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Regulation of PD‑L1 expression in the tumor 
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Abstract 

Programmed death-ligand 1 (PD-L1) on cancer cells engages with programmed cell death-1 (PD-1) on immune cells, 
contributing to cancer immune escape. For multiple cancer types, the PD-1/PD-L1 axis is the major speed-limiting 
step of the anti-cancer immune response. In this context, blocking PD-1/PD-L1 could restore T cells from exhausted 
status and eradicate cancer cells. However, only a subset of PD-L1 positive patients benefits from α-PD-1/PD-L1 thera-
pies. Actually, PD-L1 expression is regulated by various factors, leading to the diverse significances of PD-L1 positivity. 
Understanding the mechanisms of PD-L1 regulation is helpful to select patients and enhance the treatment effect. In 
this review, we focused on PD-L1 regulators at the levels of transcription, post-transcription, post-translation. Besides, 
we discussed the potential applications of these laboratory findings in the clinic.
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Background
In physiological conditions, the activities of T cells are 
intricately regulated. T cell immunity selectively elimi-
nates pathogens and abnormal cells but avoids attack-
ing normal cells, termed immune homeostasis [1]. 
Programmed cell death-1 (PD-1, which is encoded by 
PDCD1) and programmed death-ligand 1 (PD-L1, which 
is encoded by CD274) are vital proteins in maintain-
ing immune homeostasis [2]. The PD-1/PD-L1 pathway 
restrains the hyperactivation of immune cells and pre-
vents autoimmune diseases [3]. However, in the tumor 
microenvironment (TME), the PD-1/PD-L1 axis is 
hijacked by cancer cells to escape immune surveillance 
[4]. The overexpressed PD-L1 on cancer cells binds to the 
PD-1 on tumor-infiltrating lymphocytes (TILs), which 
counteracts the TCR-signaling cascade by phosphorylat-
ing SHP-2 [5, 6]. As a result, T cell activation is impaired. 

Apart from cancer cells, some other types of cells in the 
TME, such as macrophages, dendritic cells (DCs), acti-
vated T cells, as well as cancer-associated fibroblasts, 
also express PD-L1 [7]. These components orchestrate 
an immunosuppressive microenvironment, supporting 
tumor growth.

Inhibiting the PD-1/PD-L1 signaling is a feasible strat-
egy to normalize the dysregulated TME [8]. Up to now, 
α-PD-1/PD-L1 treatments have exhibited potent anti-
tumor activities in various cancers, such as melanoma, 
non-small cell lung cancer (NSCLC), gastric cancer, liver 
cancer, urothelial cancer, lymphoma, and all MSI-high 
cancers [2, 9–19]. Commonly, the PD-L1 protein level 
is the primary standard to select patients who are more 
likely to respond to α-PD-1/PD-L1 treatments [20, 21]. 
However, the PD-L1 level is determined by several fac-
tors, which results in the different significances of PD-L1 
positivity or negativity. The PD-L1 positivity might result 
from immune response-induced PD-L1 expression or 
oncogenic constructive PD-L1 upregulation [22]. For the 
latter, in the absence of pre-existing immune response, 
patients with PD-L1 positive tumors commonly are 
resistant to α-PD-1/PD-L1 therapies [20].
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On the contrary, patients with PD-L1 negative 
tumors might respond to α-PD-1/PD-L1 treatment 
when undergoing combination therapies that promote 
T cell infiltration [22]. Therefore, an in-depth under-
standing of PD-L1 regulation is valuable for efficacy 
prediction and patient selection. In this review, we 
summarized the latest advances of PD-L1 regulation, 
including genomic alterations, epigenetic modification, 
transcriptional regulation, post-transcriptional modifi-
cation, and post-translational modification. Moreover, 
we discussed the potential applications of these find-
ings in the clinic.

Genomic alterations of CD274
In some cancers such as classical Hodgkin lymphoma 
and small-cell lung cancer, the copy number of chromo-
some 9p24.1 (where CD274 resides) was increased [23, 
24]. The chromosome rearrangement caused CD274 
amplification without influences on the open reading 
frame (Fig. 1) (Table 1) [24]. Besides, in mediastinal large 
B-cell lymphoma, the increased transcriptional expres-
sion of CD274 was related to an adjacent ectopic pro-
moter or enhancer by translocation [25]. These findings 
indicated that genomic alterations contributed substan-
tially to cancer immune escape, which might be a poten-
tial biomarker for patient selection.
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Fig. 1  The regulators of PD-L1 expression. PD-L1 abundance is regulated by genomic alterations (amplification or translocation), epigenetic 
modifications (methylation of histone or CpG island, and histone acetylation), transcriptional regulation (inflammatory stimuli and oncogenic 
signals), post-transcriptional regulation (miRNA, the status of 3′- UTR, RAS, and Angiotensin II), and post-translational modification (ubiquitination, 
phosphorylation, glycosylation, palmitoylation). H3K4me3: tri-methylation of histone H3 on lysine 4; H3K27me3: tri-methylation of histone H3 on 
lysine 27; EGFR: epidermal growth factor receptor; IRF: interferon-responsive factor; IFN: interferon; DSB: double-strand break; GSK3β: glycogen 
synthase kinase 3β; PI3K: phosphoinositide 3-kinase; NF-κB: Nuclear factor kappa-B; HIF-1α: hypoxia-inducible factor-1α; ALK: Anaplastic lymphoma 
kinase; ER: endoplasmic reticulum
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Table 1  The mechanisms of PD-L1 regulation in the tumor microenvironment

Regulatory stage Regulator The change 
of PD-L1

Cancer type References

Genomic alterations Gene amplification or translocation Up Classical Hodgkin lymphoma;
Small-cell lung cancer;
Large B-cell lymphoma

[23–25]

Epigenetic regulation H3K4me3 Up Pancreatic cancer [27]

H3K27me3 Down Hepatocellular carcinoma [29]

Methylation of some CpG loci in 
CD274 promoter

Down Melanoma;
Head and neck squamous cell carcinomas;
Colorectal cancer

[33–35]

Histone acetylation Up Drug-resistant cancer cells; [39]

Transcriptional regulation IFN-α, IFN-β, IFN-γ Up Melanoma;
Hepatocellular carcinoma;
Gastric carcinoma

[44, 46, 48]

IL-6 Up Prostate cancer;
Hepatocellular carcinoma;
Glioblastoma;
Non-small cell lung cancer

[50–53]

TNF-α Up Prostate cancer;
Colon cancer;
Renal cell carcinoma

[54, 55]

IL-10 Up Oral squamous cell carcinoma [56]

IL-27 Up Epithelial ovarian cancer;
Prostate cancer;
Non-small cell lung cancer

[57]

TGF-β Up Lung cancer [60, 61]

EGFR Up Lung cancer [62]

MAPK Up Lung cancer;
Melanoma;
Pancreatic cancer;
Triple-negative breast cancer

[67–70]

PTEN Down Triple-negative breast cancer [74]

PI3K Up Gastric cancer;
Her2-overexpressing cell lines;
Colorectal cancer;
Head and neck squamous cell carcinomas;
Non-small cell lung cancer

[75–79]

JAK-STAT​ Up Natural killer/T-cell lymphoma;
Non-small cell lung cancer;
Triple-negative breast cancer;

[80–83]

NF-κB Up Natural killer/T-cell lymphoma;
Gastric carcinoma;
Non-small cell lung cancer;
Triple-negative breast cancer

[84, 87–90]

HIF-1 Up Prostate cancer;
Breast cancer;
Nasopharyngeal carcinoma

[92, 93]

Myc Up Leukemia and lymphomas;
Melanoma;
Non-small cell lung cancer;
Hepatocellular carcinoma;
Renal cell carcinoma;
Colorectal carcinoma;
Esophageal squamous cell carcinoma;
Pancreatic cancer

[96–99]

ALK Up Non-small cell lung cancer;
Anaplastic large cell lymphoma

[103, 104]

Met Up Non-small cell lung cancer [107–110]

BRD4 Up Ovarian cancer [112]
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Epigenetic regulations
Epigenetic regulations such as methylation and his-
tone acetylation determine the PD-L1 expression as 
well (Fig. 1). Tri-methylation of histone H3 on lysine 4 
(H3K4me3) is generally believed as a histone modifica-
tion promoting gene transcriptions [26]. In pancreatic 
cancer, MLL1 protein could bind to the CD274 pro-
moter to catalyze H3K4me3, leading to the increased 
expression of PD-L1 [27]. In agreement, the MLL1 
inhibitor had a synergistic effect with α-PD-1/PD-L1 
therapy [27]. On the contrary, tri-methylation of his-
tone H3 on lysine 27 (H3K27me3) relates to transcrip-
tion suppression [28]. In hepatocellular carcinoma, 
enhancer of zeste homolog 2 negatively regulated 
PD-L1 expression by promoting H3K27me3 [29].

Besides the methylation of histone, the methylation of 
DNA at CpG islands regulated PD-L1 expression [30]. 
Inhibiting methylation of DNA by DNA methyltrans-
ferase inhibitors (DNMTis) increased PD-L1 level in 
cancer cells [31, 32]. The authors assumed that DNMTis 
elevated the expression of hypermethylated endogenous 
retroviruses in cancer cells, which might activate the 
innate immune response and lead to IFN-γ-stimulated 
PD-L1 expression [30]. Moreover, the methylation of 
some specific CpG loci in the CD274 promoter deter-
mined the level of CD274 mRNA [33–35]. In NSCLC, 
TGF-β1 impaired the activity of DNMTs, demethylated 
the CD274 promoter, and increased PD-L1 expression 
[36]. Notably, in patients with recurrent gastric cardia 
adenocarcinoma, PD-L1 expression was reduced after 

Table 1  (continued)

Regulatory stage Regulator The change 
of PD-L1

Cancer type References

DSB Up Osteosarcoma;
Non-small cell lung cancer;
Prostate cancer

[114]

Post-transcriptional regulation miR-148a-3p Down Colorectal cancer [116]

miR-873 Down Breast cancer [117]

miR-34a Down B-cell lymphoma;
Acute myeloid leukemia

[118, 126]

miR-200 family Down Non-small cell lung cancer;
Hepatocellular carcinoma

[119, 120]

miR-142-5p Down Pancreatic cancer [121]

miR-424 Down Ovarian cancer [122]

miR-214 Down Diffuse large B-cell lymphoma [123]

miR-497-5p Down Clear cell renal cell carcinoma [124]

miR-140 Down Non-small cell lung cancer [125]

miR-23a-3p/PTEN axis Up Liver Cancer [127]

miR-200a/PTEN axis Up Osteosarcoma [128]

miR-27a-3p/ MAGI2/PTEN axis Up Breast cancer [129]

miR-145/c-Myc axis Down Ovarian cancer [130]

miR-18a/ PTEN, WNK2, SOX6 axis Up Cervical cancer [131]

miR-BART5/PIAS3/pSTAT3 Up Gastric cancer [133]

RAS-tristetraprolin Up RAS mutant cancer [135]

Angiotensin II/human antigen R Up Non-small cell lung cancer [136]

Post-translational modification Ubiquitination Down Multiple cancers [138, 141, 142]

Y112 phosphorylation Up Hepatocellular carcinoma [143]

S195 phosphorylation Down Breast cancer [144]

T180 and S184 phosphorylation Down Breast cancer [145]

Glycosylation Up Breast cancer;
Glioma

[145, 149, 150]

Palmitoylation Up Breast cancer;
Colon cancer

[151, 152]

H3K4me3 tri-methylation of histone H3 on lysine 4, H3K27me3 tri-methylation of histone H3 on lysine 27, EGFR epidermal growth factor receptor, MAPK mitogen-
activated protein kinase, PTEN phosphatase and tensin homolog, PI3K phosphoinositide 3-kinase, NF-κB nuclear factor kappa-B, HIF-1α hypoxia-inducible factor-1α, 
ALK anaplastic lymphoma kinase, DSB double-strand break
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α-PD-1/PD-L1 treatment [37]. Further investigations 
indicated that the CD274 promoter was more hyper-
methylated in the relapsed tumors than in the primary 
tumors without α-PD-1/PD-L1 treatment [37]. In murine 
tumor models, the combination therapy of hypomethyl-
ating agent azacytidine and α-PD-1 showed a more sig-
nificant antitumor effect than α-PD-1 monotherapy [37].

Histone acetylation is an epigenetic modification 
enhancing gene transcription [38]. In some drug-resist-
ant cancer cells, hyperactivated JNK/c-Jun signaling 
suppressed the histone deacetylase 3 (HADC3) expres-
sion, thereby elevating the histone H3 acetylation of the 
CD274 promoter [39]. The HADC inhibitor had a syner-
gistic effect with α-PD-1 in the B16F10 tumor model [40]. 
Furthermore, HADC inhibitor-mediated PD-L1 upregu-
lation was observed in other types of cancers [41, 42]. 
These findings provide a rationale to combine α-PD-1/
PD-L1 treatments with HDAC inhibitors.

Transcriptional regulation
Inflammatory Signaling
Interferon (IFN) and IL‑6
As a negative feedback for inflammation, PD-L1 could 
be upregulated by multiple inflammatory signaling path-
ways to restrain T cells’ hyperactivity (Fig. 1). Generally 
believed, IFN-γ is the prominent stimulator contributing 
to the inducible PD-L1 expression [43].

During cancer progression, the IFN-γ-derived PD-L1 
promotes cancer immune escape [3]. In the TME, acti-
vated T cells and NK cells generate most IFN-γ. Then, 
IFN-γ binds to type II interferon receptor, activating the 
JAK-STAT signaling (mainly through STAT1) [44, 45]. 
Subsequently, the expression of several transcriptional 
factors is upregulated, especially interferon-responsive 
factors (IRFs). IRF-1 is the vital downstream compo-
nent of STAT1 upon IFN-γ treatment [46, 47]. In hepa-
tocellular carcinoma, it was identified that two elements 
(IRE1/2) in the 5′-flanking region of the CD274 promoter 
were the binding sites of IRF-1, which participated in 
regulating PD-L1 transcription [48]. Notably, the intact-
ness of JAK-STAT-IRF1 pathway is also related to the 
response to α-PD-1/PD-L1 therapy. The effect of α-PD-1/
PD-L1 treatment is limited in tumors with mutations in 
JAK1 and JAK2 [49]. It was speculated that these tumors 
might not rely on the PD-1/PD-L1 pathway to escape 
immune surveillance [49].

Besides IFN-γ, other inflammatory stimuli such as IFN-
α, IFN-β, and IL-6 could induce PD-L1 expression as 
well. However, IFN-α and IFN-β had a more significant 
effect on PD-L2 regulation than PD-L1 regulation [44]. In 
prostate cancer, the IL-6-JAK-STAT3 pathway promoted 
PD-L1 expression and led to the resistance to immune 
killing [50]. Moreover, in hepatocellular carcinoma, 

increased IL-6 activated the STAT3/c-MYC/miR-25-3p 
pathway, which resulted in the decreased protein tyros-
ine phosphatase receptor type O (PTPRO) [51]. The 
downregulated PTPRO-enhanced PD-L1 expression by 
deregulating the activation of JAK2-STAT1/3 [51]. Fur-
thermore, the glioblastoma-derived IL-6 could induce the 
local and systemic myeloid PD-L1 expression by STAT3 
phosphorylation [52]. Besides, in lung cancer, it was 
detected that IL-6-derived PD-L1 expression was related 
to multiple pathways, especially the MEK-ERK signaling 
[53].

Other inflammatory signals
Tumor necrosis factor-α (TNF-α) increased CD274 
mRNA by activating nuclear factor kappa-B (NF-κB) 
pathway [54]. In renal cell carcinoma, TNF-α cooperated 
with IL-4 to enhance CD274 transcription by activating 
NF-κB, IκB, and STAT6 [55]. Moreover, in oral squamous 
cell carcinoma, the IL-10 level in the TME was positively 
correlated to the abundance of PD-L1 on tumor-associ-
ated macrophages [56]. Blocking IL-10 suppressed PD-L1 
expression [56]. Furthermore, in several human cancer 
cells, IL-27 increased CD274 transcription by promoting 
the tyrosine phosphorylation of STAT1 and STAT3 [57].

The effect of TGF-β on PD-L1 regulation is still unclear. 
Although some previous studies indicated that TGF-β 
downregulated PD-L1 expression in renal tubular epi-
thelial cells and monocytes [58, 59], TGF-β mainly had 
a positive impact on the PD-L1 expression in the TME. 
In NSCLC cells, exogenous TGF-β increased the CD274 
transcription probably by Smad-binding elements [60]. 
The expression of phosphorylated-Smad2 was signifi-
cantly increased in PD-L1 positive NSCLC patients [60]. 
Apart from cancer cells, TGF-β could increase PD-L1 
expression on DCs in the TME [61].

Oncogenic Signaling
Besides inflammatory stimuli, growing evidence suggests 
that hyperactive oncogenic pathways play a vital role in 
PD-L1 expression (Fig.  1). Therefore, α-PD-1/PD-L1 
therapies might have a synergistic effect with oncogenic 
signal-targeting treatments.

Epidermal Growth Factor Receptor (EGFR)
In lung epithelial cells, the mutated EGFR pathway 
(EGFR T790M) increased PD-L1 expression [62]. For 
lung cancer cells, PD-L1 expression was impaired after 
EGFR tyrosine kinase inhibitor (TKI) treatment [62]. In 
murine EGFR-driving lung cancer models, α-PD-1 effec-
tively reversed T cell exhaustion and retarded tumor 
growth [62]. The results indicated that the mutant EGFR 
pathway facilitated tumor to escape from immune sur-
veillance [62]. However, a clinical study showed that 
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EGFR-mutant NSCLC patients tended to resist α-PD-1 
therapy [63]. The authors found that although some 
EGFR-mutant NSCLCs were PD-L1 positive, the concur-
rent PD-L1 upregulation and abundant TILs were rare 
[63]. The lack of a pre-existing inflammatory TME might 
limit the effect of α-PD-1/PD-L1 treatment [63]. The low 
response rate in EGFR-mutant patients was reported by 
other investigators [64, 65].

Mitogen‑activated protein kinase (MAPK)
MAPK is a well-studied oncogenic pathway, which 
counts for nearly 40% of human cancer cases [66]. 
According to TCGA database, the CD274 mRNA level 
was significantly positively related to RAS- or MEK-acti-
vation scores in NSCLC patients [67]. In lung adenocar-
cinoma cells, activating EGF-MAPK signaling increased 
the mRNA and protein levels of PD-L1 [67]. Inhibiting 
MAPK signaling by MEK inhibitor (Selumetinib) coun-
teracted the EGF- and IFN-γ-stimulated upregulation 
of CD274 mRNA and PD-L1 protein [67]. In melanoma 
cells, the activated NRAS-RAF-MEK1/2-ERK-c-Jun axis 
enhanced the transcription of CD274 [68]. Moreover, in 
pancreatic cancer, myeloid cells induced PD-L1 expres-
sion on tumor cells by activating EGFR-MAPK pathway 
[69]. After MEK inhibitor treatment, the levels of p-ERK 
and PD-L1 were decreased, and this reduced PD-L1 led 
to a higher sensitivity to α-PD-1 treatment in murine 
pancreatic tumors [69].

On the contrary, in murine breast cancer cells, sup-
pressing MAPK signaling by Trametinib (a MEK inhibi-
tor) potentiated the IFN-γ-stimulated upregulation of 
PD-L1 and major histocompatibility complex (MHC) 
[70]. Furthermore, in cancer cell lines, including KYSE30, 
TE-1, MKN7, PC-9, SNU-475, OE19, and BT-549, there 
was no significant alteration when cancer cells were 
treated with MAPK inhibitor [71]. Besides, the MAPK 
inhibitor had no significant impact on IFN-γ-stimulated 
PD-L1 expression [71]. The role of MAPK pathway in 
PD-L1 regulation might depend on cell types [72].

PTEN/PI3K‑AKT pathway
As a well-studied tumor suppressor, PTEN is a vital regu-
lator of the oncogenic signaling pathway PI3K-AKT [73]. 
PTEN loss and PI3K activation have been identified in 
multiple types of cancers, including hepatocellular carci-
noma, prostate cancer, and breast cancer [73]. Deficient 
PTEN was detected in nearly half of PD-L1 positive tri-
ple-negative breast cancer samples [74]. Knocking down 
PTEN resulted in a rise of PD-L1 expression [74]. Moreo-
ver, activating the PI3K-AKT pathway in gastric cancer 
cells increased PD-L1 abundance, while PI3K inhibitor 
(LY294002) reduced PD-L1 level [75]. Besides, in head 
and neck cancer cells, melanoma cells, colorectal cancer 

cells, and Her2-amplified cancer cells (SNU216, NCI-
N87, and SKBR3), PD-L1 expression was suppressed by 
PI3K inhibition [68, 76–78]. Moreover, inhibiting mTOR 
(the downstream of PI3K-AKT) by rapamycin reduced 
PD-L1 level in NSCLC cells [79].

JAK‑STAT pathway
Mutations in JAK1, JAK3, and STAT3 were prevalent in 
mature T-cell lymphomas [80]. Some STAT3 mutations, 
such as p.E616K, increased the STAT3 phosphorylation 
and STAT3-mediated transcription [80]. In the mean-
while, silencing STAT3 or STAT3 inhibitor reduced 
PD-L1 expression [80]. Further chromatin immuno-
precipitation qPCR assay indicated the p.E616K muta-
tion might increase the transcription activity of CD274 
promoter by a stronger STAT3 binding [80]. Besides, in 
breast and lung cancer cells, the PD-L1 expression was 
hampered by JAK and STAT3 inhibitors [81–83].

NF‑κB pathway
Activated NF-κB signaling was related to the high level of 
PD-L1 in several cancers [36, 84–88]. Multiple oncogenic 
signals could impair immune surveillance by activat-
ing the NF-κB-PD-L1 axis. In lung cancer cells, overex-
pressed MUC1-C increased the occupancy of NF-κB 
p65 in CD274 promoter, which enhanced CD274 tran-
scription [89]. Besides, in breast cancer, reactive oxygen 
species (ROS) inducers (paclitaxel, glutathione synthesis 
inhibitor, and buthionine sulphoximine) led to the accu-
mulation of ROS, subsequently activating the down-
stream NF-κB pathway [90]. In a murine breast cancer 
model, paclitaxel treatment induced PD-L1 upregulation 
in tumor-associated macrophages by the NF-κB p65-PD-
L1 pathway [90].

Hypoxia‑inducible factor‑1 (HIF‑1)
Hypoxia facilitates the drug resistance and distant 
metastasis of tumor cells [91]. Besides, a hypoxic TME 
undermines host immunity activities and contributes to 
immune escape [92]. Hypoxia upregulated PD-L1 expres-
sion by HIF-1α [92]. The hypoxia-induced upregula-
tion of CD274 mRNA was hampered when HIF-1α was 
silenced [92]. Further investigations suggested the cel-
lular colocalization of PD-L1 and HIF-1α [92]. In the 
meanwhile, inhibiting HIF-1 signaling could reduce 
PD-L1 expression in multiple types of cancers [93, 94].

Myc
As a transcription factor regulating cell differentiation, 
proliferation, and apoptosis, Myc is overexpressed in 
various cancers [95]. Knocking down or inhibiting Myc 
in cancer cells reduced CD274 mRNA and PD-L1 protein 
[96–99]. The results of the ChIP-seq assay showed that 
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Myc could bind to the CD274 promoter [96]. However, in 
some particular types of cancer, Myc negatively regulated 
PD-L1 expression. In hepatocellular carcinoma cells, 
inhibiting Myc increased the IFN-γ-stimulated PD-L1 
expression [100]. Besides, in the murine MycCaP tumor 
model, Myc inhibitor treatment promoted T cell infiltra-
tion, enhanced antitumor immune response, but simulta-
neously upregulated PD-L1 expression [101]. This PD-L1 
upregulation was induced by immune response [101].

Anaplastic lymphoma kinase (ALK)
Chromosomal rearrangements in the ALK gene are an 
oncogenic driver for NSCLC [102]. In various NSCLC 
cell lines, the CD274 mRNA and PD-L1 protein levels 
were higher in cells with echinoderm microtubule-asso-
ciated protein-like 4 (EML4)-ALK fusion [103]. Ectopic 
expressing EML4-ALK protein or blocking ALK phos-
phorylation positively or negatively regulated PD-L1 
expression [103]. Besides, inhibiting PI3K-AKT or MEK-
ERK pathways reversed the EML4-ALK-induced PD-L1 
expression [103]. Apart from NSCLC, the PD-L1 level 
was higher in ALK-positive systemic anaplastic large cell 
lymphoma [104].

Met
Alterations in the Met gene were reported in multiple 
types of cancers [105, 106]. In primary lung cancer tis-
sues, the level of PD-L1 was positively correlated to the 
Met-amplification [107, 108]. In a microarray assay, 
inhibiting or knocking down Met substantially reshaped 
the expression of several immune-related genes, includ-
ing CD274 [109]. On the contrary, activating Met by 
hepatocyte growth factor increased PD-L1 expression 
[109, 110].

BRD4
As a member of the bromodomain and extraterminal 
(BET) family, BRD4 acts as a super-enhancer of onco-
genes [111]. In ovarian cancer cells, BET inhibitor 
reduced PD-L1 expression in a time- and dose-depend-
ent manner [112]. Further, the ChIP assay showed a sig-
nificant association of CD274 promoter and BRD4 [112]. 
After BET inhibitor treatment, the associations of CD274 
promoter-BRD4 and CD274 promoter-RNA Pol II were 
decreased, which contributed to the downregulated 
CD274 transcription [112]. Besides, it was validated that 
BET inhibitor suppressed CD274 transcription by reduc-
ing the BRD4 occupancy at CD274 promoter, independ-
ent of c-Myc [113].

DNA double‑strand break (DSB) repair pathway
After inducing DSB by ionizing radiation, PD-L1 
expression was increased in multiple cancer cell lines 

[114]. In contrast, paclitaxel (a non-DNA damaging 
agent) treatment had no significant impact on PD-L1 
expression [114]. DSB-activated ATM-ATR-ChK1-
STAT1/3-IRF1 pathway led to the downstream PD-L1 
upregulation [114].

Post‑transcriptional regulation
microRNA (miRNA)
Cancer-derived miRNA is a vital post-transcriptional 
regulator for PD-L1 expression in the TME (Fig.  1) 
[115]. In colorectal cancer cells with mismatch repair 
deficiency or microsatellite instability-high, miR-
148a-3p was decreased while PD-L1 was increased 
[116]. The results of the co-transfection of miR-148a-3p 
mimic and wild-type or mutant CD274 3′-untranslated 
region (UTR) luciferase reporter indicated that CD274 
mRNA was the direct target of miR-148a-3p [116]. Fur-
thermore, in breast cancer cells, miR-873 suppressed 
PD-L1 expression by targeting CD274 mRNA [117]. 
Up to now, it was identified that CD274 mRNA was the 
direct target of multiple oncogenic miRNAs such as 
miR-34a, miR-200 family, miR-142-5p, miR-424, miR-
214, miR-497-5p, miR-140 [118–126].

Besides, some cancer-derived miRNAs indirectly 
regulated PD-L1 expression [127–129]. In ovarian car-
cinoma cells, miR-145 downregulated PD-L1 by tar-
geting c-Myc [130]. In cervical cancer cells, increased 
PD-L1 was related to the upregulation of miR-18a 
[131]. miR-18a promoted PD-L1 expression by target-
ing PTEN (inhibitor of PI3K-AKT), WNK2 (inhibitor of 
MAPK), and SOX6 (inhibitor of Wnt/β-catenin) [131]. 
Similarly, hepatocellular carcinoma cell-derived miR-
23a-3p enhanced PD-L1 expression in macrophages via 
targeting PTEN [127]. In NSCLC cells, miR-3127-5p 
promoted PD-L1 expression by activating STAT3 [132]. 
Moreover, in gastric cancer, miR-BART5-5p increased 
PD-L1 by targeting PIAS3 (inhibitor of STAT3) [133].

The stability of CD274 mRNA
The variations in the 3′- UTR affected the stability of 
CD274 mRNA [134]. Disturbing the 3′-UTR of CD274 
mRNA by Crisper-Cas9 could stabilize CD274 mRNA 
[134]. Besides, oncogenic RAS activation inhibited 
tristetraprolin (AU-rich element-binding protein) by 
kinase MK2, stabilizing CD274 mRNA [135]. As a 
result, RAS activation increased PD-L1 expressed on 
cancer cells [135]. Moreover, in NSCLC, Angiotensin 
II increased the stability of CD274 mRNA and induced 
PD-L1 expression by human antigen R (also known as 
HuR, an AU-rich element-binding protein) [136].
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Post‑translational modification
Post-translational modifications, including ubiquitina-
tion, phosphorylation, glycosylation, palmitoylation, and 
SUMOylation, play a vital role in regulating protein sta-
bility, activation, localization, as well as interaction [137]. 
Aberrant post-translational modification patterns partic-
ipated in PD-L1 upregulation in the TME (Fig. 1) [138].

Ubiquitination
Ubiquitination is related to proteasome-mediated pro-
tein degradation [139]. In a broad range of cancer cells, 
CMTM6 maintained PD-L1 expression by reducing 
PD-L1 ubiquitination and increasing PD-L1 half-life 
[138, 140]. Moreover, cyclin D/cyclin-dependent kinase 
4 (CDK4) promoted PD-L1 ubiquitination by SPOP/Cul-
lin 3-SPOP E3 ligase [141]. CDK4/6 inhibitor treatment 
increased PD-L1 abundance, which provided a poten-
tial for the combining therapy of CDK4/6 inhibitors and 
α-PD-1/PD-L1 agents [141]. Besides, the TNF-α-NF-κB 
pathway inhibited PD-L1 ubiquitination via upregulat-
ing COP9 signalosome 5 (CSN5) [142]. Inhibiting CSN5 
impaired PD-L1 expression and sensitized tumor cells to 
the following immunotherapy [142].

Phosphorylation
IL-6-activated JAK1 promoted the phosphorylation of 
PD-L1 protein (Tyr112) [143]. Subsequently, Tyr112-
phosphorylated PD-L1 recruited STT3A (N-glycosyl-
transferase) to catalyze the PD-L1 glycosylation [143]. 
Activating the IL-6-JAK1 signaling elevated PD-L1 stabil-
ity by this phosphorylation modification [143]. Blocking 
the IL-6-JAK1 axis had a synergistic effect with α-Tim-3 
treatment in murine tumor models [143]. Besides, met-
formin-activated AMP-activated protein kinase pro-
moted the phosphorylation of PD-L1 (S195) [144]. The 
S195 phosphorylation led to the aberrant PD-L1 glyco-
sylation, which undermined the PD-L1 translocation 
from endoplasmic reticulum to Golgi [144]. Apart from 
hampering the translocation of PD-L1 to cell membrane, 
the S195 phosphorylation enhanced endoplasmic reticu-
lum-associated PD-L1 degradation [144]. The combina-
tion therapy of metformin and α-cytotoxic T Lymphocyte 
antigen 4 (CTLA-4) exhibited a robust antitumor activity 
[144]. Moreover, glycogen synthase kinase 3β (GSK3β) 
decreased the level of PD-L1 by promoting phosphoryla-
tion-dependent proteasome degradation [145, 146].

Glycosylation
Glycosylation modification is related to protein stability 
[147, 148]. The N192/200/219 glycosylation stabilized 
PD-L1 and suppressed the formation of GSK3β-β-TrCP-
PD-L1 complex [145]. EGF increased PD-L1 expression 

by promoting glycosylation-induced GSK3β inactivation 
[145]. Additionally, in epithelial-mesenchymal transition, 
β-catenin transcriptionally induced the expression of 
N-glycosyltransferase STT3. The STT3 promoted PD-L1 
N-glycosylation, stabilizing and upregulating PD-L1 
[149]. Moreover, in glioma, FKBP51s (a co-chaperone) 
regulated PD-L1 expression by promoting glycosylation 
modification [150]. Overexpressing or silencing FKBP51s 
increased or decreased the level of glycosylated-PD-L1 
[150].

Palmitoylation
Palmitoylation is a well-studied post-translational lipid 
modification. Palmitoylation at C272 increased PD-L1 
stability by counteracting its ubiquitination [151, 152]. 
DHHC3 catalyzed C272 palmitoylation of PD-L1 [152]. 
Silencing DHHC3 enhanced antitumor immune response 
in vitro and in vivo [152].

Perspectives and conclusion
A growing body of evidence suggests that it is inaccurate 
to select patients merely by PD-L1 abundance. Under-
standing the difference between inflammation-induced 
PD-L1 and oncogenic signal-mediated constitutive 
PD-L1 is helpful to patient selection. For instance, for 
EGFR mutant NSCLC patients, α-PD-1 therapy’s efficacy 
was poor despite the high level of PD-L1 [153]. The EGFR 
mutation-driving NSCLCs commonly harbor lower 
mutation burdens, and the lower immunogenicity leads 
to the resistance to α-PD-1 treatments [43]. This onco-
genic EGFR-mediated PD-L1 expression could not reflect 
the real status of the TME. Alternatively, a comprehen-
sive framework containing multiple surrogate markers 
such as tumor mutation burden would be valuable for 
selecting patients and predicting outcomes.

Besides, agents regulating PD-L1 expression might 
have a synergistic effect with the current immune check-
point inhibitors (Fig.  2). Targeting therapies such as 
CDK4/6 inhibitor upregulated PD-L1 expression and 
promoted immune escape [141, 146]. This treatment-
induced immune evasion could be overcome by com-
bination therapies containing α-PD-1/PD-L1. Besides, 
adjuvant treatment regulating PD-L1 expression might 
elevate the sensitivity to α-PD-1/PD-L1 or other immune 
checkpoint inhibitors [144, 145]. For example, metformin 
downregulated PD-L1 by promoting endoplasmic-retic-
ulum-associated degradation, and the combination ther-
apy of metformin and α-CTLA-4 exhibited a synergistic 
antitumor activity [144].

Generally, in the TME, the expression of PD-L1 is 
regulated by numerous factors, including inflamma-
tory stimuli and oncogenic pathways at the levels of 
transcription, post-transcription, and post-translation. 
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Exploring potential PD-L1 regulators helps select 
patients and overcome resistance to α-PD-1/PD-L1 
treatments. Besides, the agents regulating PD-L1 
expression might be possible adjuvant therapies for the 
current immune checkpoint inhibitors.
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