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Abstract

Language comprehension is a complex task that involves a wide network of brain regions. We used topological measures to
qualify and quantify the functional connectivity of the networks used under various comprehension conditions. To that aim
we developed a technique to represent functional networks based on EEG recordings, taking advantage of their excellent
time resolution in order to capture the fast processes that occur during language comprehension. Networks were created
by searching for a specific causal relation between areas, the negative feedback loop, which is ubiquitous in many systems.
This method is a simple way to construct directed graphs using event-related activity, which can then be analyzed
topologically. Brain activity was recorded while subjects read expressions of various types and indicated whether they found
them meaningful. Slightly different functional networks were obtained for event-related activity evoked by each expression
type. The differences reflect the special contribution of specific regions in each condition and the balance of hemispheric
activity involved in comprehending different types of expressions and are consistent with the literature in the field. Our
results indicate that representing event-related brain activity as a network using a simple temporal relation, such as the
negative feedback loop, to indicate directional connectivity is a viable option for investigation which also derives new
information about aspects not reflected in the classical methods for investigating brain activity.
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Introduction

Language comprehension is one of the most complex tasks

handled by the brain. As such, it involves the coordinated activity

of numerous regions each contributing a particular aspect of

processing. Classically, ‘‘language regions’’ have been thought to

be confined to the left hemisphere Wernicke’s and Broca’s areas,

however recent evidence is accumulating indicating that other

areas, especially in the right hemisphere, are necessary for various

aspects of language. For example right-hemisphere activity is

prominent during discourse processing [1], recognition of prosody

[2], and comprehension of ambiguity [3] and novel metaphors [4].

Thus it is now obvious that language comprehension is not

undertaken only by a couple of language ‘‘centers’’, but it involves

a large network of regions working in concert in a complex and

dynamic manner [5]. Understanding such an intricate system calls

for novel analytical methods.

A recent approach to the study of brain function portrays the brain

as a network of anatomical or functional connections [6] and has the

potential to be able to capture the complexity of brain function during

mental operations. Complex networks can be analyzed and com-

pared by representing networks abstractly as graphs (e.g., [7–8]),

consisting of a set of vertices (nodes) linked by a set of edges

(connections). Such graphs represent the topology of a network

usually without taking into account the actual physical distance

between vertices. Graph theory deals with the formal description and

analysis of graphs and provides quantitative characterizations of any

graph using a set of universal parameters. This approach has been

successfully applied to the study of other complex systems such as

metabolism [9], geophysical processes [10] and sociology [11].

Here we used topological measures to investigate how brain

regions operate when understanding different types of expressions.

The same brain and anatomical connections are used in

comprehending textual material of different kinds. However,

when reading expressions that require different processing styles,

such as literal vs. novel metaphoric expressions, the various brain

regions involved should contribute differently to the mechanisms

of understanding. Thus the functional connectivity networks

underlying different comprehension modes should reflect these

changes in connectivity, even though they share the same

anatomical connections. The aim was to utilize topological

measures to qualify and quantify the functional connectivity of

the networks used under various comprehension conditions.

To that aim we developed a technique to represent functional

networks based on EEG recordings, taking advantage of their

excellent time resolution in order to capture the fast processes that

occur during language comprehension. We recorded brain activity

while subjects read simple expressions and indicated whether they

found them meaningful. Event-related potentials, which reflect

activity time-locked to a particular event, in this case word

presentation, were used in order to measure activity related only to

the comprehension task. The networks were created based on the

time-course of current source density estimates at 66 cortical areas

derived from the event-related potentials.
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Studies using graph theory analysis of functional brain networks

have mainly used symmetrical measures of statistical association or

functional connectivity between pairs of brain regions or sensors

(e.g., [12–13]). Generally, these measures of connectivity are

thresholded at some critical value to construct undirected graphs.

Other studies have attempted to construct directed graphs using

effective connectivity models based on causal influence estimates

[14–15]. However the implementation of those models tends to be

complicated and time consuming, and largely rely on prior

theoretical knowledge. Here we opted for a third option and

looked for a specific ‘physiological’ causal relation between areas,

the negative feedback loop [16]. For each brain region pair, we

tested whether activation of the first region was followed by

activation of the second which in turn was followed by

deactivation of the first region. Every pair that fulfilled the

criterion was added as a link in the network. This method is a

simple way to construct directed graphs using event-related

activity, which can then be analyzed topologically. Negative

feedback loops (NFLs) are of course not the only possible causal

relation between brain regions, but they are ubiquitous in the

nervous system. The presence of feedback loops was found in

theoretical studies of oscillatory systems [17–18] that used

differential equations to describe the dynamics of the system

variables. Most of these models found NFLs to be an essential

property of the system [19].

Our aim was to use this technique and apply it to EEG

recordings of people involved in a language comprehension task

[20] consisting of four types of simple expressions: word pairs with

a literal semantic relation (‘burning fire’), conventional metaphors

(‘‘bright mind’’), unfamiliar metaphors (‘‘ripe dream’’) and

unrelated pairs (‘‘indirect blanket’’). These expression types have

been shown to require different processing during comprehension

[20–21]. A network was constructed for each expression type and

was analyzed using various graph theory metrics. The aim of the

research was twofold; the first aim was to test whether negative

feedback loops can be used as a relatively simple measure of

directed functional connectivity. The second aim was to show the

usefulness of graph theory measures in the study of neuro-

cognitive mechanisms. Our aim was not only to show that

functional brain connectivity networks behave like complex scale-

free small worlds, but also to derive new information about aspects

not reflected in the classical methods for investigating brain

activity. We hypothesized that slightly different functional

networks will be obtained for event-related activity evoked by

each expression type. The differences will reflect the special

contribution of specific regions in each condition and the balance

of hemispheric activity involved in comprehending different types

of expressions.

Method

Ethics statement
All study procedures were approved by the committee of the

Department of Psychology at Bar-Ilan University and all

participants provided written informed consent.

Participants
Twenty-eight right-handed native Hebrew speakers (12 men, 16

women, average age 23) participated in the experiment and

received partial academic credit.

Behavioral paradigm
Two-word expressions were presented in a random order, one

word at a time, on a computer screen using white letters and black

background. Stimuli on each trial were presented in the following

time sequence: fixation cross (200 ms), first word (200 ms), blank

(200 ms), and second word (200 ms). Participants were instructed

to ‘‘judge whether the presented two-word expression conveys a

meaning (be it literal or metaphoric) or does not convey a meaning

as a pair’’, and press a corresponding key. Response period was

limited to 2 s and was followed by a 2 s inter-trial interval. A total

of 96 Hebrew two-word expressions (24 per condition) were

presented, consisting of conventional metaphoric (CM) expressions

(e.g., lucid mind, transparent intention), novel metaphors (NM) drawn

from poetry texts (e.g., ripe dream, conscience storm), literally related

(LT) words (e.g., burning fire, problem resolution), and unrelated (UR)

words (e.g., indirect blanket, wisdom wash). The detailed experimental

paradigm is reported in [4,20].

EEG Recording
EEG was recorded using a 65-channel geodesic net (Electrical

Geodesics Inc.) with 250 Hz sampling rate, 0.1–100 Hz bandpass

filter, and referenced to Cz. Impedances were kept below 50 kV.

Data were further filtered (40 Hz) and referenced to an average

reference offline. ERPs were time-locked to the onset of the second

word of the pair. Epochs were 1000 ms long with a 100 ms pre-

stimulus baseline. Trials with eye movement and other artifacts

were removed.

Data Preprocessing
ERPs were derived by averaging correctly classified trials on

each condition for each participant, that is, LT, CM and NM pairs

judged as conveying a meaning and UR pairs judged as not

conveying a meaning. In order to estimate the neural sources of

the waveforms for each condition, the average ERPs for each

condition and subject were subjected to LORETA analysis [22–

24]. LORETA calculates the three-dimensional current density

distribution of the neural generators in the brain under the

assumption that for each voxel the current density should be as

close as possible to the average current density of the neighboring

voxels (‘contiguity’). Computations were made using a three-shell

spherical head model registered to the Talairach space of the

brain’s gray matter. The procedure yielded current density values

for 2394 voxels, with a spatial resolution of 7 mm and a temporal

resolution on the order of 4 ms. Voxels were labeled into 33

anatomical areas in each hemisphere according to the MNI305

atlas [25]. Data for each area were smoothed using a moving

average of 10 samples (,40 ms), then whitened with single value

decomposition and normalized to the mean.

Networks
Nodes were localized at the center of each anatomical brain

region, and the activation of each node was calculated as the mean

current density of all voxels in the region. Directional links

between nodes were created by finding negative feedback loops

with an algorithm adapted from [16]. For each pair of nodes, we

tested whether during the time course of brain activity, activation

of the first node was followed by activation of the second which in

turn was followed by deactivation of the first region, regardless of

the time length of activation or deactivation. A link was delineated

between every two nodes (anatomical regions) that exhibited such

a negative feedback loop anywhere along a discrete temporal

dimension with time bins of 60 ms. Activation at a time-bin was

defined as a current density value greater than the mean of that

area, and deactivation was defined as a current density value lesser

than the mean. Every node pair that fulfilled the criterion was

added as a link in the network. The link was regarded as outgoing

Networks of Figurative Language Comprehension
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for the node that was activated first and incoming for the second

node. A separate network was constructed for each condition.

Network analyses
To analyze and quantify the connectivity of the emergent

networks we used graph theory methods [26] and small-world

networks analyses [27]. These were implemented using functions

from the Complex Networks Analysis Package [28]. In the current

study we calculated for each network the node degree distribution,

betweenesss centrality, shortest path and clustering coefficient for

the quantification of the small-world properties. These measures

were calculated for each node, and averaged over all nodes to

estimate the global characteristics of each network. The degree of

a node is the number of connections that link it to the rest of the

network, and the degree distribution refers to the degrees of all

nodes in the network. Whereas random networks have a

symmetrically-centered Gaussian degree distribution, complex

networks generally have non-Gaussian degree distributions, often

with a long tail towards high degrees. In scale-free networks the

degree distribution follows a power law [29]. The clustering

coefficient is calculated as the number of connections that exist

between the nearest neighbors of a node as a proportion of the

maximum number of possible connections. High clustering is

taken to reflect high local efficiency of information transfer and

robustness [30]. The shortest path measure is the minimum

number of edges that must be traversed to go from one node to

another. Short mean path-lengths reflect high global efficiency of

parallel information transfer [31]. Betweeness is a measure of

centrality indicating the relative importance of a vertex within the

network. The betweeness of vertex v is the proportion of shortest

paths between every two vertices in the network that pass through

v (see [32] for a review).

Results

Network properties
This analyses process resulted in four directed networks with 66

nodes and 1687 directional links for the UR pairs, 1658 for the

LT, 1603 for the CM and 1515 for the NM pairs, out of 4290

possible links in each network (Figure 1). The degree-distribution

exponents (c in the probability of degree k formula, p(k) = k2c)

ranged from 2.8 to 3.5, with a gradual decay reflecting the scale-

free character of the networks, both for the incoming and outgoing

links.

Average shortest path was relatively low (mean l= 2.5)

reflecting high global efficiency of parallel information transfer.

However, the clustering coefficient (local efficiency) was also low

(mean c= 0.34), and not larger than an equivalent random net.

This might be due to the low resolution of source localization in

EEG and averaging of whole areas, which mask the activity at the

local-network level.

Hemispheres
A count of the inward and outward links for the nodes in each

hemisphere indicated an overall balanced network hemispherically

(Table 1). However, in the LT condition the number of links

within the LH was significantly higher than the number of links

within the RH, and this was reversed in the UR condition,

x2(3) = 57.4, p,0.0001). In both CM and NM conditions the

leftward bias was not significant. A similar picture was obtained

when examining the outgoing and incoming links. In the LT

condition there were more outgoing links from the LH than from

the RH, and more incoming links to the LH than to the RH. In

contrast, for the UR condition there were more incoming and

outgoing links in the RH than in the LH. This was statistically

significant for both the incoming, x2 (3) = 29.0, p,0.001, and

outgoing, x2 (3) = 32.2, p,0.001, links. Here again, both CM and

NM conditions were more balanced, with a slight bias to the left

which was not significant.

The average node degree between hemispheres and conditions

was examined using analysis of variance. For the outgoing links the

mean node degree was higher for the LH than for the RH (27 vs.

22.7), F(1,252) = 10.20, p,0.01. There was also an interaction

between hemisphere and condition: the LH advantage was found

in LT, CM, NM conditions but was reversed for the UR condition

F(3,252) = 3.86, p,0.01. The interaction was significant,

F(3,252) = 3.8,p,0.05, also for the incoming links, but no LH

advantage was found for the metaphor conditions (Figure 2).

Hubs
Hubs were defined as nodes with degrees higher than 2% of the

total links in the network. The most connected hubs were different

for the four conditions (Table 2). The measures for betweeness

centrality paralleled those of the node degree. Thus, in these

networks, nodes with the highest degree were also the central ones.

In the NM condition the most connected node was the right

superior temporal gyrus (rSTG), with more outward than inward

links (in/out ratio = 0.8). The right medial frontal gyrus was the

main hub in the UR condition, also with an outward bias (0.7).

The major hub in the CM condition was the left superior occipital

gyrus (in/out ratio = 1.0), and in the LT condition the left angular

gyrus was the most connected node with a significant inward bias

(1.2).

The only node that was a hub (.2%) in all conditions was the

left lingual gyrus which had more outward than inward links

(in/out = 0.6). Two other nodes, the rSTG and the right

parahippocampal gyrus, were hubs for NM, LT, and UR but

not for CM, although their main direction differed between

conditions. The rSTG had an outward bias for NM, was balanced

for UR, and had an inward bias in LT. When counting only

inward links, it was a major node for the CM condition as well. In

contrast, the right parahippocampal gyrus had an inward bias for

NM, an outward bias for UR, but was balanced for LT.

The left angular gyrus was a hub in all but UR conditions. Its

direction was more in than out in CM and LT, but was balanced

in NM. The right inferior frontal gyrus was a hub in all conditions

but LT. It was mostly inward biased for CM and NM, but

outwards biased for UR. Interestingly, the right inferior frontal

gyrus had a very low node degree in the LT condition. Apart from

the above nodes three additional nodes were found to be very

connected in both the NM and UR conditions: left middle

temporal gyrus, right subcallosal gyrus and left precentral gyrus.

All had an inward bias, apart from the right subcallosal gyrus

which had an outward bias for the UR condition. The right

posterior cingulate was common to both metaphor types and had

no directional bias. The precentral and rectal gyri were very

connected also in both metaphor networks, but in different

hemispheres: in the right hemisphere for CM and in the left for

NM.

Hubs specific to the NM network included right and left insula,

left precuneus and left inferior frontal gyrus (all with an outward

bias), left inferior parietal lobule (inward bias), as well as bilateral

temporal sub-gyri (balanced in direction). The CM network hubs

comprised bilateral anterior cingulate (in), right middle frontal

gyrus and left paracentral lobule (both out). The most connected

nodes when comprehending literal expressions were mainly

regions involved in reading words, such as the left fusiform,

lingual and angular gyri as well as bilateral supramarginal gyri.

Networks of Figurative Language Comprehension
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Discussion

Our results indicate that representing event-related brain

activity as a network is a viable option for investigation. In

particular, the use of a simple temporal relation such as the

negative feedback loop to indicate directional connectivity resulted

in networks consistent with the literature in the field. Several of the

brain regions found to be the most central and functionally

connected are areas that have previously been reported as active

during language tasks in imaging studies. However, the networks

parameters revealed information not available through regular

analyses. Some of the most connected regions in our networks are

not frequently reported as having increased activation in

comprehension tasks. Thus, the directional connectivity yields

important information that is not reflected in general activity

measures.

The hemispheric balance indices of the network underlying

literal expressions show a left hemispheric bias, in accordance with

the literature. In contrast, the UR network was right biased,

probably reflecting the use of coarse coded concepts when

searching for meaning [33]. Both types of metaphors, conventional

and novel, were handled by more balanced networks, indicating

that information flow from the two hemispheres is needed to

understand them. When comprehending meaningful expressions,

the LH had a higher average node degree, indicating that the

regions in that hemisphere had more connections, both for

incoming and outgoing links. The reverse was true for UR in

which the RH had greater connectivity overall. In a previous study

[4] we showed that both hemispheres are activated when

comprehending figural meanings. The present findings demon-

strate that both hemispheres contribute and share information,

although the specific information flow differs depending on the

type comprehension needed.

The differences between the functional networks are better

described by considering the main hubs or central nodes which

were common for various expression types and those which

appeared only in particular conditions. The only node which was

found as a main hub in all conditions was the left lingual gyrus.

The left lingual gyrus is frequently reported to be active when

recognizing words and has been shown to be more active for

words than pseudowords [34]. Thus, it should naturally appear as

a hub in each of the four networks. Its direction, mostly outward

connections, is consistent with its role of feeding the information

about the word to other areas.

Figure 1. Graphical representation of the networks’ main hubs for each expression type, located at the center each region. The
diameter of the circles represent the node degree of the hub. Closed circles depict the outgoing degree, dotted circled depict the incoming degree.
doi:10.1371/journal.pone.0019345.g001

Table 1. Number of links in the networks of each condition.

LT UR CM NM

Within
hemisphere

RH 250 373 311 286

LH 479 316 377 384

RH/LH ratio 0.52 1.18 0.82 0.74

Incoming to:

RH 609 746 689 652

LH 821 677 709 685

RH/LH ratio 0.74 1.10 0.97 0.95

Outgoing from:

RH 592 734 643 587

LH 838 689 755 750

RH/LH ratio 0.70 1.06 0.85 0.78

doi:10.1371/journal.pone.0019345.t001

Networks of Figurative Language Comprehension

PLoS ONE | www.plosone.org 4 April 2011 | Volume 6 | Issue 4 | e19345



A second common hub was the right superior temporal gyrus.

The superior temporal gyri have been suggested to have a role in

semantic integration, with an advantage of the right hemisphere

for integrating multiple distantly related concepts and activating

large semantic fields [33]. The coarse coding of the right

hemisphere is useful in complex language tasks that require

integrating contextual information or bridging between seemingly

unrelated words as in the present experiment. Our results indicate,

however, that the flow of information in the integration

mechanism is different for the various expression types. In the

NM network the directionality of rSTG had a slight outward bias,

but had an inward bias for conventional metaphors and literal

expressions. This suggests that semantic integration is not merely a

passive process but an active one involving both transmitting as

well as receiving information from various sources.

An additional common hub was the right parahippocampal

gyrus, which is frequently found in tasks involving contextual

memory [35] as well as social context such as when understanding

sarcasm [36]. When searching for the meaning of seemingly

unrelated words contextual information has a key role. Interest-

ingly, most connections in that node were inbound in the NM

network, but outbound in the UR network. It can be speculated

that when the meaning of novel metaphoric expressions was

successfully reached this was partly based on integrating such

contextual information. In contrast, with unrelated word pairs,

contextual information was used as a search strategy which turned

to be unsuccessful. For conventional or ‘dead’ metaphors for

which the figurative meaning is the salient one, using contextual

information would be detrimental thus the parahippocampal gyrus

did not emerge as a hub.

The left angular gyrus was a main hub in the networks for all

meaningful expressions. It is part of the word reading network and

is functionally connected with visual association areas in the

occipital and temporal lobes as well as language areas [37]. It is

Figure 2. Average node degree for each condition and hemisphere. Left panel (a) shows the outgoing node degree. Right panel (b) shows
the incoming node degree. Black bars: left hemisphere, grey bars: right hemisphere.
doi:10.1371/journal.pone.0019345.g002

Table 2. Most connected nodes (hubs) for each condition in descending order according to their node degree.

LT UR CM NM

L Angular (1.2) R Medial Frontal (0.7) L Sup Occipital (1.0) R Sup Temporal (0.8)

L Medial Frontal (0.8) R Sup Temporal (1.0) R Precentral (1.2) L Lingual (0.7)

L Sup Parietal Lob (0.7) R Paracentral Lob (0.7) L Lingual (0.7) L Precuneus (0.7)

R Sup Temporal (1.2) R Inf Frontal (0.8) L Orbital (1.5) L Precentral (1.2)

L Post Cingulate (1.2) L Inf Temporal (1.0) R Ant Cingulate (1.5) L Inf Frontal (0.7)

L Fusiform (0.8) L Precentral (1.0) R Post Cingulate (1.0) R Inf Frontal (1.4)

R Parahippocampal (1.0) L Subcallosal (0.8) R Inf Frontal (2.0) R Sub-Gyral (1.0)

L Lingual (0.7) R Fusiform (1.0) R Middle Frontal (0.7) L Insula (0.8)

L Orbital (0.7) R Inf Occipital (1.1) L Paracentral Lob (0.5) L Middle Temporal (1.3)

L Supramarginal (1.1) R Precentral (1.1) R Rectal (1.6) R Subcallosal (1.2)

R Inf Temporal (1.4) R Parahippocampal (0.7) L Ant Cingulate (1.3) R Post Cingulate (1.0)

R Supramarginal(0.8) R Subcallosal (0.7) L Angular (1.1) L Inf Parietal Lob (1.2)

L Middle Temporal (1.4) L Inf Temporal (0.6) R Insula (0.6)

R Lingual (1.3) L Angular (1.0)

L Middle Occipital (0.9) R Parahippocampal (1.5)

L Lingual (0.5) L Sub-Gyral (0.9)

R Angular (0.8) L Rectal (0.9)

The in/out link ratio for each node is listed in parentheses.
doi:10.1371/journal.pone.0019345.t002
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presumed to be involved in mapping visually presented inputs onto

linguistic representations [38]. Interestingly, patients with damage

to the left angular gyrus are unable to comprehend the

metaphorical meaning of common proverbs [39].

Comprehension of novel metaphors was implemented in a

functional network in which the most connected areas included the

left precuneus, left inferior frontal gyrus, as well as left inferior

parietal lobule and left angular gyrus. The precuneus is thought to

act as an associative region involved in metal imagery and has

wide connections with the inferior parietal lobule and angular gyri

[40]. Together with the inferior frontal gyrus it is active in episodic

memory tasks [41], and has been considered as a parietal

prefrontal hub [32]. Its centrality in novel metaphor comprehen-

sion is consistent with its associative and working memory roles.

Comprehending novel metaphors entails retrieving information

about distant concepts which are then imagined in order to find

the parallels between the source and the target. The right and left

insulae also turned up as very central areas for novel metaphors.

Previous studies using this type of stimuli have also found

increased insular activation [42–43].

In contrast, the network for conventional metaphors included

the left superior occipital gyrus, the anterior cingulate, the right

middle frontal gyrus and the left paracentral lobule. The left

angular, lingual gyrus, and right posterior cingulate, as well as

more frontal regions (precentral gyrus, inferior frontal, and rectal

gyri) were common to both types of metaphoric expressions.

However, the laterality of the precental gyrus and the inferior

frontal gyrus was opposite for the two conditions, right hemisphere

for conventional metaphors and left hemisphere for novel ones.

In sum, the characteristics of the networks produced using the

NFL method with ERPs have the potential to reveal important

information about the cognitive mechanisms they represent. Of

course NFLs are not the only type of functional connection

between areas, but they are ubiquitous in the nervous system, and

as shown here, they yield a coherent representation of the activity

of the brain under various task conditions. It is important to note,

however, that networks derived from EEG data were not

completely compatible with the expected small-world connectivity

in the cortex. This is probably due to the lack of spatial resolution

of the LORETA solutions and the use of whole regions as nodes.

Such low scale data can only reveal long-range connections

between areas and is blind to within-area local connections. It is

possible that brain recordings with better spatial resolution such as

MEG will provide the necessary information to render small-world

networks using this method.
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