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Fragile X mental retardation is caused by loss-of-function of a single gene encoding FMRP, an RNA-binding
protein that harbors three canonical RNA-binding domains, two KH-type and one RGG box. Two autosomal
paralogs of FMRP, FXR1P and FXR2P, are similar to FMRP in their overall structure, including the presence of
putative RNA-binding domains, but to what extent they provide functional redundancy with FMRP is unclear.
Although FMRP has been characterized as a polyribosome-associated regulator of translation, less is known
about the functions of FXR1P and FXR2P. For example, FMRP binds intramolecular G-quadruplex and kissing
complex RNA (kcRNA) ligands via the RGG box and KH2 domain, respectively, although the RNA ligands of
FXR1P and FXR2P are unknown. Here we demonstrate that FXR1P and FXR2P KH2 domains bind kcRNA
ligands with the same affinity as the FMRP KH2 domain although other KH domains do not. RNA ligand
recognition by this family is highly conserved, as the KH2 domain of the single Drosophila ortholog,
dFMRP, also binds kcRNA. kcRNA was able to displace FXR1P and FXR2P from polyribosomes as it
does for FMRP, and this displacement was FMRP-independent. This suggests that all three family members
recognize the same binding site on RNA mediating their polyribosome association, and that they may be
functionally redundant with regard to this aspect of translational control. In contrast, FMRP is unique in
its ability to recognize G-quadruplexes, suggesting the FMRP RGG domain may play a non-redundant role
in the pathophysiology of the disease.

INTRODUCTION

Gene duplication during evolution has given rise to both
increased functionality through diversification of homologous
genes and increased potential for rescuing the effects of dele-
terious gene mutation through conservation of cellular func-
tion. Although the impact of redundancy of function
between paralogous genes is difficult to assess in human
disease, studies of loss-of-function in mouse models suggest
that many human diseases may be ameliorated to some
extent by the existence of functional paralogs. Understanding
the potential for functional overlap within a disease caused by
loss-of-function of a single family member may uncover
specific functions of the affected protein, as well as increase
the potential for therapeutic intervention.

Fragile X syndrome, the leading cause of inherited mental
retardation and a common genetic cause of autism, is caused
by loss-of-function of the FMRP RNA-binding protein
(reviewed in 1). This most frequently results from CGG
repeat expansion in the 5-UTR of the FMRI gene, leading
to abnormal methylation, cessation of transcription and com-
plete loss-of-function. FMRP has three canonical RNA-
binding domains, two of the KH type and an RGG box
(2—4). Interestingly, one patient has been described with a
CGG repeat copy number in the normal range but with a
single-point mutation in the second KH-type RNA-binding
domain (KH2) (5). This isoleucine-to-asparagine mutation
(I304N) lies within the hydrophobic platform of the RNA-
binding pocket of all KH domains studied to date (6,7) and
is predicted to disrupt sequence-specific RNA binding by
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this domain (8), suggesting that the RNA-binding properties of
FMRP are central to its cellular function and role in disease
pathogenesis.

FMRP has two autosomal paralogs, FXR1P and FXR2P
(9,10), which likely arose from gene duplication of a
common ancestral gene (11) and have been identified in all
mammals studied as well as in zebrafish. Though yeast and
Caenorhabditis elegans lack FXR proteins, a single FXR
family member, dfinrl, exists in Drosophila (12). At the
sequence level, FMRP, FXR1P and FXR2P are highly hom-
ologous through the first 13 exons (of FMRP) and diverge sig-
nificantly thereafter (11). The presence of conserved domains
including a nuclear localization signal, two KH domains and a
nuclear export signal suggests that all three FXR proteins may
share some cellular functions. In support of this, all three have
been shown to bind RNA (3,4,9,13,14), to associate with free
ribosomes (15—18) and polyribosomes (14,17,19-22). Treat-
ment of transfected cells with leptomycin B to block
exportinl-dependent nuclear export resulted in the nuclear
accumulation of all three FXRPs (23), suggesting that they
use the same mechanism for nucleocytoplasmic shuttling
though they have different distributions between the nucleus
and nucleolus. All three homo- and heterodimerize through a
conserved domain encoded by their respective seventh exons
(18), though evidence suggests that homodimerization predo-
minates in vivo (24).

The presence of divergent sequences also implies the poten-
tial for specialized functions, including two exons (exons 11
and 12) present in the KH2 domain of FMRP that are not
present in FXR1P and FXR2P (11,25), nor in dFMRP (12).
These exons were likely acquired during the mammalian radi-
ation as they are absent from chicken (26) and Xenopus FMRP
(27). Exon 12 is alternatively spliced, whereas exon 11 is con-
stitutively included (28,29). The C-termini following the
nuclear export signal have diverged considerably, including
the acquisition of two nucleolar localization signals, NoS1
and NoS2, in FXR1P/2P, that are lacking in FMRP (30).

The tissue distribution of the three FXR proteins, as well as
their subcellular localization, also suggests both conserved and
divergent functions. They have largely overlapping expression
in human tissues, especially in the nervous system (31),
though some marked differences exist outside of the nervous
system (32—34). In neurons, at a subcellular level, all three
proteins were found to be mainly cytoplasmic with minor
staining in the nucleus and nucleolus (33,35), and within the
cytoplasm, all three could be found in association with ribo-
somes by immuno-EM, again hinting at similar function
(33). Outside the nervous system, FXRIP is highly expressed
in muscle cells with little or no expression of FMRP
(19,33,34,36,37). FXRIP has at least four alternatively
spliced isoforms of 70, 78, 81 and 84 kDa, the latter two
being muscle specific (19,38).

In many cases, the levels of functionally redundant paralogs
increase to compensate for the loss of one. This does not
appear to be the case for the FXR family. In the absence of
FMRP, the levels of FXR1P and FXR2P are unchanged in
the null mouse model (33,39), in affected human fetuses
(31) or in lymphoblastoid cells from Fragile X patients
(19,22). In the FXR2 null mouse, levels of FMRP and
FXRI1P are unchanged in the somatodendritic compartment
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(39). Moreover, in a mouse model of the human I304N
mutation, the levels of FXRIP and FXR2P are not altered in
the brain (Julie B. Zang, Elena D. Nosyreva, Corinne
M. Spencer, Lenora J. Volk, Kiran Musunuru, Ru Zhong,
Elizabeth F. Stone, Lisa A. Yuva-Paylor, Kimberly
M. Huber, Richard Paylor, Jennifer C. Darnell and Robert
B. Darnell, submitted for publication). Taken together, there
is no evidence for compensatory increases in homolog levels
that would suggest functional redundancy, despite
co-expression of all three in neurons.

In order to determine whether the three Fragile X family
members may be functionally redundant with respect to
RNA binding and polysome-associated functions, we have
compared their RNA-binding specificities and find that the
RNA-binding properties of FMRP, FXR1P and FXR2P KH2
domains are very similar. Moreover, this specificity has been
conserved through evolution, as dFMRP-KH2 binds an in
vitro-selected RNA ligand of the human KH2 domain (40)
(kissing complex RNA, or kcRNA) with the same affinity as
the mammalian KH2 domains. kcRNA binding is specific to
the FMRP family of proteins, as KH domains from other
related proteins fail to bind this RNA ligand. FMRP, FXR1P
or FXR2P can all be specifically displaced from polyribo-
somes by kcRNA, suggesting that all three family members
may be functionally redundant with regard to the regulation
of translation of specific mRNAs on polysomes. In contrast,
we find that only FMRP recognizes an in vitro-selected
ligand of the human FMRP RGG box (41) (G-quadruplex
RNA) with high affinity. Understanding the role of RGG
box RNA binding in FMRP function may therefore lead to
greater understanding of the pathogenesis of Fragile X syn-
drome, as FXR1P and FXR2P may compensate for other func-
tions of FMRP mediated by the KH domains.

RESULTS

KH-type RNA-binding domains are frequently present in two
or more copies in proteins that mediate splicing, translational
control or mRNA transport. In some cases, the avidity of pro-
teins for RNA targets may be achieved by the presence of mul-
tiple KH domains of similar specificity that binds to repeats or
clusters of similar RNA motifs (reviewed in 7). FMRP appears
to use a different mechanism, as the two KH domains of
FMRP are among the most divergent from each other in
sequence, and a crystal structure of the tandem domains
suggests that they may function independently (42). The struc-
tures of KH domains are typified by a characteristic array of
beta sheets and alpha helices (S1-H1-H2-S2-S3-H3) and two
loops, the GXXG invariant loop between H1 and H2 and a
variable loop between S2 and S3. NMR solution structures
and KH domain-nucleic acid co-crystals have revealed that
KH domains pinion nucleic acids between the conserved
GXXG loop and the nonconserved variable loop allowing
specific recognition of 4-5 nucleotides (8). FMRP KH2
harbors the longest variable loop of any KH domain yet
described (43,44), encoded by exons 11 (E11) and 12 (E12)
of the FMRI gene. Since these two exons are present in mam-
malian FMRI mRNA, but are lacking in chicken, Xenopus and
zebrafish, the FXRI and FXR2 family members and dfinrl,
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Figure 1. The KH2 domain variable loop encoded by exons 11 and 12 (E11 and E12), absent from FXR1P and FXR2P, does not contribute to kcRNA binding.
(A) Diagram depicting the sequences present in the recombinant human KH2 domains that were produced in bacteria and purified. Domains differed in the
presence or absence of exons 11 and 12 and in the presence of the I304N mutation in the ‘parent’ construct as a negative control for kcRNA binding. (B)
Filter binding assays were performed to determine the affinity of the indicated domains in (A) for binding to the kc2 RNA. Domains were tested for RNA
binding immediately after purification. (C) Mouse (m, squares) and human (h, circles) KH2 domains with and without the alternatively spliced exon 12
(filled symbols, +E12; open symbols, -E12) were assayed for binding to kcRNA by filter binding assay. Although kcRNA binding is conserved between
mouse and human, the presence of exon 12 sequences inhibits binding. In this experiment, domains were tested for RNA binding following storage at 4°C
(see text for further explanation of the observed differences in binding for the constructs containing E12 in B and C).

we examined whether they participate in KH2:RNA ligand
recognition. Previous studies used in vitro RNA selection to
identify a high-affinity RNA ligand for the KH2 domain of
human FMRP which folds into a loop—loop pseudoknot or
kissing complex motif (referred to here as kcRNA; kc2
RNA is one of many individual clones fitting this consensus)
(40). Human FMRP KH2 domains were expressed as T7-
and His-tagged fusion proteins, with or without the 45
amino acids from exon 11 and the 21 amino acids from
exon 12 (Fig. 1A), and kcRNA binding was assessed by
filter binding assay (Fig. 1B). A KH2 construct lacking both
exons 11 and 12 (KH2-min, open squares) binds similarly
(Kg=90nm) to KH2 constructs lacking the alternatively
spliced exon 12 (KH2 + E11, K4 = 110 nm) and better than
the full-length KH2 domain (KH2 + E11,12, K4 = 310 nm).
Thus, the variable loop of KH2 is dispensable for kcRNA
binding.

Approximately 80% of mature FMRI! transcripts in the
brain lack exon 12 due to alternative splicing (29). In that
context, it is interesting that KH2+4E11,12 binds kcRNA
with lower affinity than the form with that exon spliced out
(KH2 + E11). We have repeated this experiment several
times and find that the KH2 domains from mouse or human
FMRP containing the 21 amino acids of exon 12 bind
kecRNA if assayed immediately after purification (as in
Fig. 1B). If stored at 4°C for more than a day, binding

rapidly decreases (to levels shown in Fig. 1C), although
exon 12(—) forms retain the same binding affinity for up to
6 months under the same storage conditions. These results
suggest that the presence of the 21 amino acids encoded by
exon 12 may destabilize the KH2 domain in vitro.

Without its lengthy variable loop, the FMRP KH2 domain is
very similar to its paralogs FXR1P and FXR2P (Fig. 2) (42,44).
The first KH:RNA co-crystal structure, that of a Nova KH
domain bound to a high-affinity in vitro-selected RNA ligand,
revealed a novel method of single-stranded RNA binding for
KH domains. The RNA ligand lies on a hydrophobic o/B plat-
form, where it is gripped by the conserved GXXG loop and the
variable loop (8). Among the FXRP KH2 domains, the amino
acids involved in forming this aliphatic o/f3 platform are
largely conserved (Fig. 2, asterisks). Nova recognizes its
RNA target through a combination of van der Waals contacts,
hydrogen bonds and stacking interactions, and several of
these important contacts between KH domain amino acid side
chains and the RNA ligand are absolutely conserved between
Nova-1 and Nova-2 (Fig. 2, red dots). This is likely to explain
how these related domains recognize almost exactly the same
RNA ligands (8,45) and suggests the possibility that FMRP
might bind the same ligands as the Nova proteins. Filter
binding assays were performed comparing human full-length
Nova protein and FMRP KH2 domain (Fig. 3). Although
Nova-1 bound with an affinity of 37 nm to one of its in vivo
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Figure 2. KH2 domains from human (h), mouse (m) and Drosophila (d) FXR family members are conserved in key positions. Signature alpha helices (red
boxes), beta sheets (blue boxes) and loops (green boxes) are shown. The asterisks denote hydrophobic amino acids whose side chains make up the aliphatic
o/B platform of the domain. Red dots denote amino acids important for interactions of human Nova-2 KH3 with its RNA ligand. An open triangle indicates
the isoleucine mutated to asparagine in the I304N patient, and the dashed gray line denotes the exon—exon junction between exons 10 and 13 of FMRP,
with exons 11 and 12 removed, or exons 10 and 11 of FXRIP and FXR2P. In the dFMRP sequence, number 3 represents nonaligned amino acids ‘AIA’,

and number 2, ‘NI’. RNA contacts from the Nova2 KH3:RNA co-crystal structures are shown below the sequences (8,44).
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Figure 3. The KH domains of Nova-1 and FMRP bind different RNA ligands. Human Nova-1 protein was expressed and HisTag-purified from a bacterial lysate.
Filter binding assays were performed using Nova-1 and the human FMRP KH2 domain at the indicated concentrations with one of Nova’s in vivo targets, the
GABA-A~Y2 intron 9-binding site (46) (black squares, Nova ligand), or the 96 nucleotide in vitro-selected RNAs, kc2 (filled red squares, kc2wt) or the C50G
point mutant in kc2 (half-filled red squares, kc2 mutant). (A) Nova bound its cognate ligand with an affinity of 37.1 nm ( £16.0 nm). Binding to kc2wt or kc2
mutant was too low to determine a K4 value. (B) FMRP KH2 bound its kcRNA ligand with Ky = 37.8 + 5.6 nm. Binding to kc2 mutant or the Nova ligand was

not quantifiable.

targets, the GABA-Avy2 intron 9-binding site (46), it failed to
bind kc2 RNA or mutant kc2 RNA with high affinity
(Fig. 3A). In contrast, FMRP KH2 bound kc2 RNA with an affi-
nity of 38 nm but failed to bind the GABA-Avy2 RNA ligand or a
single-point mutation in kc2 (C50G) that disrupts one of the
loop—loop interactions in the pseudoknot (40) (Fig. 3B) demon-
strating specificity in the binding of these KH domains to their
respective RNA ligands. We also tested FMRP KH1 and found
that it fails to bind kcRNA (data not shown). In addition, filter
binding assays done with WT full-length hFMRP or hFMRP
containing point mutations which disrupt either the KHI1 or
KH2 domains (I1241N and 1304N) demonstrate that the 1304N
mutation in KH2 disrupted kcRNA binding, while the 241N

mutation in KH1 did not affect kcRNA binding by full-length
FMRP (40).

The high conservation between FMRP and FXR1/2P KH
domains also suggested the possibility that FXRIP and
FXR2P might bind the same RNA ligands as does FMRP.
Filter binding assays with kc2 RNA demonstrated that the
KH2 domains of human FXR1P and FXR2P bind kceRNA indis-
tinguishably from FMRP KH2 (Fig. 4A). Specific interactions
with this motif are indicated by the failure of all three to bind
the kc2 RNA with a single-point mutation. The KH2 domain
of the Drosophila homolog, dFMRP, also binds to kcRNA
with the same affinity as human FMRP KH2 (Fig. 4B). Although
the observation that the RNA-binding properties of the KH2
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Figure 4. KH2 domains from human FMRP, FXR1P, FXR2P and dFMRP bind kcRNA specifically and indistinguishably. (A) FMRP KH2 (blue circles), FXR1P
KH2 (green squares) or FXR2P KH2 (red triangles) were produced in bacteria and purified. Equilibrium filter binding assays with **P-labeled keRNA were used
to determine the affinity of the KH2 domains for kc2 RNA ligand (K4 value for FMRP = 43 nm, FXR1P = 42 nm and FXR2P = 60 nwm, solid lines). Assays were
repeated with the C50G mutant kcRNA (dashed lines) indicating the specificity of the FXRP interaction with this RNA. (B) The KH2 domains from human (open
squares) and Drosophila (closed squares) were expressed and purified side-by-side and keRNA binding assessed by filter binding assay as in (A).

domain of the Fragile X paralogs have been conserved during
evolution is important, these data additionally suggest that the
use of dfmri-null Drosophila as a disease model for Fragile X
syndrome is likely to be fruitful, as RNA binding by this
family may have been largely conserved through evolution.

KH domains can be identified in at least 300 eukaryotic pro-
teins of varying cellular functions. To more generally assess
the ability of KH domains to recognize the kcRNA motif,
we generated fusion protein constructs for KH domains of
human poly-C-binding protein 1 (PCBP1, «CPl or
hnRNPE1) which is involved in translational control (47 and
references therein), the extended KH-quaking domain of
human Sf1 which binds the branch point motif (BPS) during
splicing (48) and the full-length Xenopus VglRBP/Vera
protein (four KH domains) which binds Vgl mRNA and loca-
lizes it to the vegetal pole of the frog oocyte (49). Each KH
domain was assayed for kcRNA binding by filter binding
assay (Fig. 5). We found that none of these KH domains
bound their reported RNA ligands in SBB buffer (data not
shown), which contains 200 mm salt and so is a moderately
stringent buffer for protein—RNA association. Therefore, we
assayed the KH-QUA2 domain of Sfl (Fig. 5A), all four KH
domains of Xenopus VgI1RBP/Vera (Fig. 5B), the paired KH1
and two domains of mouse PCBPI1 (Fig. 5C) and the third
KH domain of mouse PCBPl (Fig. 5D) for binding to
kcRNA in the buffers used in their respective published
studies (47,50—52). Under these conditions, each KH domain
bound to their reported ligands but none recognized the
kcRNA ligand bound by the FXRP family KH2 domain.
Taken together, these results demonstrate that FMRP, FXR1P
and FXR2P KH2 domains bind the same kcRNA motif, this
binding has been conserved through evolution from fly to
man and kcRNA binding is specific to the FMRP family, as
all other KH domains tested fail to bind it.

Redundant role for FXRP:kcRNA binding in neurons

We have previously demonstrated that kcRNA added to a
mouse brain lysate can compete FMRP off brain polyribo-
somes, presumably by mimicking the in vivo RNA ligand
through which FMRP associates with polysomes (40). As all
three FXRP family members bind the same ligand in vitro,
we hypothesized that kcRNA might compete FXRIP and
FXR2P off polysomes if all three also bind the same RNA
ligand in vivo. We assayed the ability of kcRNA to shift
FXR1P and FXR2P off polyribosomes in IMR32 human neuro-
blastoma cell lysate and found that they were effectively shifted
to the lighter mRNP-containing sucrose fractions by kcRNA
but not by G-quadruplex RNA (scl) (41) or mutant kcRNA
(data not shown). It is possible, however, that FXRIP and
FXR2P are not directly binding RNA but are associated with
polysomes due to protein—protein interactions with FMRP,
since they have been reported to heterodimerize with FMRP
(10,24). To assess the ability of kcRNA to compete FXR1/2P
off polysomes in the absence of FMRP, we repeated the assay
in cortical lysates generated from Fmrl null mice (Fig. 6).
A significant proportion of FXR1P and FXR2P were associated
with heavy polysomes in these lysates, and keRNA (kc2) sig-
nificantly shifted both FXRPs to lighter fractions corresponding
to small mRNPs or free protein. A single-point mutation in
kcRNA (mut kc2) abolished this effect in both cases. Impor-
tantly, the global polysome profiles as assessed by A254 trace
were not changed by the addition of 500 nm kcRNA or point
mutant keRNA (Fig. 6B). These data demonstrate that the
association of both FXRI1P and FXR2P with polysomes is
independent of FMRP, and that they associate with polysomes
using the same mechanism used by FMRP—binding an RNA
ligand that can be competed by a loop—loop pseudoknot motif
RNA. These data suggest that there is likely to be functional
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Figure 5. The KH domains of Sfl, VgIRBP/Vera or PCBP1 bind their previously identified RNA ligands, but do not bind with significant affinity to kcRNA or
mutant kcRNA. (A) The isolated KH-QUA domain of human Sfl bound the intronic branch point sequence with K4 = 2.83 + 0.71 M (black squares). (B) All
four KH domains of Xenopus Vera bound to the Vgl RNA (black squares) with K4 = 292 + 80 nm. (C) Binding of the mouse PCBP1 tandem KH1 and KH2
domains to the R7al ligand (black squares) had a K4 value of 42.3 + 12 nm. (D) Binding of the KH3 domain of PCBP1 to the R7al ligand (black squares) had a
Ky value of 2.17 + 0.25 M. In all cases, binding to kc2 RNA (red squares) or C50G mutant kc2RNA (half-filled red squares) was too low to accurately deter-

mine a Ky value.

redundancy in translational control by the FXR family
members in the brain.

We assessed whether other polysome-associated proteins,
many of which may have a role in translational regulation,
can also be competed off polysomes by kcRNA. The distri-
bution of ribosomal proteins S6 and PO, the mRNA-binding
proteins PABP, Hu B, C, D and Ago2 was not significantly
altered after incubation with kcRNA (Fig. 7A), underscoring
the specificity of the binding of kcRNA to the FXR family
of translation factors. Again, the overall polysome profile
was not affected by kcRNA or mutant kcRNA addition
(Fig. 7B). Eukaryotic elongation factor eEFla and hnRNPA1
also showed no change in polysome association after
kcRNA or mutant kcRNA treatment (data not shown).

Lack of functional redundancy for G-quadruplex binding

Members of the FXR family have been reported to harbor a
second type of RNA-binding domain, the RGG box. In vitro
RNA selection experiments with the FMRP C-terminus ident-
ified a G-quadruplex RNA ligand as the protein’s highest affi-
nity RNA ligand, an interaction that was mapped to the FMRP

RGG box (41). The RGG box in human FMRP that binds the
G-quadruplex ligand is shown aligned with the FMRP RGG
boxes from five other species, demonstrating significant con-
servation of the RGG domain (Fig. 8A). Alignment of
human FMRP, FXR1P, FXR2P and dFMRP sequences (from
12) shows little conservation of R/G motifs in these homologs,
consistent with prior observations made of the FXR homologs
in zebrafish (53). The lack of conservation in the Drosophila
homolog is particularly evident. To compare RGG box—
G-quadruplex binding by these different proteins, we
expressed the longest C-terminus present in brain isoforms
(starting immediately after the KH2 domain) of each family
member. Each was assayed for binding to scl (the ‘winning’
in vitro-selected G-quadruplex RNA) (Fig. 8B) (41). As
expected, the FMRP C-terminus bound scl RNA with high
affinity (K4 = 6.7 + 2.1 nm). However, the FXR1P C-terminus
showed no detectable binding to the G-quadruplex RNA
ligand. FXR2P demonstrated potential G-quadruplex RNA
binding with estimated Ky value of 306.5 +99nm but
RNA binding was not saturated in this pilot experiment. To
further investigate this, the FXR2P C-terminus was expressed
in four fragments corresponding to exons 12, 13 (containing
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Figure 6. FMRP, FXRIP and FXR2P use the same mechanism to associate with polysomes. (A) Postmitochondrial supernatants prepared from cortex and cer-
ebellum of Fmrl null mice were treated with buffer (control), 500 nm ke2 (kc2) or 500 nm mutant ke2 (mut kc2) containing a point mutation that disrupts the
loop—loop interaction in the kissing motif. Lysates were then fractionated over linear 20—50% sucrose gradients, proteins recovered from each fraction by TCA
precipitation and resolved by SDS—PAGE. FXR1P or FXR2P was visualized by western blot with ML13 or 1G2 antibodies respectively. (B) kcRNA treatment
has no effect on overall ribosome distribution on transcripts as evidenced by A254 traces.

the putative RGG box (10,11), 14 and 15—17. Compared with
wt FMRP C-terminus that bound scl with a Ky value of
13.8 + 1.5nm, FXR2P exons 12, 13 and 14 showed no
binding to scl (Fig. 8C). Instead, the observed G-quadruplex
RNA-binding activity of the FXR2P C-terminus was localized
to protein encoded by exons 15—17 (Fig. 8D, black squares).
To test whether this binding by FXR2P was specific for
G-quadruplexes, we repeated binding assays in the presence
of Li* versus K*, as G-quadruplex structures are unstable in
Li* (41) (Fig. 8D, open symbols). Although scl binding by
the C-terminus of FMRP decreased > 150-fold in the presence
of Li™, RNA binding by FXR2P exons 15—17 was unaffected
by the nature of the monovalent cation, demonstrating that the
observed RNA-binding activity by the C-terminus of FXR2P
is not dependent on G-quadruplex formation. It is likely that
exons 15—17 of FXR2P, which contain two arginine rich
motifs (30,38), bind sc1 RNA nonspecifically through those
positive charges.

Finally, we assayed whether the Drosophila dFMRP C-
terminus could bind scl or a point mutant in scl RNA by
filter binding assay. Although human FMRP C-terminus
bound scl RNA with a Ky value of 8.5 + 1.8 nm (Fig. 8E,
red filled squares), and a point mutation in scl severely abro-
gated binding (red open squares), the fly C-terminus failed to
bind scl or mutant scl with high affinity (Fig. 8E, black
symbols). Taken together, these results demonstrate that G-
quadruplex RNA binding is a specific function of FMRP
that is absent in its autosomal paralogs FXR1P and FXR2P.

Furthermore, our data suggest that this activity of FMRP has
been acquired after the gene duplication events that generated
FXRI1P and FXR2P, as it is not present in the Drosophila
dFMRP ancestral homolog. Understanding the functional sig-
nificance of G-quadruplex binding in vivo may therefore be of
substantial importance in elucidating the molecular pathogen-
esis of Fragile X syndrome.

DISCUSSION

In humans, the loss of FMRP activity leads to Fragile X syn-
drome despite the presence of FXR1P and FXR2P. Since all
three proteins have a similar expression pattern in the brain,
there may be critical activities of FMRP that are not redun-
dantly provided by FXR1/2P in neurons. Recent genetic evi-
dence in mouse models has led to uncertainty regarding the
degree of functional overlap between FMRP autosomal para-
logs. For example, Fmrl and Fxr2 null mice have some behav-
ioral phenotypes in common (54), and doubly mutant mice
lacking both FMRP and FXR2P (Fmri/Fxr2 DKO mice)
show increased exploratory behavior in open-field tests,
decreased prepulse inhibition and decreased freezing in a con-
ditioned fear test relative to either Fmrl null or Fxr2 null lit-
termates (55). Strikingly, both single-knockouts display only
subtle defects in circadian rhythm, whereas Fmri/Fxr2 DKO
mice are completely arrhythmic when maintained in normal
light:dark cycles (56). Likewise, Fmril/Fxr2 DKO mice
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Figure 7. Several polysome-associated proteins are not competed off polysomes by kcRNA treatment. (A) Postmitochondrial supernatants prepared from the
cortex of WT P21 mice were treated with buffer (control), with 500 nm kc2 (kc2), or 500 nm mutant kc2 (mut kc2). Lysates were then fractionated over
linear 20—50% sucrose gradients, proteins recovered from each fraction by TCA precipitation and resolved by SDS—PAGE. Half as much lysate was precipitated
for lanes 1-3 as for 4—16 to permit full solubilization of large TCA pellets. Proteins were visualized by western blot with antibodies as detailed in Materials and
Methods. (B) keRNA and mutant kcRNA treatment have no effect on the polysome profile as evidenced by A254 traces.

have significant defects in basal synaptic transmission
which are not detectable in either single null (57). Loss of
FMRP expression leads to alterations in long-term synaptic
plasticity including exaggerated mGluR-dependent long-term
depression (LTD) in hippocampal CAl cells as well as loss
of protein synthesis dependence for its maintenance (58—
60). Surprisingly, Fxr2 null mice have decreased mGIluR-LTD
that remains protein synthesis dependent, whereas Fmri/Fxr2
DKO mice have a dramatically exaggerated LTD, which led to
the suggestion that there is some level of compensation by the
homologs (57). However, since these are opposite phenotypes,
it may be that the proteins are functioning in different path-
ways in controlling local translation at the synapse. Little is
known about functional redundancy with FXRIP because
loss of expression leads to neonatal lethality (37). We now
show evidence for functional redundancy between FMRP
and both FXRI1P and FXR2P in KH domain-mediated RNA
binding and polyribosome association on a biochemical
level, as well as a unique function for FMRP in RGG box
RNA recognition. In light of these findings, the RGG box
interaction with G quadruplex RNA, specific to FMRP, may
play an important function in the regulation of translational

control at the synapse, and understanding this function may
shed light on the striking differences in long-term synaptic
plasticity between loss of FMRP and FXR2P.
G-quadruplexes are tertiary structures formed from stacks
of planar G-quartets and stabilized by certain monovalent
cations (Na* and K*, but not Li™). In vitro selection exper-
iments identified the G-quadruplex as the highest affinity
ligand of the FMRP C-terminal RGG box, and indeed, of
the full-length FMRP protein (41). Although an impressive
amount of recent work has documented the role of these struc-
tures in DNA, including their destabilization by pharma-
ceutical agents, the potential importance of G-quadruplexes
in RNA is just beginning to be appreciated. Bioinformatic
studies predict many G-quadruplexes in RNA in the transcrip-
tome (61,62) and have catalogued over 50000 predicted
G-quadruplexes near splice sites and alternative polyadenyla-
tion sites (63). There are also 2922 bioinformatically predicted
G-quadruplexes in 5-UTRs, including 13 in protooncogene
5’-UTRs, and this motif is thought to modulate their trans-
lation (64). In addition to FMRP, other RNA-binding proteins,
such as the G4R1/RHAU helicase, recognize G-quadruplexes;
G4R1/RHAU binds to G-quadruplexes with an affinity in the
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Figure 8. G-quadruplex binding by the RGG box is specific to FMRP. (A) Alignment of FXR family RGG box sequences from the indicated species by ClustalW
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pM range, unwinding this ‘knot’ and permitting proper RNA
metabolism (65). Several in vivo mRNA targets of FMRP,
including PSD-95 (66), MAPIB (41) and amyloid precursor
protein (67) as well as several mRNAs that co-IP with
FMRP in mouse brain (41,68), contain G-quadruplex motifs,
although direct binding to any of these motifs in vivo has

not yet been demonstrated. /n vitro interactions of FMRP
with the G-quadruplex motif from MAP1B, semaphorin 3F
and the SELEX ligand scl have been confirmed by structural
studies (69—-72).

RGG boxes have been reported to be present in numerous
nucleic acid-binding proteins, yet a strict definition of an



RGG box and its potential for specific RNA recognition
remain unclear. The RGG box was originally described in
hnRNP U on the basis of molecular studies that identified
the domain responsible for RNA binding (73,74). Alignment
of this domain in hnRNP U with other RNA-binding proteins
including fibrillarin, nucleolin and hnRNP A1l suggested a
consensus consisting of three to four closely spaced repeats
of the RGG tripeptide. Examination of the human FMRP
sequence identified an arginine- and glycine-rich motif
fitting this consensus (2,4). Subsequently, FXRIP and
FXR2P (9,10) and dFMRP (12) have also been considered
to harbor C-terminal arginine-rich RNA-binding domains,
although their sequence homologies and alignments are not
well conserved (Fig. 8). Therefore, it has been unclear
whether these domains share the same RNA-binding proper-
ties as the RGG box of FMRP.

A single-point mutation present in a severely affected
Fragile X patient (5) has directed attention to the KH2
domain as a critical RNA-binding domain in FMRP.
A mouse model of this mutation is sufficient to cause the
Fragile X phenotype (Julie B. Zang, Elena D. Nosyreva,
Corinne M. Spencer, Lenora J. Volk, Kiran Musunuru, Ru
Zhong, Elizabeth F. Stone, Lisa A. Yuva-Paylor, Kimberly
M. Huber, Richard Paylor, Jennifer C. Darnell and Robert
B. Darnell, submitted for publication). This mutation disrupts
KH2-RNA binding and polysome association in the
mouse brain (Julie B. Zang, Elena D. Nosyreva, Corinne
M. Spencer, Lenora J. Volk, Kiran Musunuru, Ru Zhong,
Elizabeth F. Stone, Lisa A. Yuva-Paylor, Kimberly
M. Huber, Richard Paylor, Jennifer C. Darnell and Robert
B. Darnell, submitted for publication), in lymphoblastoid cells
derived from the human patient (22) and in tissue culture
cells transfected with FMRP reporter constructs (75,76). In con-
trast, deletion of the RGG box has little-to-no effect on poly-
some association (75,76). Moreover, FMRP can be
completely competed off polysomes by the RNA ligand of
the KH2 domain, kcRNA, but not by the G-quadruplex ligand
of the RGG box (40). Here, we find that FMRP, FXRI1P
and FXR2P all share the properties of kcRNA binding and
keRNA-dependent polysome association, suggesting that the
FXR1/2 proteins are likely to provide functional redundancy
for this activity of FMRP in the brain of Fragile X patients
(or in vertebrate models), whereas the RNA binding of the
RGG box of FMRP may confer a specific function.

Very little is known about the in vivo function of the RGG
box. When overexpressed, an RGG deletion mutant behaves
much like wild-type FMRP in its ability to form dendritic
puncta (77), to cause synaptic overgrowth in mouse neurons
(77), and in its ability to associate with polysomes (75,76).
A clue to the role of the RGG box in FMRP function may
relate to FMRP’s ability to nucleate stress granules when over-
expressed. Stress granules are physiologic correlates of the
translational inhibition that results from exposure of cells to
a variety of stressors including heat shock, oxidative stress,
viral infection and arsenite poisoning (reviewed in 78 and
79). Cells react by inhibiting translation of housekeeping
(and likely other) transcripts (80) to preserve resources for
the synthesis of stress response proteins. mRNAs from disas-
sembled polysomes are sorted into pools destined for degra-
dation or storage as repressed mRNPs. When stress abates,
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stress granules dissolve and polyribosomes form again on
these ‘stored” mRNAs. FMRP has been reported to shuttle
between polysomes and stress granules induced to form by
heat shock (81), hippuristanol or pateamine (inhibitors of
initiation) (82), arsenite treatment (oxidative stress) (83) or
neuronal trauma in vivo (83). FMRP, like several other pro-
teins including TIA-1, TTP, G3BP, RCK, CPEB, caprin-1,
FAST, Ago2 and SMN (78), is believed to nucleate stress
granules when overexpressed. Khandjian and colleagues
have reported that the deletion of the FMRP RGG box specifi-
cally abrogates its ability to nucleate stress granules when
overexpressed (75,81). Interestingly, FXRIP is found in
stress granules as well, and its presence in granules after
heat shock is inhibited by the deletion of the RGG box in
FMRP, suggesting that FMRP may recruit FXR1P to granules
(81). FXRIP has also been reported to bind G-quadruplex
RNA (84); however, this activity was mapped to sequences
in the longest form of FXR1P, which is muscle specific and
therefore not present in neurons. The C-terminus of FXRI1P
tested here is the longest form expressed in brain, which none-
theless lacks the G-quadruplex-binding domain present in
muscle isoforms. Since skeletal muscle expresses little, if
any, FMRP (33), it is intriguing to speculate that muscle-
specific isoforms of FXR1P may have gained this function,
in the absence of FMRP expression, in order to participate
in stress granule formation.

Taken together, our observations suggest a model whereby
the KH domains of FMRP are necessary for an action on poly-
ribosomes that can be compensated for by FXR1/2P, but that
the FMRP RGG box is uniquely necessary for stress-related
transition from polyribosomes to stress granules. The role of
FMRP in regulating the translation of specific mRNAs in
cells is likely to be complex and to depend on levels
of FMRP as well as the ‘state’ of the cell, including stage of
the cell cycle, influence of ‘stress’, or in the case
of neurons, synaptic activity. Our findings may help elucidate
how the loss of FMRP leads to aberrant mRNA translation and
synaptic dysfunction present in Fragile X syndrome.

MATERIALS AND METHODS

Cloning and purification of KH domains and C-termini

RNA-binding domains were amplified by PCR, using either
human or mouse cDNA (Clontech), dfimrl plasmid (a gift
from Dr Tom Jongens) or previously cloned FMRP or
304N FMRP plasmids (40) as template, using the indicated
primers and cloned into the multiple cloning site of pET21a
or b (Novagen) to introduce an N-terminal T7 tag and a
C-terminal His-Tag for purification. Mouse FMRP KH2
domain was cloned using the same primers as were used to
amplify human FMRP KH2. The minimal KH2 domain
lacking exons 11 and 12 was cloned by deleting exon 11
from the isoform lacking exon 12 (ISO7) as follows: Two
PCR reactions were assembled using hKH2F (CCGGA
TCCTGCTGAAGATGTAATACAAGTTCC) and elldelR
(GCTGTCCTTTGTTCCCACAAAAACAAATGGTACCATA
CCCTCTTCTTGTGGAACATTTTTCTCATTTTCAGC) for
one, and hKH2R (AAGCGGCCGCTAAATAGTTCAGGTGA
TAATCC) and elldelF (GGTATGGTACCATTTGTTTTTG
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TGGGAACAAAGGACAGCATCGCT) for the other, with
human pet21-FMRP as a template and amplified with Pfu
DNA polymerase. Expected products were gel-purified,
denatured together in equimolar amounts and allowed to
anneal. Following fill-in with Klenow and Pfis, this template
was used in a new PCR reaction with hKH2F and hKH2R
as terminal primers. The PCR product of the correct size was
gel-purified, cloned into pET21b and confirmed by sequencing.
Full-length Nova-1 was previously described (85). Human
Sfl KH-QUA2 domain was expressed from the Sfl-
KH-STAR-pET-24d plasmid, a gift from Dr Michael Sattler
and Dr Angela Kramer (50). After sequence confirmation,
fusion proteins were expressed in BL21DE3(Star), induced
for 3—4 h with IPTG, and proteins purified by His-Tag affinity
chromatography as described previously (40). Purity of fusion
protein preparations was assessed by Coomassie stain and
western blots with anti-T7 antibody. Proteins were quantified
by Bradford assay (BioRad) and stored in His-Tag elution
buffer (20 mm HEPES, pH 8.4, 1 M KCl, 200 mm imidazole)
until use.

hFXRIP KH2 F: CCGGATCCGTTTGTGGAGGATTTTAT
TCAGG;

hFXRIP KH2 R: CCGCGGCCGCTAGATAGGCAATATG
ATACTCTAGAAGAACC;

hFXRI1P C-terminus F: CCGGATCCGCAGCTAAGAATGG
AACGCCTACAGATTGATGAACAGCTGC;

hFXRIP C-terminus R: CCGCGGCCGCTGAAACACCATT
CAGGACTGCTGC;

hFXR2P KH2 F: CCGGATCCGTTTTCTGAGGACTCAGT
GCAAGTGC;

hFXR2P KH2 R: CCGCGGCCGCCAGGTAGGAGAGGTG
ATACTCC;

hFXR2P C-terminus F: CCGAATTCTCCTACCTGCAGGAG
GTAGAGCAGC;

hFXR2P C-terminus R: CCCTCGAGTGAAACCCCATTCA
CCATACTACCCAACTCCAAGGGGGCG;

exon 12 F: GGGAATTCGAGGTAGAGCAGCTTCGCTTGG
AGAGGC;

exon 12 R: GGCTCGAGATAGGCAGGACCGCCTGTCCT
CCGGCC;

exon 13 F: GGGAATTCGGCCCCAGCTCAGATGTGTCT
ACAGC;

exon 13 R: GGCTCGAGTGAGCTAATAGATGAAGAATT
GTATCTCG;

exon 14 F: GGGAATTCGTGCTGAAGGATCCAGACAGT
AATCCC;

exon 14 R: GGCTCGAGCAGGCCATTCTCTGTCATGTTG
GGCCCG;

exon 15-17 F: GGGAATTCGAAGATGAATCAAGACCTC
AACG;

exon 15-17 R: GGCTCGAGTGAAACCCCATTCACCAT
ACTACC;

Xenopus VglRBP/Vera KH1-4 F: GCGAATTCGGAGGTT
CCGCTGAGAATGCTGGTTCCC;

VglRBP/Vera KH1-4 R: CCGCTCGAGCAATATTTCCTG
AATTTTCCTTTGTGCAAGC,;

Mouse PCBP1 KH1/2 F: GCGAATTCGACTCTCACCATTC
GGCTGCTGATGCACGG;

PCBP1 KHI1/2 R: CCGCTCGAGGAGCGTCTCCAGCATG
ACCAGGCAGATCTGCTTCACACACTCGG;

PCBPI KH3 F: GCGAATTCGCAAACCACCCATGAACTC
ACCATTCCAAATAACTTAATCGGC;

PCBP1 KH3 R: CCGCTCGAGAAGCCTGGCATTGATTAG
ATACTGGGC;

dFMRP KH2 F: GCGAATTCGTACGCCGAGGAGTTCTTC
CAGGTGCCCAGGG;

dFMRP KH2 R: CCGCTCGAGCAGGTGCGACAGATGAT
ACTCCAACAGCACTTTGGCATTTGC;

dFMRP C-terminus F: CGGGATCCGAAGGAAGTAGAAC
AGTTGCGTCAGGAGAAGATGGAGATTGATCAGC;

dFMRP C-terminus R: ATAGTTTAGCGGCCGCGGACGTG
CCATTGACCAGGCCCTCCTTTTTGACATTCTCCGC.

In vitro transcription of **P-labeled RNA ligands

Transcription templates were prepared by PCR and purified
over G-25 columns as described in what follows. In vitro tran-
scription reactions included 13 w1 of DNA template, 5 pl tran-
scription buffer (Stratagene), 4 wl of 10 mm NTP mix
(Amersham), 1 pl of *?P-alpha-UTP (Amersham), 1 pl of
RNAsin (Promega) and 1 pl of T7 RNA polymerase (Strata-
gene). Labeled RNA was treated with three units of RQI
DNAse and gel-purified on 8% urea-polyacrylamide gels.

Transcription templates for RNA ligands

scl, mutant scl, kc2 and mutant kc2 were prepared as
described previously (40,41). For PCBP1-binding curves, we
used the R7al stem-loop SELEX ligand (47) (the template
sequence was AGTAATACGACTCACTATAGGAGTGAC
CTTCTCAACTTTATATTCCCTTTACCCCTTCCCCCAAG
GCACT, and reverse complementary primer was AGTG
CCTTGGGGGAAGGGQG). These oligos were annealed,
filled in with Pfu and amplified by PCR using the reverse
primer and a T7 promoter primer (AGTAATACGACTCAC
TATAG). PCR products were purified over G-25 columns
and used as templates for in vitro transcription. For
VglRBP/Vera binding, we used the pVLE plasmid, a gift
from Dr Nancy Standart, linearized with Mscl (51). The Sfl
ligand, the BPS RNA UAUACUAACAA (50), was syn-
thesized by Dharmacon, end-labeled with *?P-gamma-ATP
using T4 PNK and gel-purified.

Filter binding assay

Filter binding assays were performed as described previously
(40,41). Briefly, 120000 cpm of in vitro-transcribed
*2p_labeled RNA was diluted to 120 pl in 1x SBB buffer
(200 mm potassium acetate, 50 mm Tris—acetate, pH 7.4,
5 mM magnesium acetate), heated to 75°C for 10 min and
bench-cooled for 5 min to renature the RNA. Ten microliters
of RNA (10000 cpm, 1-5 fmol) was added to tubes contain-
ing serial 3-fold dilutions of RNA-binding protein in SBB
buffer in 40 wl aliquots. After 10 min of equilibration at
room temperature, samples were captured on MF nitrocellu-
lose membranes (Millipore HAWP-02500) by filtration on
a Millipore 12-well vacuum manifold and washed with
Sml of 1 x SBB. Bound RNA was quantified by scintillation



counting in 5 ml of Readi-Safe scintillant and background
(RNA added to 40 wl SBB with no protein and filtered) was
subtracted from each value. Total counts per sample were
determined by spotting 10 wl of RNA on a dry filter. Data
are expressed as percentage of total RNA and plotted against
log of the protein concentration using Kaleidograph software
(Synergy Software). K4 values were determined by the Kalei-
dograph binding curve algorithm. SBB was substituted with
1 x binding buffer (10 mm Tris—Cl, pH 7.4, 150 mm KCI,
1.5mMm MgCI2, 0.5mm DTT) for PCBP1 curves (47),
(25 mm NaCl, 25 mm Tris—HCI, pH, 1 mm EDTA, 0.5 mg/
ml tRNA) for Sfl curves (48) and FBA buffer (100 mm
NaCl, 50 mm Tris, pH 8, 1 mm MgCI2) for VglRBP/Vera
curves (51).

Polysome gradient analysis of mouse brain

Two-to-three-week-old mice were sacrificed by isoflurane
anesthesia and decapitation. Postmitochondrial supernatants
of cerebral cortex and cerebellum, dissected free from white
matter, were prepared and separated by 20—50% sucrose gra-
dients as described previously (40). Then, 720 wl fractions (16
per gradient) were collected with continuous monitoring at
254 nm using an ISCO UA-6 UV detector. Where indicated,
in vitro-transcribed RNAs (unlabeled) were added to the S1
lysate (after heating to 75°C for 10 min and bench-cooling
for 5 min in 1x SBB buffer) for 15 min at room temperature
prior to the 20 000g spin to generate the S2 supernatant which
was loaded on the sucrose gradient.

SDS—-PAGE and western blot

The proteins contained in each fraction of the sucrose gradi-
ents were TCA-precipitated and analyzed by western blot
using the indicated antibody and the appropriate anti-HRP sec-
ondary antibody (Jackson Immunochemicals). Chemilumines-
cence was quantitated with a Versadoc Imaging System
(BioRad).

Antibodies used for western blot

Anti-FMRP polyclonal antibody ab17722 (Abcam) was used
at 1:1000, anti-FXR1P rabbit polyclonal antibody ML13
(gift from Dr E. Khandjian) was used at 1:25 000, anti-FXR2P
mouse monoclonal antibody 1G2 (obtained from the Develop-
mental Studies Hybridoma Bank, developed under the aus-
pices of the NICHD and maintained by the Department of
Biological Sciences, University of lowa, lowa City, IA
52242, USA) was used at 1:2000, anti-ribosomal protein S6
rabbit monoclonal 5G10 (Cell Signalling) was used at
1:1000, anti-PABP rabbit polyclonal antibody ab21060
(Abcam) was used at 1:2000, anti-Ago2 (eIF2C2) rabbit poly-
clonal antibody ab32381 (Abcam) was used at 1:1000, anti-PO
human antibody (USBiological R2031-25) was used at 1:20
000 and anti-Hu was a human Hu syndrome patient serum
used at 1:10 000.
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