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Abstract

The structure of the physical world projects images onto our eyes. However, those images

are often poorly representative of environmental structure: well-defined boundaries within

the eye may correspond to irrelevant features of the physical world, while critical features of

the physical world may be nearly invisible at the retinal projection. The challenge for the

visual cortex is to sort these two types of features according to their utility in ultimately recon-

structing percepts and interpreting the constituents of the scene. We describe a novel para-

digm that enabled us to selectively evaluate the relative role played by these two feature

classes in signal reconstruction from corrupted images. Our measurements demonstrate

that this process is quickly dominated by the inferred structure of the environment, and only

minimally controlled by variations of raw image content. The inferential mechanism is spa-

tially global and its impact on early visual cortex is fast. Furthermore, it retunes local visual

processing for more efficient feature extraction without altering the intrinsic transduction

noise. The basic properties of this process can be partially captured by a combination of

small-scale circuit models and large-scale network architectures. Taken together, our

results challenge compartmentalized notions of bottom-up/top-down perception and sug-

gest instead that these two modes are best viewed as an integrated perceptual mechanism.

Author summary

Biological vision is designed to discover the structure of the environment around us. To

do this, it relies on ambiguous and often misleading information from the eyes: the

boundary of a critical object may be invisible against a background of similar appearance,

and may be overlooked in favour of the sharp contour projected by an irrelevant shadow.

It remains unclear how human vision sorts different image features according to their rel-

evance to the layout of objects within the scene. We demonstrate that vision achieves this

goal via a specialized perceptual system for object segmentation that is one and the same

with the feature extraction system: immediately after information is relayed to cortex by

the eyes, the process of reconstructing image content from local features is controlled by a

dedicated inferential mechanism that attempts to recover the underlying environmental

structure; perception is quickly organized around the operation of this mechanism, which
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becomes the primary contextual influence on image reconstruction. The integrated nature

of this perceptual mechanism defies current notions of separate top-down and bottom-up

processes, offering a fresh view of how human vision operates on natural signals.

Introduction

Consider the image in Fig 1A. During the twentieth century, knowledge of how it may be rep-

resented in early visual cortex was galvanized by the discovery that neurons respond to specific

features defining the image, such as the orientation and size of its edges and lines [1]. In its

simplest form [2], this representation may resemble the feature map in Fig 1C, where the

intensity of each location mimics the response of a human edge detector positioned within

that region of the image [3, 4].

Our current understanding of cortical feature encoding is much richer than Fig 1C, extend-

ing to gain control [11], surround modulation [12], attentional effects [13], crowding [14], and

many other phenomena [4, 15]. Nevertheless, whether these additional factors are included or

left out, there remains a fundamental problem with feature-driven representations such as Fig

1C: they fail to capture the essential structure of the underlying scene in its relevance to per-

ception and behaviour [16]. For the purpose of relating to this image in the form of scene

understanding and potential motor interaction [17–19], our representation of its content is

better captured by the map in Fig 1B: the critical boundaries are those that define the 2 human

characters, while everything else is of incidental significance [16, 20, 21].

Where and how, specifically, does Fig 1C fail in capturing Fig 1B? Consider the 4 locations

indicated by circles in C. The 2 solid circles correspond to well-defined boundaries in the phys-

ical stimulus: large luminance transitions occur at those locations in the original image (A) so

that they are richly represented in the edge map of C. On the contrary, the 2 dashed circles cor-

respond to boundaries that barely exist within the physical stimulus: locally within the original

image, there is little to indicate that a boundary is present at those locations. This is not to say,

however, that those boundaries do not exist at a different level of representation: they do exist,

but at the level of the scene representation afforded by our mind [20], as indicated by the top

green circle in Fig 1B. That specific location marks the boundary between the person in the

foreground and the landscape in the background, which is a critical demarcation for represent-

ing scene content and supporting image interpretation [22, 23]. It is, however, nearly invisible

within the edge map in C (top dashed circle). A complementary inconsistency between Fig 1B

and 1C is indicated by the red circle on the right-hand side of B: this location corresponds to

an irrelevant boundary for scene understanding (i.e., poorly represented in Fig 1B), yet it is

well-defined in the physical image (richly represented within the edge map in C, as indicated

by the solid circle on the right-hand side of that image).

How are the two representational levels cartooned in Fig 1B and 1C combined in the visual

system? Recent electrophysiological measurements from visual cortex have established that

neuronal response properties are sensitive to natural signals [18, 24], thus consolidating the

notion that cortical neurons must be viewed as adaptive devices under the control of both bot-

tom-up and top-down information [25, 26]. But how do these flexible cortical effects impact

human behaviour? In other words, what are the perceptual signatures of the neuronal effects

associated with natural stimulation? We know surprisingly little about this fundamental ques-

tion [27]. To make progress in this direction, here we deliberately focus on a simplest visual

task: reconstructing the local orientation content of a corrupted image region (Fig 1E–1G).

This choice of perceptual operation enables us to investigate early visual mechanisms using
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established low-level tools, while at the same time recasting the ensuing characterization into

the higher-level coordinates defined by the natural scene [10], so as to gauge the interplay

between the 2 representational levels.

Surprisingly, we find that human reconstruction of local image regions is almost exclusively

controlled by the kind of scene representation exemplified by Fig 1B, with only limited signa-

tures of the low-level account returned by Fig 1C. The control exerted by the object-based seg-

mentation map of Fig 1B operates very quickly (within the first 100 ms) and is not altered by

spatial attention. In combination with electrophysiological recordings of scalp signals, these

results offer a new perspective on the notion of how so-called bottom-up and top-down repre-

sentations may interface in human vision [20, 28]. They suggest that the conceptual compart-

mentalization associated with the bottom-up/top-down dichotomy may be more productively

replaced by regarding these two processing modes as intimately integrated into a single adap-

tive mechanism [25, 26, 29], possibly providing a more appropriate framework for under-

standing early visual perception in humans.

Fig 1. Mapping features from natural scenes. Intensity (brightness) on the top-down map (B) reflects saliency of perceptual object

representation within the original scene [5, 6] (A), while the bottom-up map (C) indicates edge energy content [3, 7]. We identify 4 locations

that are rich/poor on the top-down map (green/red circles in B) and/or rich/poor on the bottom-up map (solid/dashed circles in C); the two

locations indicated by dashed-green and solid-red circles in D are rich on one map and poor on the other. An oriented wavelet is inserted at

one location in congruent (E) or incongruent (F) configuration, orientation noise is added [8] (G), and observers must determine whether

probe is congruent or not [9, 10].

https://doi.org/10.1371/journal.pbio.1002611.g001
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Methods

Observers and data mass

All experiments have been approved by the CERB committee (ID470) at the University of

Aberdeen and were conducted according to the principles expressed in the Declaration of Hel-

sinki. We tested 8 naive observers (3 males); of these, 6 took part in the double-pass experi-

ments and 7 took part in the electroencephalogram (EEG) experiments. We attempted to

bring electrodes into contact with the scalp of the remaining observer; however, this was not

possible due to thick hair growth (dreadlocks) that caused high electrode noise and unreliable

contact; this observer was therefore excluded from subsequent EEG experiments immediately

after the first (unsuccessful) attempt. We collected a total of approximately 310,000 trials, of

which approximately 30,000 (>4,000 per observer) during the EEG experiments (evenly

divided between intact and cut-out scenes) and approximately 21,000 (>3,500 per observer)

during double-pass experiments. For the psychophysical experiments, this corresponds to

approximately 50 hours of data collection per observer. For the EEG experiments, 6 observers

completed 4 sessions lasting 3 hours each, while the remaining observer completed 2 sessions.

Observers were paid 9 EUR/hour for data collection in the psychophysical experiments and 20

EUR/hour for participation in the EEG experiments.

Presentation protocol and task

All scenes were rescaled to have the same contrast energy; when projected onto the CRT moni-

tor (Iiyama Vision Master Pro 500) by ViSaGe hardware (Cambridge Research Systems), they

spanned a luminance range of 4–60 cd/m2 against a gray background of 32 cd/m2 and occu-

pied (width × height) 13˚ × 20˚ or 20˚ × 13˚ (depending on whether the scene was in portrait

or landscape format) at the adopted viewing distance of 57 cm. Stimulus duration was 300 ms

except for a subset of the experiments (approximately 30% of total data mass) during which it

was deliberately reduced on a near-logarithmic scale (200, 100, 50, 30, 20, 10 ms) to study the

impact of this parameter. Before being displayed, the stimulus could be flipped around its ver-

tical axis (left-right with respect to fixation) with 50% probability (randomly and indepen-

dently selected on every trial), so that each probe location/type could appear within either left

or right hemifield with equal probability. On each trial, observers saw one natural scene con-

taining either congruent (Fig 1E) or incongruent probe (Fig 1F; see below for details on probe

design). The scene was centered on a fixation cross that never disappeared. Observers were

required to press one of two buttons to indicate whether the probe was congruent or incongru-

ent (this task was worded to them as “determine whether the orientation of the texture within

the probe is aligned with the scene, or is orthogonal to the scene”). Their response was fol-

lowed by trial-by-trial feedback (correct/incorrect) and the next trial was initiated after a ran-

dom delay uniformly distributed between 200 and 400 ms. Feedback was introduced to push

observers into their optimal performance regime so that interpretation of sensitivity (d0) mea-

surements would not be confounded by extraneous factors such as lack of motivation and/or

response bias [30] (refer to S1 Text and S3 Fig for detailed analysis of response bias effects). At

the end of each block (100 trials), observers were provided with a summary of their overall per-

formance (% of correct responses on the last block as well as across all blocks).

Primary stimulus design

Construction of bottom-up/top-down maps. Our goal was to associate each natural

image with 2 maps: the “bottom-up” map, detailing the degree of low-level edge definition

at each location within the physical image; the “top-down” map, reflecting the perceptual
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significance of each location within the image for segmenting and reconstructing the layout

of the scene. We express size as [x,y] where x is in degrees of visual angle and y is in percent-

age units of the smaller side of the natural scene (measuring 13˚); we include the latter speci-

fication to ease interpretation of how different stimulus elements relate to each other. Images

were obtained from the Berkeley Segmentation Dataset [5] (BSD500), a database that is avail-

able in the public domain and downloadable from https://www2.eecs.berkeley.edu/Research/

Projects/CS/vision/bsds/. Images were then processed by purpose-written software (Matlab)

for determining adequate probe insertion points. Except for designing the algorithm and

selecting appropriate initialization parameters, there was no human intervention, and the

algorithm was fully automated. All scenes were converted to gray-level images. The algorithm

built 2 maps from each scene. The bottom-up map was constructed by processing the image

with a Sobel-like differentiation filter [7] measuring (active area) * [0.9˚,7%]; an example is

shown in Fig 1C where filter output (normalized to range between 0 and 1) scales with

surface intensity (increasing from dark to bright). The top-down map was constructed by

combining segmentations from different BSD500 participants. Lines within individual

segmentations were first thickened via blurring/thresholding to measure * [0.5˚,4%] (line

width) and subsequently combined across participants by assigning to each pixel the propor-

tion of participants for whom that pixel corresponded to a line. An example is shown in Fig

1B where pixel value (ranging between 0 and 1) scales with surface intensity: darkest value

(0) for pixels not marked by any participant, brightest value (1) for pixels marked by all

participants.

Identification of target insertion points. The algorithm for selecting insertion points

was designed to identify 4 points per image, one for each combination of rich versus poor on

top-down versus bottom-up maps: an insertion point corresponding to a poor location on the

top-down map and a rich location on the bottom-up map, which we refer to as poor/rich for

top-down/bottom-up content; 3 more points corresponding to poor/poor, rich/poor, and

rich/rich. For each nonzero pixel on the top-down map, we computed the elongation of non-

zero pixels within a square region (sized [1.6˚,12%]) centred on that pixel. Elongation ranges

between 0 (circle-like) and 1 (line-like); it specifies the half-focal separation of the ellipse that

takes the same second-moments as the analyzed region, which we refer to as the “best-fitting”

ellipse. We then excluded all pixels with elongation <0.9 and intensity <0.1 on the bottom-up

map (i.e., those that did not conform to an elongated boundary), as well as those located near

the edge of the image (within * [2˚,15%] from edge). The remaining pixels were labelled top-

down “rich” if their value on the top-down map was 1, or “poor” if it was<1. We then selected,

among top-down rich pixels, the pixel corresponding to the smallest value on the bottom-up

map. We call the latter value v. We also selected, among top-down poor pixels, the pixel corre-

sponding to the value on the bottom-up map that was closest to v. These two selections were

labelled respectively rich/poor and poor/poor for top-down/bottom-up content. We then

selected, among poor pixels on the top-down map, the pixel corresponding to the largest value

on the bottom-up map. We call the latter value V. We also selected, among rich pixels on the

top-down map, the pixel corresponding to the value on the bottom-up map that was closest to

V. These two selections were labelled respectively poor/rich and rich/rich for top-down/bot-

tom-up content. We further imposed the constraint that the 4 selected insertion points should

not be within [1.6˚,12%] of each other to reduce potential overlap of the image elements tar-

geted by the different insertions. Once an insertion point is selected, we identified the orienta-

tion of the best-fitting ellipse to non-zero pixels within a square [0.8˚,6%] region centred on

that point, and labelled it as the local congruent orientation. Of the 500 images within BSD500,

53 did not contain enough pixels with characteristics that satisfied the above constraints, and

were therefore excluded.
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Probe design and insertion. Our goal was to generate a low-level stimulus that could be

smoothly grafted into the natural scene, enabling us to retain full control over the statistical

properties of the probe while at the same time embedding it within a complex stimulus (i.e. the

natural scene) for which we lack the same degree of control. To achieve this goal, we build

upon prior work with both isolated [8] and embedded [9, 10] low-level elements. Probes (see

example in Fig 1G) consisted of 16 superimposed pseudo-Gabor wavelets at 16 different orien-

tations uniformly spanning the 0-π range, each taking a random phase. Carrier spatial fre-

quency was fixed at *1 cycle/degree. The envelope was constant over a circular region

spanning * [1.6˚,12%] (diameter); outside this region, it decreased smoothly to 0 following a

Gaussian envelope of SD * [0.1˚,0.8%]. The 16 contrast values assigned to the different wave-

lets on each trial are denoted by vector s[q] (q = 1 for congruent probe, q = 0 for incongruent

probe; see next section for more details). With relation to this vector representation, the con-

gruent orientation corresponds to the fifth entry into the vector; in actual image space, the

congruent orientation is selected as the best match to the orientation associated with the inser-

tion point (see above), while the incongruent orientation is always orthogonal to the congruent

orientation. The probe was smoothly inserted (by using wavelet envelope to control probe/

image ratio contribution to image) into the local region of the natural scene identified by the

automated procedure detailed above (see examples in Fig 1E and 1F for congruent and incon-

gruent probes respectively). Probe insertion density gradually declined away from fixation (see

S2A and S2B Fig), partly as a result of stimulus geometry.

Injection of orientation noise. Our goal was to perturb the orientation content of the

probe via random fluctuations of different orientation components, for the purpose of subse-

quently establishing the link between specific fluctuations in the stimulus on the one hand,

and the associated response choices made by human observers on the other hand (psychophys-

ical reverse correlation [31]). On each trial s[q] = t[q] + n[q]: the contrast distribution across

orientation consisted of a target signal t (deterministic) summed onto a noise sample n (statis-

tically defined and therefore different on every trial). The target signal vector t[q] consisted of

0’s everywhere except the fifth entry when q = 1 (congruent probe) or the thirteenth entry

when q = 0 (incongruent probe), which was assigned a value denoted by ρ (target intensity).

Each entry of the noise vector n followed a Gaussian distribution with mean 3% (contrast

units) and SD 0.7% clipped to ± 4 SD. We adjusted ρ individually for each subject to target

threshold performance; when expressed as multiple of noise mean, ρ was approximately 4

(mean across observers; equivalent to approximately 12% contrast). When the task was partic-

ularly challenging due to specific manipulations (e.g., extremely short durations), noise was

removed (n = 0) and ρ * 18% (contrast units); this large SNR (effectively1) was applied on

approximately 20% of total data mass to ensure that overall performance was above chance

(d0>0).

Spatial cueing

We designed a cueing paradigm to manipulate spatial attention so that observers were given

the opportunity to deploy attention to the local probe on some trials but not others (each trial

being of other type with equal probability). On “precue” trials, the main stimulus described

above was preceded by a spatial cue (duration 100 ms) consisting of a blob (defined by probe

envelope and therefore matched to probe size) that colocalized with the probe (see S1 Video);

the interval between cue and main stimulus was uniformly distributed between 150 and 300

ms. On “postcue” trials, the same cue was presented but it followed the main stimulus (after

an interval specified using the same parameters adopted for precue trials). Under particularly

challenging task conditions (large gaps, short durations, power-only stimuli), we only adopted
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the precue condition to help performance maintain above-chance levels. Spatial cueing was

not adopted with zooming stimuli (see below for detailed description) to avoid introducing

additional dynamic elements to an already dynamic stimulus; cueing was redundant in this

case because the zooming process implicitly cues probe location.

Scene manipulations

The main effects reported in this study are measured with scenes that, except for probe inser-

tion, retain their natural characteristics. It is important to determine exactly which of those

many characteristics play a role in driving the top-down effect [32]. To achieve this goal, we

manipulated the global appearance of the scene.

Lowpass/highpass filtering. Lowpass filtering attenuated power uniformly for all fre-

quencies above 0.5 cycles/deg by approximately 70%; highpass filtering reduced power pro-

gressively for all frequencies below 7 cycles/deg, starting at approximately 10% attenuation for

7 cycles/deg and progressing to 100% attenuation for frequencies below 0.5 cycles/deg (those

preserved by the lowpass filter). A circular region of size * [3.1˚,24%] (diameter of tapered

envelope) immediately surrounding the probe was left intact.

Warping. Warping was applied by first selecting 40 lattice points uniformly spanning the

scene with the exclusion of those within [3.2˚,25%] of the probe insertion point. The latter

exclusion was adopted to ensure that the warped image would merge smoothly with the circu-

lar region immediately surrounding the probe, which was left intact as detailed above for fil-

tered images. The remaining points served as centers for 2 image warping manipulations:

swirling and lensing. Swirling consists of local rotation controlled by an angle that depends on

distance from center. Lensing consists of an exponential distortion of local coordinates not dis-

similar from converting linear to log coordinates to emphasize values near the origin. Each

selected center could either be swirled or lensed, the distortion chosen randomly and indepen-

dently for each center, but only performed once for a given scene and insertion point (i.e., the

warped scene did not change from trial to trial). The degree of warping was controlled by

allowing distortions to extend over a limited region surrounding each center of application;

the region was defined by a Gaussian envelope with standard deviation [0.6˚,5%] for weak

warping and [1.2˚,10%] for strong warping.

Cut-out/Lines. For the “lines” manipulation, the top-down map was thresholded (>0) to

binary, i.e., all boundaries were assigned the largest luminance value (60 cd/m2) if they had

been selected by at least 1 participant in BSD500. For the “cut-out” manipulation, each region

defined by those boundaries was assigned a constant luminance value chosen from a predeter-

mined set of values uniformly spanning the entire luminance range (4–60 cd/m2) and ran-

domly permuted. This means that 1) no two regions took the same luminance value, ensuring

that different regions would never merge; and 2) the luminance difference between any two

regions was above visibility threshold. Similarly to warping, randomization was only applied

once for any given natural scene, and the same cut-out scene was then used on multiple trials.

For these 2 manipulations, the region surrounding the probe was not preserved. The latter

detail is important particularly in relation to the cut-out manipulation, because it ensures that

all potential low-level cues in the original scene (including second-order ones) had been elimi-

nated (see S1 Text).

Phase/power scrambling. For each scene in the database, we generated an image consist-

ing of white noise (each pixel being independently assigned a random luminance value). We

then replaced the phase spectrum of the scene with that from the white-noise image to gener-

ate power-only scenes, or we replaced the power spectrum to generate phase-only scenes.

Similarly to filtered scenes, the region surrounding the probe was preserved.
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Zooming stimuli

To study the spatiotemporal characteristics of scene-probe interactions, we designed “zoom-

ing” variants of the stimulus where a smooth transition is enacted between a probeless scene

and a sceneless probe. We generated a zooming envelope for each probe insertion point via

thin-plate spline warping [33] of reference points specified around scene edge and probe edge.

This envelope was constructed so that it would toggle between 2 views: one in which most of

the scene was visible but the probe was not visible, and one in which only the probe region was

visible. All edges of visible regions were tapered. In the zoom-in variant, the envelope smoothly

transitioned from the scene-without-probe image to the probe-without-scene image over 30

frames (total duration 300 ms) or 10 frames (100 ms) in the “long” and “short” configurations,

respectively. The opposite direction was applied for the zoom-out variant. Please refer to S2

Video for examples of both zoom-in/zoom-out and long/short stimuli.

Gap stimuli and short stimulus presentations

The zooming stimulus compounds spatial with temporal manipulations. We studied these 2

factors separately by either introducing a gap between probe and scene (spatial manipulation)

or decreasing stimulus duration (temporal manipulation). For spatial gaps, the probe was sur-

rounded by a circular mean-luminance region smoothly merging into the scene and extending

out to a diameter of (in units of probe diameter size) 1.25, 1.5, 2.5, and 5. The discrimination

task was particularly challenging for larger gap sizes (covering up to approximately 20% of

the area occupied by the scene), requiring that noise be removed from the probe in order to

support above-chance performance. Some observers were, nevertheless, unable to perform

above chance under those conditions; those instances were excluded from the individual-

observer analysis by removing all log-ratios associated with d0 � 0. A similar issue arose in

connection with very brief stimuli (10–20 ms); again, those instances were excluded from the

composite analysis. We nevertheless display estimates for all observers because, for a given set

of conditions across which log-ratios were computed (e.g., 10 ms and 20 ms), all observers

returned a viable estimate for at least one of the conditions within that set (e.g., 10 ms or 20

ms).

Orientation tuning

Above-chance performance in the congruent/incongruent task requires observers to assign

perceptual weight to different orientation channels in a nonuniform fashion; the weight profile

can be summarized in the form of an orientation tuning function. To derive an empirical esti-

mate of tuning characteristics, we capitalized on the presence of orientation noise within the

probe combined with the perceptual coupling between specific noise perturbations and the

trial-by-trial response generated by the human observer [8, 31, 34].

Derivation of tuning functions. To maximize data mass, we pooled noise samples from

all configurations that demonstrated top-down effects: intact, inverted (upside-down), cut-

out, highpass, phase-only, intact/cut-out during EEG experiments (total of approximately

140,000 trials). Each noise sample is denoted by n[q,z]: the sample added to congruent (q = 1)

or incongruent (q = 0) probe on a trial to which the observer responded correctly (z = 1) or

incorrectly (z = 0). The corresponding orientation tuning function p is derived via the stan-

dard formula for combining averages from stimulus-response classes [34]:

p ¼ hn½1;1�i þ hn½0;0�i � hn½1;0�i � hn½0;1�i

where hi is average across trials of the indexed type. Under some commonly adopted
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assumptions regarding the nature of sensory transduction [31, 34], p provides a description of

the “perceptual weight” assigned by human observers to different parts of the stimulus. For

example, a peak corresponding to the fifth entry of vector p indicates that observers were more

likely to report the probe as being “congruent” when noise orientation energy happened (by

chance) to be more prominent within the orientation range corresponding to the congruent

orientation (fifth entry into vector n). To increase measurement SNR, the tuning functions

have been symmetrically averaged around congruent/incongruent coordinates under the rea-

sonable assumption that observers show no bias either clockwise or counterclockwise of the 2

orientations defining the task. The validity of this assumption (which is a logical necessity-

given stimulus/task symmetry) was verified empirically by attempting to detect differences

between values immediately clockwise and counterclockwise of the 2 reference orientations

(congruent/incongruent); all attempts failed without approaching statistical significance.

Retuning index. Under the simplest signal detection theory (SDT) model [35] that is

applicable to the problem at hand, the expected sensitivity of the orientation tuning function is

controlled by the differential energy output to congruent and incongruent signals, normalized

by the overall energy output to signal plus noise: [p(13) − p(5)]2 / Sp2 (entries 5 and 13 into

vector p correspond to congruent/incongruent orientations). This metric is designed to be� 0

(effectively >0) to enable log-ratio computation.

Retuning model. Stimulus image (2D) S was generated using specifications identical to

those adopted in the psychophysical experiments (except for lower SNR) and processed by a

quadrature-pair operator:

hS;Wðft; 0Þi
2
þ hS;Wðft; 1Þi

2

where h,i is 2D inner product (also termed Frobenius) and filter W(ft, p) is a Gabor wavelet of

spatial frequency f oriented along congruent (t = 1) or incongruent (t = 0) axes at even (p = 0)

or odd (p = 1) phases. We define the output of this operation rt. The decision variable gener-

ated by the model is
r1

r1þr0
, i.e., the output from the congruent-oriented operator normalized by

the summed output of congruent and incongruent operators; when it exceeds a prespecified

threshold value, the model responds “congruent,” otherwise it responds “incongruent.” The

threshold value is the average decision variable across 8,000 trials, half with S containing a con-

gruent signal and half an incongruent signal (unbiased criterion). In the “Poor” state f1 = 4 and

f0 = 21 in multiples of the spatial frequency assigned to the target signal carried by S; in the

“Rich” state f1 = 1 and f0 = 3. In words, the model filter aligned with the congruent signal

undergoes Poor!Rich sharpening from 4 × broader than the signal (mildly tuned) to match

the signal (f1 = 1), while the model filter aligned with the incongruent signal sharpens from

virtually untuned (21 × broader than congruent/incongruent signal) to mildly tuned

(3 × broader).

Internal noise estimation

We performed additional experiments specifically designed to enable internal noise estimates

using double-pass protocols [36, 37]. Observers collected 100-trial blocks during which the

second 50 trials (51–100) were identical to the first 50 trials (1–50) except for random permu-

tation of their order [38]. The degree to which observers reproduce their own responses to the

first pass of 50 trials when those trials are re-presented during the second pass is controlled by

their intrinsic variability [39]. Under the standard SDT model [35] where this variability is

captured by a late additive internal noise source, the intensity of the latter can be estimated by

reverse application of the SDT model to the empirically measured values of percent correct

and percent agreement [36] (% of trials on which observers gave the same response to 2
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identical passes). Because participants demonstrated an appreciable amount of response bias

(see S3 Fig for details), the procedure originally developed for the unbiased case [36] was

adapted to the yes–no single-interval protocol used in this study via application of established

techniques [34, 40].

Segmentation algorithms

We applied the following 6 computer vision algorithms from published literature: visual

saliency [3] (Itti-Koch), graph-based visual saliency [41] (GBVS), hierarchical segmentation

[5] (gPb-HS), normalized cuts [42] (nCuts), contour detection using superpixel-based candi-

dates and hierarchical visual cues [43] (HVC), conditional random fields as recurrent neural

networks [23] (CRF-RNN). HVC and gPb-HS had already been applied to BSD500; for those,

we obtained results from the algorithm creators. For the remaining models, we implemented

them on our hardware and fed them images from BSD500. For some of these algorithms, the

output maps are unsuitable for determining whether model output scales with the graded sen-

sitivity measurements via correlation due to the following issues: 1) the output is binary rather

than continuous; 2) the identified boundaries are excessively thin (1-pixel width) so that a

specific probe insertion point may fail to return a large value on the model map due to slight

misregistration, even though the model has effectively labelled that point in the image as

belonging to an identified boundary. These issues arose in connection with nCuts, gPb-HS,

and CRF-RNN. We thickened the boundaries generated by these models via convolution with

an averager of size *[0.13˚,1%] (gPb-HS), *[0.4˚,3%] (nCuts), or *[0.5˚,4%] (CRF-RNN).

We verified that the specific choice of thickening parameter/method did not impact the signifi-

cance of the correlation between model output and human sensitivity. For the purpose of com-

puting rich/poor log-ratios, model output is classified as rich if it exceeds its median value

across all probe insertion points, and poor otherwise.

EEG

Stimulus adjustments. Stimulus/task design was very similar to that described above for

experiments not involving neuroimaging except for 3 important adjustments geared towards

the EEG: 1) because our focus was on probe-specific waveforms obtained via differential con-

tralateral-ipsilateral activity, we replaced the CRT monitor with a wide-field LCD monitor

(active area 88 × 50 cm, luminance range 0–200 cd/m2) to maximize probe eccentricity via

approximately 1.8 × scaling (in degrees) of the visual stimulus (see [44] for advantages/disad-

vantages associated with using TFT monitors in EEG measurements); 2) we cued probe loca-

tion via slight red tinting (1:4 tint:image ratio) to avoid asynchronous cue presentation (the

latter design, used in the behavioural experiments, would result in overlapping visual evoked

potentials (VEPs) from cue and stimulus, reducing interpretability of the EEG waveform [44]);

3) the key press (immediately followed by feedback lasting 100 ms) triggered presentation of

the next stimulus after a random interval uniformly distributed between 1.5 and 2 seconds

(this longer interval was adopted to avoid ERP overlap across trials).

Data acquisition/analysis. EEG was recorded from 32 active electrodes (10/20 layout) at

a sampling rate of 256 Hz by a BrainAmp DC-amplifier (Biosemi). Data analysis was per-

formed with Fieldtrip; we confirmed that virtually identical results were returned by Eeglab.

We extracted 1-second segments (re-referenced to Cz) from each trial starting at 200 ms before

stimulus onset. Baseline was subtracted from the 200-ms interval preceding the stimulus. We

applied 2 different (causal [45]) filtering regimes for highpass/lowpass cut-offs: 1/20 Hz and

0.5/40 Hz. To steer our analysis towards effects with clear contralateral/ipsilateral characteris-

tics, we linearly rescaled waveforms from individual trials by the distance of the probe from
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the vertical meridian before averaging across trials (the greater the distance, the larger the

waveform). The effects we report do not depend on this procedure, as demonstrated by the

results obtained with artefact rejection for which rescaling was not applied. When artefact

rejection was applied, it involved an automatic Fieldtrip routine that excluded EOG, muscle,

and jump artefacts with conservative parameters that led to a high trial rejection rate of

approximately 19%. We confirmed that more lax parameter choices (resulting in lower rejec-

tion rates) produced equivalent results. We do not detail this procedure further because arte-

fact rejection made no difference to the primary results. After trial averaging, we obtained 4

waveforms (1 for each probe insertion type) from each electrode in each observer and normal-

ized the traces separately to have equal RMS. Further data analysis involved simple waveform

subtractions and/or pooling as described in the main text. Electrodes Oz/Fz are not included

because our focus is on lateralized activity [46].

Confirmatory experiment with cut-out images. Except for replacing natural scenes with

their cut-out variants to enhance the conceptual significance of the results, this experiment

was deliberately conducted in such a manner as to match the original experiment as closely as

possible. The same observers who participated in the original experiment were asked to attend

the same number of 3-hour sessions in order to match data mass, resulting in almost identical

number of trials for the 2 conditions (14,300 versus 15,700 for natural and cut-out scenes,

respectively). All details of the experimental protocol were matched (within margin of inevita-

ble differences such as exact electrode placement, quality of electrophysiological signal, time

of day, and similar factors), and identical analysis tools were applied to obtain the processed

results.

Statistical analysis

We adopt a combination of confidence intervals and p-values returned by two-tailed Wilcoxon

signed-rank tests to avoid the limitations associated with p-values alone [47, 48]. There are

only a few instances in this study where these two approaches are in conflict; we highlight

those instances explicitly and investigate them further. The experiments were designed so that

the null hypothesis adopted for the Wilcoxon tests would be transparently and unambiguously

defined as involving no difference between 2 measurements of the same variable under 2 dif-

ferent conditions. In general, the primary effect reported in this study (top-down modulation

of sensitivity) is sufficiently large and robust to eliminate any concern as to its statistical reli-

ability. To verify robustness/replicability, we also adopt a confirmatory approach where we

tackle the primary result from multiple directions.

Results

Image reconstruction is controlled by top-down information

We grafted an oriented wavelet into a natural scene (Fig 1E and 1F), and asked human observ-

ers to determine whether its orientation was congruent (E) or incongruent (F) with the struc-

ture locally defined by the scene [10] (see Methods). The orientation content of the wavelet

was disrupted via the addition of orientation noise [8, 10] (Fig 1G). This manipulation engaged

observers in active image reconstruction of a locally corrupted signal and supported noise-

based characterization of relevant phenomena using state-of-the-art psychophysical tools [8,

31].

The grafted wavelet, which we refer to as the “probe” stimulus, could be inserted at 1 of 4

different locations within each image from a database of approximately 450 scenes. The 4

insertion points represented all combinations of poor versus rich locations within 2 maps

derived from the natural scene, which we refer to as the “bottom-up” and “top-down” maps,
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and were selected across the image database so that map values could be independently manip-

ulated (S1 Fig). The “bottom-up” map (Fig 1C) reflects energy content as returned by common

edge detection algorithms [7] (see Methods); designated poor/rich locations on this map are

indicated by dashed/solid circles. The “top-down” map (Fig 1B) reflects consensus across

human participants when asked to segment individual scenes by marking relevant boundaries

as part of the Berkeley Segmentation Dataset project [5] (BSD500). Rich regions (indicated by

green circles) denote boundaries marked by all participants, while poor regions (red circles)

were selected by some participants but not others (see Methods). We rely on the “top-down”

map as a proxy for the segmented representation of the scene afforded by the human visual

system [5, 6]. Our choice of the terms “bottom-up” and “top-down” was motivated by lack of

better options [30, 49], rather than accurate descriptive purposes. As we discuss later in the

article, we do not think these terms are adequate for describing the role played by the informa-

tion contained within the maps, but they are nevertheless useful as labels for facilitating exposi-

tion of the results.

Fig 2A–2D show small square regions around various probe insertion points from ran-

domly selected scenes. From simply looking at these images, it is apparent that the examples in

Fig 2A and 2C, corresponding to poor locations on the bottom-up map, contain visibly less

Fig 2. Performance is driven by top-down map. A-D show collections of image regions (approximately 3 × probe size) surrounding

probe insertion points (with embedded congruent probe) at rich/poor locations on top-down map (A-B versus C-D) or bottom-up map (B,

D versus A,C). The poor!rich transition is perceptually evident across the bottom-up map (left! right). E plots sensitivity (d0) for poor

(y axis) versus rich (x axis) locations on the bottom-up (black) or top-down map (green) in individual observers (1 symbol per observer),

as well as precue (y axis) versus postcue (x axis) configurations (magenta). F-G plot sensitivity rich/poor log-ratios for top-down (y axis)

and bottom-up (x axis) comparisons when scenes were upright or inverted (black or red in F) and precued or postcued (black or

magenta in G). Error bars plot ±1 SEM. Coloured diagonal segments in E plot 95% confidence intervals for data projected along

negative diagonal. Horizontal/vertical segments near x/y axes in F-G plot confidence intervals for bottom-up/top-down log-ratio effects;

light-coloured contours indicate data spread for visualization aid. Data for this figure is available from S2 Data.

https://doi.org/10.1371/journal.pbio.1002611.g002
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edge-contrast than those in Fig 2B and 2D, corresponding to rich locations on the bottom-up

map. This is not surprising: it is the criterion by which insertion points were selected in the

first place with reference to the bottom-up map (see Methods). It is more interesting to com-

pare, by the same token of summary visual inspection, the collection in Fig 2A and 2B, corre-

sponding to rich locations on the top-down map, versus that in Fig 2C and 2D, corresponding

to poor locations on the top-down map: there is no obvious difference between the 2 collec-

tions at this level of inspection. In other words, if we consider the most immediate and percep-

tually obvious content of the image around the probe, the difference is much greater as we

move along the bottom-up map (left to right in Fig 2A–2D) than it is as we move along the

top-down map (top to bottom). In fact, there seems to be virtually no change of statistical

properties for the latter transition.

It therefore comes as a surprising finding that, when we measure how well human observers

are able to reconstruct the orientation of wavelet signals inserted at those locations, their per-

formance displays the opposite trend: there is no difference in sensitivity for rich (x axis in Fig

2E) versus poor (y axis) locations on the bottom-up map (black symbols scatter around diago-

nal equality line at p = 0.74), while there is a marked difference for the poor–rich comparison

on the top-down map (green symbols fall below equality line at p< 0.01; see also confidence

intervals indicated by black/green diagonal segments). This effect is plotted more compactly in

Fig 2F (black symbols) in the form of rich/poor log-ratio values: for the bottom-up comparison

(x axis), log-ratios scatter around 0 (corresponding to no difference between rich and poor val-

ues), while for the top-down comparison (y axis) they all fall above 0 (rich > poor; p< 0.01;

see confidence interval indicated by black segment near y axis). It appears that the ability of

the human visual system to extract local orientation signals depends greatly on whether those

signals correspond to richly versus poorly represented boundaries within the top-down map,

and not at all on whether the boundaries are rich or poor on the bottom-up map (see also [50,

51]), even though visual inspection of those local boundaries demonstrates no difference for

the former comparison (Fig 2A and 2B versus Fig 2C and 2D) and an easily perceptible differ-

ence for the latter (Fig 2B and 2D versus Fig 2A and 2C).

Top-down effects are reduced when scene intelligibility is degraded

We carried out an extensive series of additional experiments to determine whether the top-

down effect is robust and how far it generalizes across manipulations of cognitive factors and

scene characteristics. We found that it does not require semantic labelling of scene content

(it is unaffected by image inversion [52, 53] or contrast reversal [54], see red symbols in Fig

2F and S1 Text), operates independently of spatial attention (it is unaffected by spatial cue-

ing, see Fig 2G, S1 Text and S1 Video) but does depend on specific manipulations of various

image properties such as spatial frequency (it is retained with highpass but lost with lowpass

scenes, see blue/red symbols/confidence intervals in Fig 3C), orientation (it is reduced by

image warping, see Fig 3D–3F), object-boundary definition (it is retained with cut-out scenes

but lost when object boundaries are defined solely by lines, see blue/red symbols/confidence

intervals in Fig 3I) and others (see S1 Text). For example, although the top-down effect is

retained with highpass-filtered images, its magnitude is smaller than observed with undis-

torted scenes (green symbols in inset to Fig 3C fall above diagonal equality line at p< 0.01).

Similarly, although this effect is measurable for cut-out scenes, its magnitude is again smaller

than observed with intact images (green symbols in inset to Fig 3I fall above equality line at

p< 0.03).

Interestingly, under some conditions (undistorted scenes) we only observe a top-down

effect (Fig 2F), under other conditions top-down and bottom-up effects coexist (highpass
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scenes), and finally there are conditions for which only the bottom-up effect is observed (low-

pass scenes; please refer to S1 Text for detailed statistics including outlier detection). The top-

down effect is therefore not a trivial inevitable consequence of task/probe design, and our mea-

surement protocols are adequate for exposing both top-down and bottom-up effects: when

one is not observed, this reflects a genuine lack of contribution from the corresponding infor-

mation source, rather than failure on the part of our methods to resolve its presence.

We summarize the results of all image manipulations in Fig 4: whenever the natural scene

is manipulated in some way, whether by warping its orientation content (purple/blue), filtering

its spatial frequency structure (yellow/orange), or artifically perturbing its segmentation

Fig 3. Scene manipulations may eliminate top-down effects and/or produce bottom-up effects. Natural

scenes were highpass/lowpass filtered (A-B), warped a bit or a lot (D-E), and converted to cut-out or line

versions (G-H). C,F,I are plotted to the conventions adopted in Fig 2F and 2G; insets plot top-down effects for

specific comparisons. Data for this figure is available from S2 Data.

https://doi.org/10.1371/journal.pbio.1002611.g003

Object segmentation controls image reconstruction from natural scenes

PLOS Biology | https://doi.org/10.1371/journal.pbio.1002611 August 21, 2017 14 / 32

https://doi.org/10.1371/journal.pbio.1002611.g003
https://doi.org/10.1371/journal.pbio.1002611


content (green/red), the top-down effect is consistently reduced (data points shift downward

towards origin), to the extent that it may be entirely eliminated (red/cyan/yellow). This is not

to say that the full natural appearance of the image is necessary to observe top-down effects:

cut-out scenes, although still interpretable as containing natural elements, do not “look” natu-

ral. In general, however, top-down effects were reduced for a number of image manipulations,

indicating that their origin involves various aspects of natural scene content. Fig 4 also illus-

trates that top-down effects were not related to the absolute difficulty of the discrimination

Fig 4. Summary of image manipulations. Top-down (y axis) and bottom-up (x axis) effects are plotted for all scene manipulations

averaged across observers (each symbol shows average for the indicated configuration, ovals plot ±1 SD across observers). Symbol size

scales with absolute efficiency [35] (directly proportional to d0 and inversely proportional to stimulus SNR). Data for this figure is available

from S2 Data.

https://doi.org/10.1371/journal.pbio.1002611.g004
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task (efficiency is indicated by symbol size; there does not appear to be any lawful relationship

between symbol size and symbol position within the graph).

Top-down effects are ultrafast and spatially distributed

Feedback interpretations of top-down effects [55] may lead to the expectation that these effects

should depend on the temporal order of information accrual from the probe in relation to the

surrounding natural scene [56]. We tested this prediction by designing “zooming” variants of

our stimulus, where a smooth transition was enacted between a probeless scene and a sceneless

probe for any probe location and type (Fig 5A–5D; see Methods and S2 Video). We found

that, although the spatiotemporal relationship between scene and probe enhances absolute

sensitivity in the direction of scene analysis facilitating probe analysis (blue symbols in Fig 5E),

the qualitative operation of the system in relation to the top-down/bottom-up differential

effect is independent of spatiotemporal dynamics (Fig 5F and 5G).

We also investigated spatial and temporal factors independently, rather than compounded

in a zooming stimulus. To study space, we inserted a gap between the probe and surrounding

scene (Fig 6B–6E); we found no impact on top-down effects up to large gaps (Fig 6F and 6G),

indicating that the origin of the top-down signal is spatially global. To study time, we varied

Fig 5. Scene-probe dynamics impacts absolute sensitivity but not differential effects. Zooming stimuli involve

smooth transitions from scenes without probes (leftmost icons in A-D) to probes without scenes (rightmost icons) in

either scene-to-probe “zoom-in” direction (left to right in A-D) or probe-to-scene “zoom-out” direction (right to left). E plots

sensitivity (d0) for zoom-in (y axis) versus zoom-out (x axis) configurations (blue symbols) and long-duration (300 ms,

x axis) versus short-duration (100 ms, y axis) stimuli (red) using conventions similar to Fig 2E. F-G plot corresponding

log-ratios using conventions similar to Fig 2F and 2G. Data for this figure is available from S2 Data.

https://doi.org/10.1371/journal.pbio.1002611.g005
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stimulus duration and found that the perceptual system becomes gradually dominated by top-

down information very early in the processing pipeline (Fig 6H, see also inset), to the extent

that the initial dynamics of top-down control over bottom-up information may be sufficiently

fast (< 30 ms) to approach the limit of reliable empirical characterization using psychophysical

Fig 6. Top-down effect is spatially global (F) but reduced at ultrashort durations (H). F plots d0 log-ratios

for bottom-up (black) and top-down (green) effects as a function of gap size (x axis) for spatial gaps of differing

size between probe and scene (A-E), pooled across observers. Red trace plots overall d0. Shading shows ±1

SEM. G plots log-ratios for individual observers (conventions similar to Fig 2F) pooled separately from small

(gap < probe, blue) and large (gap > probe, magenta) gap sizes. H-I show similar measurements for varying

stimulus durations, short (< 30 ms, blue) and long (�30 ms, magenta). Inset to H replots green data with

rescaled y axis to emphasize positive trend (solid line shows best linear fit, dashed lines 95% confidence

intervals for fit). Vertical/horizontal arrows in G,I point to average y/x values for effects associated with

significant p-values (<0.05) from Wilcoxon signed-rank test for different than 0 (p-values are indicated next to

arrow). Thin blue segments near axes in I show confidence intervals for blue dataset after removal of data

point at bottom-right of panel. Data for this figure is available from S2 Data.

https://doi.org/10.1371/journal.pbio.1002611.g006
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methods (see S1 Text for detailed analysis of the bottom-up effect suggested by the black trace

in Fig 6H at 10–20 ms). These limitations are exacerbated by known conceptual difficulties

with the interpretation of stimulus duration as reflecting processing time [57], whether in the

presence or absence of a postmask (see S1 Text for detailed justification of the deliberate choice

to avoid a postmask for the duration experiments [58, 59]). In the next section, we gain further

insight into the ultrafast range via electrophysiological measurements.

Electrophysiological markers of bottom-up/top-down effects

The evidence presented above exposes signatures of a process that is spatially delocalized (Fig

6F and 6G) but highly localized in time (Fig 6H and 6I). The appropriate neuroimaging tool

for probing these characteristics is the EEG with associated VEP [44]. Unsurprisingly, the bulk

of EEG activity was measured from the occipital electrodes (black circles in Fig 7B) in both

hemispheres (blue/red contours). Our focus is not on the VEP per se, but on the probe-specific

component of the VEP; for this reason, we render the analysis probe-selective by computing

the difference between the VEP contralateral to probe location (red contours) and its ipsilateral

counterpart [46] (blue contours). Fig 7A plots the time course of these two waveforms pooled

across the occipital electrodes, alongside their difference (green trace). With simple multisti-

mulus arrays, the occipital contra-minus-ipsi waveform has been termed negativity 200-ms

posterior contralateral (N2pc) [46] or posterior contralateral negativity (PCN) [60]. The green

waveform we measure here must bear some relationship to these lateralized evoked potentials;

however, our stimulus consists of a complex natural scene (as opposed to stereotyped search

arrays [46, 60]), so that it is not necessarily the case that we should observe measurable differ-

ences between contralateral and ipsilateral waveforms. The fact that we do observe an idiosyn-

cratic difference specific to a probe embedded within a natural scene is, in itself, a noteworthy

result.

The amplitude of the difference waveform is nearly 1 order of magnitude smaller than the

original waveforms (compare scaling of y axis for green versus black labels in Fig 7A), and

modulates primarily within 2 time epochs roughly corresponding to 50–150 ms and 250–350

ms. To gauge the relative amplitude of the difference waveform against the amplitude of the

original waveforms across the scalp, we plot a related quantity in Fig 7B (green contours). In

relative terms, the difference waveform is most pronounced within central (magenta) and

frontal (orange) electrodes. When we examine the time course of the relevant waveforms for

these 2 electrode regions, however, we find that the difference waveform modulates only

within the late phase (green traces in Fig 7C and 7D). Therefore, although the difference mod-

ulation is comparatively larger within central/frontal than occipital electrodes, the bulk of this

modulation happens around stimulus disappearance, possibly reflecting offset responses and/

or decisional/memory processes [61, 62]. In contrast, the difference waveform returned by

occipital electrodes presents an early modulation more consistent with previous measurements

of sensory-related activity [63] and clearly connected with visually-specific responses to stimu-

lus information [64].

Based on the above observations, we focus our subsequent analysis on the 2 EEG processes

that appear to dominate the electrophysiological measurements: an early process occurring

within the occipital region (Fig 7A), possibly connected with what has been termed N1pc in

previous studies [65], and a later process occurring within the central/frontal region (Fig 7C

and 7D), possibly connected with the sustained posterior contralateral negativity (SPCN)

waveform [61] (both may be at least partly connected with the N2pc in light of its potentially

multicomponent nature [66] and variable latency [67]). Because our interest is in differential

poor/rich effects for probe insertion, we compute contra-minus-ipsi waveforms separately for
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rich and poor locations, subtract rich from poor, and plot the result across all electrodes and

time points for both top-down and bottom-up maps in Fig 7E and 7F respectively. These mod-

ulations are, therefore, 2 steps removed from the VEP: first by taking the difference between

contralateral and ipsilateral waveforms to expose probe-specific effects [64], and further by

Fig 7. Top-down effects operate quickly within occipital cortex. A,C,D plot evoked potentials from occipital, central, and frontal

electrodes marked by black, magenta, and orange circles in B. Blue/red trace shows waveform from electrodes ipsilateral/

contralateral to probe location; green trace shows contralateral-minus-ipsilateral difference (shading shows ±2 SEM). Contour plots

in B show interpolated scalp distribution of potential RMS for ipsilateral/contralateral waveforms (blue/red), as well as the ratio

between contra-minus-ipsi waveform RMS and overall (ipsi + contra) RMS (green). E-F show the difference between rich and poor

probe insertions for contra-minus-ipsi vaweform with respect to top-down (E) and bottom-up (F) maps, separately for the different

electrodes (indexed on the y axis as pairs from which individual rows were computed), in the form of Z scores across participants. G

plots RMS-normalized modulations (see Methods) in E/F on y/x axes pooled within black rectangles (occipital electrodes) in E/F,

separately for different participants (1 symbol per participant, conventions similar to Fig 2F); solid symbols refer to intact scenes,

open symbols to cut-out variant, blue symbols to results following artefact rejection (see Methods). H plots similar results from

modulations pooled within magenta rectangles (central electrodes) in E/F; inset to H from modulations within orange rectangles

(frontal electrodes). I-K plot the pooled quantities in G-H for specific comparisons on x- versus y-axes (top-down and bottom-up

values are collated without distinction for this analysis): intact (undistorted) scenes versus cut-out variant (I); highpass/lowpass

filtering of 1/20 Hz versus 0.5/40 Hz (J); values for intact scenes versus d0 log-ratios from Fig 2F (K). Ovals in I-K are aligned with

best-fit line, with axes matched to 2 SD for values projected onto axes parallel/orthogonal to line. Data for this figure is available

from S2 Data. EEG, electroencephalogram; RMS, root-mean-square; VEP, visual evoked potential.

https://doi.org/10.1371/journal.pbio.1002611.g007
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taking the difference between rich and poor locations to expose the differential impact of bot-

tom-up/top-down maps.

The only region where rich/poor differential effects display robust intersubject consistency

(large Z scores) is indicated by the black rectangular outline in Fig 7E, corresponding to the

early epoch (0–100 ms) of occipital activity. There appear to be other modulations within the

surface plots; however, they are not robust and are unlikely to reflect relevant processes (see

below). Based on our previous observations from Fig 7B–7D, we consider the 2 additional

regions indicated by magenta/orange rectangles, corresponding to the late epoch (250–350

ms) of central/frontal activity. To evaluate occipital activity quantitatively, we sum modula-

tions within the black rectangles from both bottom-up (Fig 7F) and top-down (E) descriptors,

and plot them on x and y axes respectively in G (1 symbol per observer). Similarly to the beha-

vioural effects (black symbols in Fig 2F), these measurements present a top-down effect with

no bottom-up effect (black solid symbols fall above horizontal dashed line at p< 0.02 and scat-

ter around vertical dashed line at p = 0.37). When we sum activity within the magenta rectan-

gles for central electrodes, the resulting measurements display neither effect (solid symbols in

Fig 7H scatter around the origin with no significant (p> 0.05) departures from the dashed

lines). A similar result is obtained for frontal electrodes (inset to Fig 7H).

In additional experiments, we replicated the above effects using manipulated cut-out scenes

(open symbols in Fig 7G) for which we had determined that the behavioural top-down effects

also survived (blue data in Fig 3I). More specifically, differential effects for cut-out scenes (x/y
values from Fig 7G) are strongly correlated across observers with those for undistorted scenes

(r value is 0.76 at p< 0.002) only for occipital electrodes (black symbols in I), not for other

electrode clusters (see S1 Text); the two datasets come from independent experiments, provid-

ing clear evidence that the adopted analysis/metric exposes genuine structure in the EEG.

Furthermore, this structure is related to the perceptual effects, as evidenced not only by the

similarity between electrophysiological and behavioural patterns (compare Figs 2F with 7G)

but also by the significant correlation (r = 0.45, p< 0.02) between EEG and psychophysical

markers for occipital electrodes in Fig 7K. Finally, we established that the EEG effects remain

measurable when relevant aspects of the analysis are modified, such as choice of low/high-pass

cut-off frequencies (Fig 7J) and exclusion/inclusion of common artefacts (see S1 Text).

We conclude that scalp signals originating from occipital cortex are modulated by neural

constructs connected with the top-down map. These modulations become measurable very

quickly (approximately 50 ms after stimulus onset), reflect the behavioural measurements (Fig

7G and 7K), generalize across independent experiments (I) and are not restricted to narrow fil-

tering specifications (J). These measurements do not support more precise estimates of the

timescale involved, not least because the exact figures will depend on several (and to a large

extent arbitrary) constraints on the relevant analysis (e.g. which specific electrodes, filtering

regime and others). The relevant region within Fig 7E (indicated by black rectangular outline)

presents substantial modulations (reflected by red tint) between 30 ms and 70 ms. More accu-

rate estimates of the timescale involved will require further EEG investigations combined with

relevant single-unit measurements [53, 68].

Sensitivity is enhanced by orientation retuning, not internal noise

reduction

We have extensively documented that human sensitivity for performing probe discrimination

is enhanced when the probe is inserted at rich locations on the top-down map. These effects

are large (approximately 2× with mean enhancement across observers of an added 83%),

dissociated from response criterion shifts (S3 Fig), and easily measurable: when 121
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independent log-ratio estimates are combined from all experiments that individually showed

statistically measurable top-down effects, the aggregate dataset is significant (different than 0)

at p< 10−20 with 99.9% confidence interval of 0.43–0.63, meaning that the existence of the

top-down effect is beyond doubt. Furthermore, this effect can be measured in the form of cor-

related scatter between sensitivity and top-down value, demonstrating that the performance

enhancement tracks top-down information in a proportional fine-grained fashion (see S1

Text). Sensitivity measurements by themselves, however, do not impose sufficient constraints

on possible sources of improved discrimination to allow conclusions about potentially under-

lying mechanisms [69].

If we adopt a minimal SDT model [35] (Fig 8A) whereby orientation energy within the

probe is processed by an orientation-selective filter [8, 70], a source of intrinsic variability is

added to the filter response [37], and an output binary decision is produced [71], there are 3

fundamentally distinct ways in which the sensitivity of this mechanism may be enhanced: 1) by

Fig 8. Top-down enhancement is driven by sensory retuning. A sketches minimal SDT model consisting

of front-end filter (grey box) followed by additive internal noise (black random trace pointing to + symbol);

sensitivity may be enhanced by reducing internal noise (red trace), sharpening filter around congruent (thick

blue line) and/or incongruent orientation (thin blue line). B plots rich/poor log-ratios for internal noise estimates

(red) and projected sensitivity from filter estimates (blue) returned by psychophysical reverse correlation

(plotting conventions similar to Fig 2F). Aggregate perceptual filters are shown in C-D for rich vs poor

locations on top-down (C, green versus red) and bottom-up (D, solid versus open) maps. Congruent/

incongruent orientations are indicated by orange/magenta vertical lines (0 and π/2 on x axis). Error bars show

±1 SEM. Lines show fits from 2 Gaussian functions of opposite sign centred on congruent/incongruent

orientations (for visualization only). Shading in C plots ±1 SD across simulations from gain-control model

(inset), consisting of 2 front-end filters oriented along congruent (left icon in inset) and incongruent (right icon)

orientations. Model simulations for red/green shading were generated by red/green-tinted front-end filters

(transition indicated by blue arrows). Data for this figure is available from S2 Data. SDT, signal detection

theory.

https://doi.org/10.1371/journal.pbio.1002611.g008
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reducing its internal noise (red in Fig 8A); 2) by sharpening filter tuning around the congruent

signal (blue thick line in A); 3) by sharpening filter tuning around the incongruent signal (blue

thin line). We sought to determine which of these alternatives apply. To estimate internal

noise, we performed additional experiments using an established double-pass methodology

[36, 40] (see Methods). The resulting estimates (0.64/0.84/1.38 at 5/50/95 percentiles) fall

within the expected range [37]; more importantly, they are not modulated by probe location

along either the top-down or bottom-up map (red data points in Fig 8B scatter around origin).

To estimate orientation tuning of the perceptual process, we exploited a psychophysical var-

iant of reverse correlation [31, 34] applied to the orientation noise injected into the probe. In

line with previous work using isolated probes [8], the retrieved orientation-tuning functions

peak at the congruent orientation (indicated by orange vertical line in Fig 8C and 8D) and

present a negative modulation at the incongruent orientation (indicated by magenta vertical

line). This characteristic remains unchanged when probes target rich as opposed to poor loca-

tions on the bottom-up map (compare solid with open data in D); however, it undergoes sub-

stantial retuning along the top-down map: at rich locations, tuning is sharper around both

congruent and incongruent orientations (compare green with red data in C). To quantify

these effects and make them directly comparable to the performance measurements, we com-

pute the expected sensitivity associated with the shape of individual tuning functions and plot

it as log-ratios in Fig 8B (see Methods). We observe a sizeable top-down effect (blue symbols

fall above the horizontal dashed line at p< 0.01) without any bottom-up effect (blue symbols

scatter around vertical dashed line at p = 0.46), mirroring the effects produced by direct sensi-

tivity measurements (Fig 2F).

We conclude that the sensitivity enhancement associated with rich locations on the top-

down map is the outcome of sensory retuning [10, 72] and not internal noise reduction, in line

with other aspects of sensory processing [69, 73]. Further, our data demonstrate that retuning

occurs at both congruent and incongruent orientations (thick/thin blue lines in Fig 8A).

Retuning of this kind can be modelled by a physiologically plausible circuit such as the gain

control operator [11] in the inset to Fig 8C. More specifically, small changes to the parameteri-

zation of this minimal model (indicated by blue arrows, see Methods) produce orientation-

sharpening effects that closely match those exposed by data (model predictions are shown by

green/red shaded regions).

Deep networks generate proxy top-down maps

What is the potential origin of the signal driving the circuit transition in Fig 8C and the associ-

ated sensitivity enhancement? We implemented a selection of computer vision algorithms (see

Methods) to determine whether the resulting scene representations correlate positively with

human sensitivity as observed along the top-down map (Fig 9A; see S1 Text). There is no such

correlation when sensitivity is similarly plotted against the bottom-up map (r = −0.02, p = 0.3,

Fig 8B) or established saliency/segmentation algorithms (orange/blue in Fig 9D); however,

last-generation deep networks (red) generate map values that correlate significantly with

human sensitivity (see also Fig 9C). We focus on a recent deep convolutional network (DCN)

for semantic segmentation [23] (CRF-RNN) that is able to achieve a correlation value compa-

rable to that returned by nonconsensus values on the top-down map (open green symbol in

Fig 9D). When sensitivity log-ratios from individual observers are computed with relation to

the probe rich/poor classification generated by the DCN, we observe a nontrivial top-down

effect (red data in E, p< 0.01) not captured by established segmentation algorithms [5] (blue

data). The DCN seems able to exclude physically rich locations in the image that are not per-

ceptually interesting (examples are indicated by yellow circles in Fig 9E), while this task
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remains challenging for some other computer vision algorithms [6]. Indeed, it has long been

recognized that this is one of the core unresolved issues in vision science [2].

Discussion

The main experimental result of this study can be summarized by the notion that local visual

operators are controlled by the segmented layout implied by the physical image, rather than by

the physical image itself. This result should not be interpreted to mean that the physical con-

tent of the image is entirely irrelevant: in the trivial limit-case when image contrast is reduced

below detection threshold, the scene becomes invisible and no visual processing can take

place. Our results indicate that, provided the physical content of the image is minimally suffi-

cient to support inference of the underlying environmental structure, the latter process

becomes the primary contextual influence on image reconstruction, overriding strictly image-

driven aspects of visual processing (e.g., collinear facilitation [74]). These findings suggest that

once the inferential mechanism is kick-started, perception is quickly organized around the

operation of this mechanism [75, 76]; detailed variations of physical content are then sidelined

by the object segmentation projected by the inferred layout of the scene. The behavioural

impact of this process can be measured in the form of a top-down effect on perceptual effi-

ciency for local image reconstruction. We speculate that object segmentation is actively

engaged at all times; in the laboratory, it may go unnoticed unless experiments are specifically

designed to expose its impact on feature extraction.

Fig 9. Deep networks generate good proxy for top-down representation. A-C plot human sensitivity (y axis) for individual probe

insertions (one small dot per insertion) separately for different scenes (pooled across participants), against values corresponding to

probe insertion point on top-down/bottom-up maps (A/B) and the map generated by the CRF-RNN deep convolutional network [23]

(C; abscissa values for this plot have been rescaled to range between 0 and 1). Dashed lines show 80%, 90%, and 95% (from thick

to thin) confidence intervals for linear fit. Green symbols in A show average y value for individual abscissa values; symbol size scales

with number of data points. D shows correlation values for scatter plots in A-C and those generated by other computer vision

algorithms (Itti-Koch [3], GBVS [41], gPb-HS [5], nCuts [42], HVC [43]); open green symbol plots correlation for top-down map when

consensus probe locations (indicated by solid green symbol in A) are excluded. Error bars in D show 95% confidence intervals. E

plots rich/poor log-ratios to the conventions of Fig 2F where human sensitivity estimation for y axis is relabelled against rich/poor

probe locations on the maps generated by CRF-RNN (red) and gPb-HS (blue) algorithms instead of top-down map (black). Values

on the x axis are computed with respect to bottom-up map (same as Fig 2F). Icons show example segmentations from the two

algorithms for the natural scene in Fig 1A; coloured overlay indicates segmented regions/boundaries, orange circle corresponds to

red solid circle (top-down poor, bottom-up rich location) in Fig 1D. Data for this figure is available from S2 Data. HVC, hierarchical

visual cues; GBVS, graph-based visual saliency.

https://doi.org/10.1371/journal.pbio.1002611.g009
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At a cursory level, it may appear that the top-down effect simply reflects known phenomena

such as spatial uncertainty [77], crowding [78], flanker facilitation/inhibition [12], texture (sec-

ond-order) cues [79], and eye-movement scanning strategy [80]. However, we can exclude

these factors by evaluating them against the wide-ranging collection of our experimental

results (see S1 Text for detailed argumentation relating to these and other factors). For exam-

ple, top-down effects show no dependence on eccentricity (S2 Fig) and cueing of probe loca-

tion (Fig 2G), the former inconsistent with crowding [81] and the latter inconsistent with a

role for spatial uncertainty. We must conclude that the phenomena exposed by our probe-

insertion paradigm cannot be accounted for by commonly proposed mechanisms and reflect a

genuinely novel class of perceptual processes unexplored previously. Past literature has estab-

lished that object identity is represented as quickly as approximately 100 ms after the visual

stimulus has appeared [82, 83]; however, little is known about the perceptual operations that

lead up to said representation [84], and that must occur during those initial 100 ms [85]. The

present results speak to the nature and timescale of those operations and their relationship to

natural scenes.

In our prior research with embedded probes, probe insertion was restricted to one specific

location for each natural scene [9, 10], thus providing no useful information relating to the

topics addressed in the present study. Instead, it focused on the effect of image inversion, a

manipulation believed to selectively target semantic representations [52], and found that it

may impact the structure of perceptual filters with no concomitant change in discrimination

performance [9, 10]. In apparent contrast, the top-down effects we report here involve marked

improvements in sensitivity. These apparently conflicting results owe their distinct patterns to

the different stages/mechanisms probed by the 2 different sets of experiments. Image inversion

has no impact on the top-down effects that represent the focus of this investigation (red sym-

bols in Fig 2F), and overall performance was no different between upright and inverted trials

(p = 0.64), just as in the earlier work [9, 10], and in line with related single-unit measurements

[53]. It is clear that the representational stage targeted by manipulating probe location is dis-

tinct from the stage interrogated by scene inversion [52]. We speculate that the current experi-

ments probe a stage corresponding to the segmented image where object boundaries are

delineated and objects possibly segregated [53, 68, 85], without necessarily assigning semantic

content to the segmentation. This concept builds on the distinction between tracing out an

object from a scene on the one hand and knowing what that object is on the other hand [2, 21,

68, 86]. We propose that only the former operation is probed effectively by the image manipu-

lations adopted in this study.

The above distinction is critical for correctly situating our electrophysiological results in

relation to those associated with ultrafast image recognition [82]. In those classic studies, the

earliest EEG signatures of image recognition occur at approximately 100 ms [82, 87], after the

top-down modulation in our data has completed (Fig 7E). We speculate that our experiments

probe the segmentation stage immediately preceding scene recognition [2, 16, 53, 68, 88], and

in doing so expose the temporal evolution of different phases in the perceptual reconstruction

and interpretation of natural scenes [85]. In this sense, our study is not only compatible with

classic results from the ultrafast recognition EEG literature [87] but also provides novel and

distinct information about the underlying mechanisms that has not been exposed by those pre-

vious studies. Furthermore, it is entirely consistent with spike measurements from single neu-

rons in the primary visual cortex [53, 68, 85]. Those measurements have identified at least

three stages in image processing: detection, segmentation, and attention, unfolding in tempo-

ral succession at approximately 50, 60, and 140 ms after stimulus onset [85]. The effects

exposed here naturally speak to the second stage: they must originate beyond detection but

before attentional deployment (Fig 2G). Consistent with this interpretation, their EEG
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dynamic characteristics dovetail the single-neuron measurements [53, 68, 85] (although the

link can only be tentative at this stage, given innumerable differences in the adopted stimuli,

such as artificial boundaries defined by motion [85] as opposed to static boundaries defined by

natural scenes used here).

In contemporary accounts of natural image understanding, this process is almost invariably

connected with the notion of feedback and top-down signals [20, 89], informing our own

choice of map labels and associated probe-insertion protocol (Fig 1). It is unclear, however,

whether the bottom-up/top-down distinction [28] represents the most productive conceptual

framework for understanding the results presented here [29, 30]. We find that electrophysio-

logical signatures of top-down effects become measurable shortly after stimulus onset [53, 68]

(Fig 7E); furthermore, they are restricted to occipital cortex (Fig 7G). This result, combined

with stable behavioural counterparts at very short stimulus durations (Fig 6H and 6I), indicates

that the perceptual system is dominated by object segmentation from immediately after stimu-

lus presentation throughout the subsequent 100-ms epoch [50, 63]: there is little in our dataset

that points to a feedback mechanism as typically conceptualized in the literature [28, 89]. For

example, allowing the scene to be analyzed only after the probe has already disappeared, a

manipulation expected to impact our measurements [90, 91] under feedback accounts [20,

89], does not reduce top-down effects (Fig 5G). We propose that the process involved in these

experiments is best understood as an integrated module where the distinction between bot-

tom-up and top-down processing is not transparently attached to identifiable submodules [29,

63, 92–94].

If we accept the notion of an integrated module [88, 92], the processing mode engaged by

the perceptual system reflects a sensitivity bottleneck [95, 96], rather than absence/presence of

top-down feedback. The clearest dissociation between top-down-dominated and bottom-up-

dominated processing modes is offered by intact scenes on the one hand, and blurred (low-

pass) scenes on the other (black and yellow symbols occupy extreme positions along negative

diagonal direction in Fig 4). We propose that the perceptual system operates all along in a

manner that depends on both types of information contained within the two maps provision-

ally labelled “top-down” and “bottom-up;” however, the bottleneck for performing local image

reconstruction is defined by the former kind of information in the presence of an intact inter-

pretable scene (Fig 2F), while it is defined by the latter kind of information in the presence of a

degraded unintelligible image (Fig 3B and 3C).

The above notion is not meant to challenge the wider applicability of feedback and top-

down control [28, 89]: our own dataset displays characteristics suggestive of a general role for

feedback, such as the impact of scene-probe temporal asymmetry on asbolute sensitivity (blue

symbols in Fig 5E). Rather, the notion of an integrated module is intended in a restricted and

specific sense. First, as discussed above, it only applies to the processing stage probed by the

manipulations investigated here, which we have provisionally described as the segmented

representation of the scene [16, 22, 23]; second, it relates to perception, not to the underlying

anatomy or physiology: it is conceivable that the neural implementation may involve a default

network of early visual areas [53, 68, 88, 97, 98] communicating in a fashion that may be char-

acterized as feedback [99, 100], although on a faster timescale than typically associated with

top-down control [63, 88, 101, 102]. Our results demonstrate that the visual process of recon-

structing meaningful boundaries from natural scenes immediately engages such integrated

extraction/segmentation perceptual module [29, 53, 68, 88, 92, 101, 103], the operation of

which is not dependent upon attentional deployment [10, 104, 105] (Fig 2G), relies on various

statistical properties of the scene (Fig 4), extends over large spatial scales [76, 98] (Fig 6A–6G

and S2D Fig), resides within occipital cortex [85] (Fig 7G), and retunes its machinery to hone

into the expected signal without changing its intrinsic variability [13, 54, 69, 73] (Fig 8B). It is
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feasible to construct a computational support for this integrated architecture based around

plausible [11] and primarily feedforward (i.e., fast) neural networks [106] (Fig 9C–9E). Future

research will be necessary to characterize the biological circuits that support this process [107]

and establish their connection with the perceptual phenomena which we have documented

here [108].

Supporting information

S1 Text. Document providing additional information and detailed discussion of specific

issues.

(PDF)

S1 Fig. Orthogonality of bottom-up/top-down maps. Value on top-down map (y axis) is

plotted against value on bottom-up map (x axis) across all probe insertions (1 symbol per

insertion); open/solid indicates poor/rich on bottom-up map, red/green indicates poor/rich

on top-down map. Marginal distributions along the bottom-up map (top histograms) are vir-

tually identical for poor/rich locations on top-down map (red/green solid histograms); simi-

larly, marginal distributions along the top-down map (right histograms) are indistinguishable

for poor/rich locations on bottom-up map (open/solid histograms). Standard correlation tests

are not applicable because this dataset is not normally distributed (Henze-Zirkler test) and it is

heteroscedastic (test based on conditional variances).

(TIF)

S2 Fig. Visual field distribution of probe insertions and discrimination performance.

Probe density declines with eccentricity on both bottom-up (A) and top-down (B) maps (see

overall decreasing characteristic of plots); in both cases, there is little difference between poor

and rich insertions (open/solid in A, red/green in B; smooth lines show polynomial 2-degree

fits), although there appears to be a moderate trend for rich insertions to exceed poor inser-

tions near the fovea, and poor insertions to exceed rich insertions at 6–8 degrees of eccentricity

(see blue trace plotting rich/poor log-ratios; shading shows ±1 SEM). Human sensitivity also

declines with eccentricity as expected [109] (overall decreasing characteristic in C-D), but it

displays different trends for poor/rich differential effects: no difference between poor and rich

insertions on the bottom-up map at any eccentricity (C), and clear differences on the top-

down map at all eccentricities (D). Error bars show ±1 SEM.

(TIF)

S3 Fig. Criterion shifts associated with enhanced sensitivity. A shows ROC plot [35] of indi-

vidual data (1 symbol per observer) pooled across conditions that showed a top-down effect

without bottom-up effect, for bottom-up poor/rich (black open/solid) and top-down poor/

rich (red/green) insertions. Solid lines show best-fits of equal-variance SDT model for varia-

tions of sensitivity (d0), dashed lines in inset to A show fits for variations of criterion c; gray/

black lines refer to bottom-up poor/rich data, red/green to top-down poor/rich data. Inset

magnifies top-down rich/poor data clusters with associated d0/c fits. B plots d0 against c com-

puted under the equal-variance assumption for all data points in A; the 2 quantities are clearly

correlated. Error bars show ±1 SEM. Solid line shows best linear fit, dashed lines show 95%

confidence intervals for fit. C plots rich/poor log-ratios computed from both d0 (y axis) and c

(x axis) with reference to bottom-up (black) and top-down (green) maps; segments near x/y
axes show 95% confidence intervals around mean values and demonstrate that the top-down

fractional effect for sensitivity (green vertical segment near right y axis) is much greater than

the effect for criterion shifts (green horizontal segment near top x axis). Axes in C have been
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scaled to match for direct comparison. ROC, receiver operating characteristic.

(TIF)

S1 Video. Example sequence of 10 trials for main condition (unperturbed natural scenes

except for probe insertion). In this demo, the first trial is an example of “postcue” trial where

the spatial cue (bright blob indicating probe location) appears after the natural scene, the sec-

ond trial is an example of “precue” trial (cue appears before scene), and subsequent trials alter-

nate between postcue and precue. In the actual experiments, trials were randomly assigned to

precue or postcue categories (i.e., there was no regular repeating sequence; the postcue-precue

repeating sequence was adopted in this demo for clarity of exposition).

(AVI)

S2 Video. Example sequence of 8 trials for the “zooming” condition where the stimulus

involves a smooth transition between a probeless scene and a sceneless probe. In this demo,

the first trial shows an example of “zoom-in” (scene-to-probe) transition at longer (300-ms)

duration, the second trial shows an example of “zoom-out” (probe-to-scene) transition at lon-

ger duration, the third trial shows an example of “zoom-in” transition at shorter (100-ms)

duration, the fourth trial shows an example of “zoom-out” transition at shorter duration. The

subsequent 4 trials repeat this sequence. In the actual experiments, trials were randomly

assigned to zoom-in/zoom-out and long/short categories (i.e., there was no regular repeating

sequence; the zoom-in/zoom-out and long/short repeating sequence was adopted in this demo

for clarity of exposition).

(AVI)

S1 Data. Data dump.

(ZIP)

S2 Data. Figure data dump.

(ZIP)
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