (upper) WT and (lower) KO mice, acquired before (blue) and 3 days after BAPNþAngII infusion (red). SMA-negative cells indicate non-

SMC, and SMA-positive cells indicate SMC, as defined with arbitrarily delineated gates (horizontal bars) that remained constant for all samples. (C) Histograms show

Ki67 detection in WT and KO aortas. SMC and non-SMC populations were defined with arbitrarily defined gates (horizontal bars in B) that remained constant for all

samples. Blue and red proportion values indicate the proportions of cells within the gated sections among all analyzed cells in the Pre and BAPNþAngII samples,

respectively. Numbers in parentheses below each histogram indicate the counted cell numbers without (blue) and with (red) BAPNþAngII. Abbreviations as in Figures 1

and 2.
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deposition was more prominent in smSocs3-KO aortas
than in WT aortas, both at baseline and after
BAPNþAngII treatment. This fibrosis was particularly
prominent in the adventitia adjacent to the media.
We did not observe increases in perivascular
fibrosis in coronary arteries of smSocs3-KO mice
(Supplemental Figure S5), suggesting a differential
effect of smooth muscle Socs3 deletion on arterial
collagen deposition within the vasculature. Overall,
these findings indicated that Socs3 deletion in SMC
promoted adventitial fibrosis and increased fibro-
blasts in the aortic wall.

To measure the tensile strength of aortic walls
before BAPNþAngII treatment, aortic rings were
obtained from the distal aortic arches of WT and
smSocs3-KO mice, and were stretched outwardly
(Supplemental Figure S2). Simultaneous video and
force recordings during this procedure revealed that
the medial tensile strength did not significantly differ
between WT and smSocs3-KO aortas (Figure 7C),
whereas the tensile strength of the adventitia was
higher in smSocs3-KO aortas than in WT aortas. These
results suggested that the increases of fibroblasts and
collagen deposition in the adventitia, caused by Socs3
deletion in SMC, strengthened the adventitia of the
aortic wall.

INTERACTION BETWEEN SMC AND FIBROBLASTS.

To explore the potential mechanism underlying the
interaction between smooth muscle Stat3 activation
and fibroblast activation, we performed in vitro cell
culture experiments using mouse aortic SMC and
fibroblasts (Figure 8). We first obtained conditioned
media by culturing SMC with or without stimulation
by the Stat3 activator IL-6. Then we assessed the
effects of treating fibroblast cultures with this
conditioned media. We analyzed fibroblast proteins
for tyrosine phosphorylation as a marker of growth
response, and for pSmad2 as a marker of the fibro-
genetic response. IL-6-stimulated SMC-conditioned
media induced increases in tyrosine phosphoryla-
tion of multiple proteins in fibroblasts, and caused
no significant changes in pSmad2. These results
suggested that IL-6 caused SMC to secrete soluble
factors that can induce growth response
of fibroblasts.

DISCUSSION

Our present results demonstrated that Socs3 dele-
tion in SMC resulted in Stat3 activation and changes
in multiple molecular and cellular aortic pheno-
types, which seemed to be related to each other.
The mouse aortic transcriptome prior to
BAPNþAngII challenge indicated that Socs3 deletion
in SMC was associated with activations of Stat3 and
Jnk and increased inflammatory and defense re-
sponses. These baseline changes presumably re-
flected the presence of chronic inflammation in the
aortic walls. Because chronic inflammation is asso-
ciated with fibrosis (28), chronic Stat3 activation
and the inflammatory response in smSocs3-KO
aortas may explain the expansion of adventitial fi-
broblasts and deposition of collagen fibers observed
in smSocs3-KO samples. Notably, the increase of
fibroblasts was associated with the increased
adventitial collagen deposition. The smSocs3-KO
aortas also expressed elevated levels of SM2 (a
marker of highly differentiated SMC) and SMemb
(a marker of synthetic SMC and non-SMC). The
elevated SMemb expression may have been due to
the expansion of fibroblasts that expressed SMemb
in the chronic inflammatory state (29), and the
elevated SM2 expression may indicate maintained
SMC differentiation in the smSocs3-KO aorta.
Importantly, smooth muscle Socs3 deletion provided
the most evident protection against AD in the aortic
arch, involvement of which is the major determi-
nant of prognosis in human AD (30). Overall, our
data indicated that Socs3 deletion in SMC induced a
chronic inflammatory response and adventitial
fibrosis, resulting in reinforcement of tensile
strength in the aortic adventitia at baseline.

In WT aortas, BAPNþAngII infusion for 3 days
caused cell cycle activation, as demonstrated by
increased Ki67-positive cells and cyclin D3 induc-
tion, without significant activation of the proin-
flammatory molecules Stat3 and Jnk. These findings
were consistent with our previous report (18),
showing that cell cycle activation preceded the in-
flammatory response in early stages of AD devel-
opment. BAPNþAngII infusion also modulated the
SMC phenotype in WT aorta, as demonstrated by
SMA reduction and increased SMemb expression. In
contrast, BAPNþAngII infusion did not alter cell
cycle activation or modulate the SMC phenotype in
smSocs3-KO aortas, suggesting that the reinforced
adventitia protected SMC in smSocs3-KO aortas
from the BAPNþAngII challenge. Human genetic
studies have revealed that familial AD is caused by
mutations in genes specifically expressed in differ-
entiated SMC (19). Thus, maintenance of the
differentiated SMC phenotype in smSocs3-KO mice
may contribute to the protection from aortic
dissection.
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FIGURE 7 Collagen Deposition and Mechanical Properties of the Aortic Walls

(A) Representative immunofluorescence-stained images show sections of aortas from WT and KO mice. Aortas were isolated before BAPNþAngII treat-

ment. ER-TR7 is a fibroblast marker (green) and SMA (red) is specific for SMC. Bar ¼ 50 mm. (B) Representative images show picrosirius red staining of

collagen fibers in WT and KO aortic rings, before (Pre) and 3 days after BAPNþAngII treatment. Bar ¼ 0.5 mm. (C) Maximal tensile forces (N/mm width of

aortic ring) in the medial and adventitial layers of aortic rings isolated from WT (open circles) and KO (solid circles) mice, before BAPNþAngII treatment.

The numbers of mice in each group are shown in parentheses. Red bars indicate mean values. *p < 0.05. Abbreviations as in Figures 1 and 2.
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Our current findings seemed to suggest that the
Socs3-regulated response in SMC (possibly a Stat3-
dependent process) might be regarded as a mecha-
nism that protects aortic tissues against insults that
can cause AD. We previously reported that stress-
induced expression of tenascin C was another
mechanism that reinforced aortic tissues and pre-
vented AD development (12). Notably, tenascin C is a
known target of Stat3 (31), which promotes collagen
deposition in various tissues (32). Another report
shows that high levels of serum tenascin C are asso-
ciated with aortic tissue stabilization in chronic AD



FIGURE 8 SMC-Fibroblast Interaction

(A) Representative immunoblot images are shown for phosphotyrosine (PY20), phospho-Smad2 (pSmad2), and glyceraldehyde 3-phosphate

dehydrogenase (Gapdh; internal control). (B) Quantitative analysis is shown for bands 1 to 3 (as indicated by arrows in PY20 immunoblot)

and for pSmad2. The data were normalized against the Gapdh signal and expressed as relative to the value of the vehicle-treated group.

*p < 0.05; **p < 0.01; and ***p < 0.001. IL-6 ¼ interleukin-6. Abbreviations as in Figures 2, 4, and 5.
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(33). Moreover, Stat3 activation is reportedly involved
in fibrosis in renal (34), atrial (35), and pulmonary
tissues (36). Overall, these findings suggest that Stat3
might play an important role in fibrosis, which is in
accordance with our present findings that a Socs3
deletion in SMC was associated with increased fibrous
collagen deposition in the aortic adventitia. Consis-
tently, compared with WT aortas, smSocs3-KO aortas
showed higher expression of the markers of M2
macrophages that play an important role in tissue
repair and fibrosis (37). The aorta must endure high
mechanical stress due to blood pressure and pulsatile
flow; thus, a mechanism for maintaining the physical
strength of aortic walls is critical. Our present results
suggested that Stat3 may be an important component
in the mechanism for maintaining aortic wall
integrity.

In contrast to our present finding that Stat3 acti-
vation in SMC was protective against AD develop-
ment, previous studies report that IL-6 (a well-
established ligand for Stat3 activation) promotes AD
by amplifying inflammation (4,6,7) and a Stat3 in-
hibitor suppresses AngII-induced AD development in
mice (38). These prior findings suggest that Stat3
activation can promote AD development. Consistent
with those reports, we recently observed that
macrophage-specific Socs3 deletion promotes AD
development (18) due to the Stat3-dependent differ-
entiation of macrophages toward proinflammatory
and destructive M1 phenotypes (39). On the other
hand, Stat3-activating ligands, including IL-6, play
important roles in tissue repair (28). For example, IL-
6 (40) and Stat3 (41) are essential in skin wound
healing, where they promote keratinocyte prolifera-
tion and growth, and Stat3 activation promotes cell
proliferation and inhibits apoptosis of SMC (42).
Intriguingly, diabetes mellitus, a known negative risk
factor for thoracic AD (43), is reportedly associated
with Jak/Stat pathway activation in the thoracic
aorta (44). Overall, the current findings, together
with our previous report (18), suggest that Socs3
function in AD pathogenesis varies among different
cell types. Socs3 in SMC prevented both chronic
inflammation and aortic tissue reinforcement,
whereas Socs3 in macrophages prevents tissue
destruction and AD development. Whether these cell-
type–specific functions of Socs3 are beneficial or
detrimental to tissue integrity depends on the disease
context.
STUDY LIMITATIONS. Our study demonstrated that
smSocs3-KO aorta showed fibroblast activation,
collagen fiber deposition and reinforced tensile
strength of aortic adventitia, as well as ameliorated
AD phenotype. Although these are likely to make a
sequential event, this interpretation awaits formal
proof in the context of AD. Likewise, the molecular
mechanism of medial SMC-mediated regulation of
adventitial fibroblast activation remains to be eluci-
dated. The reinforcement of adventitia may not be
the only mechanism for AD amelioration in smSocs3-
KO mice. Indeed, the gene expression analysis of
immune cell markers suggested the altered immu-
nological response in smSocs3-KO aorta, which is
likely to contribute to the observed AD phenotype.
These unsolved questions need to be addressed in
future studies.

CONCLUSIONS

The current understanding of the molecular patho-
genesis of AD is that tissue destruction is driven by
inflammatory response, possibly through the secre-
tion of tissue-degrading proteases by infiltrating
cells (4,5,7,38). The direct clinical implication of this
understanding is that inflammatory response inhi-
bition may be a therapeutic strategy for AD. How-
ever, our present findings indicated that Socs3
deletion in SMC protected the aorta against AD,
even though it caused activation of a low-grade in-
flammatory response (e.g., IL-6 expression and Stat3
activation) in the aortic walls. This low-grade in-
flammatory response in SMC seems to be a built-in
protective mechanism in the aorta, suggesting that
inflammatory response inhibition might not only
suppress the tissue destruction but also hinder the
tissue-protective mechanism. An ideal therapeutic
strategy would allow inhibition of the tissue-
destructive response, while enhancing the tissue-
protective response. Further investigations are
required to elucidate the tissue-destructive and
-protective mechanisms and how these mechanisms
are coordinated in AD pathogenesis.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: AD is a

major cause of acute aortic syndrome that occurs without

preceding signs or symptoms and often leads to sudden

death due to the aortic wall destruction. It has been pro-

posed that inflammation plays a central role in AD by

destructing ECM. However, inflammation is a complex

process that involves various cell types that communicate

with each other through cytokines and cellular signaling

pathways. We showed that SMC-specific enhancement of

Stat3 signaling, a major pathway for proinflammatory cy-

tokines, by genetic deletion of Socs3, a negative regulator

of Stat3 signaling, protected the aorta from AD. Stat3

activation in SMC resulted in secretion of humoral factor(s)

that activated fibroblasts. This process contributed to the

accumulation of adventitial collagen fibers and reinforce-

ment of the tensile strength to protect aorta from AD.

These findings suggest that inflammatory response in-

volves not only ECMdestruction but also ECMbiosynthesis

that is regulated by Stat3 signaling in SMC, and AD is a

consequence of the imbalance of ECM metabolism.

TRANSLATIONAL OUTLOOK: Our findings suggest

that inflammatory response involves not only ECM

destruction but also ECM biosynthesis, and AD is a

consequence of the imbalance of ECM metabolism. For

the clinical translation, how these finding can be

applied to the time course of human AD needs to be

addressed. AD is characterized by the sudden aortic

wall destruction with high mortality in the acute phase.

However, even those who survived the acute phase

suffer from aortic complications including aneurysmal

expansion of the aorta and malperfusion of distal or-

gans due to the progressive aortic wall destruction. The

regulatory mechanisms for the balance of ECM

destruction and biosynthesis need to be clarified in the

context of the AD time course. Such a knowledge will

help to develop the strategies to monitor the balance

of ECM metabolism, prevent the excessive ECM

destruction, and promote the desirable ECM biosyn-

thesis at the appropriate time points in the time course

of AD.
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