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Abstract: This paper systematically investigated the topological design of cellular phononic crystals
with a maximized gap size between two adjacent bands. Considering that the obtained structures
may sustain a certain amount of static loadings, it is desirable to ensure the optimized designs to
have a relatively high stiffness. To tackle this issue, we conducted a multiple objective optimization
to maximize band gap size and bulk or shear modulus simultaneously with a prescribed volume
fraction of solid material so that the resulting structures can be lightweight, as well. In particular,
we first conducted the finite element analysis of the phononic band gap crystals and then adapted a
very efficient optimization procedure to resolve this problem based on bi-directional evolutionary
structure optimization (BESO) algorithm in conjunction with the homogenization method. A number
of optimization results for maximizing band gaps with bulk and shear modulus constraints are
presented for out-of-plane and in-plane modes. Numerical results showed that the optimized
structures are similar to those obtained for composite case, except that additional slim connections
are added in the cellular case to support the propagation of shear wave modes and meanwhile to
satisfy the prescribed bulk or shear modulus constraints.
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1. Introduction

The propagation of mechanical waves in periodic structures has aroused a growing research
interest in recent years. The existence of band gaps in phononic crystals can lead to a variety of
potential applications in sound insulation, shock isolations, seismic wave-proofing, acoustic wave
filtering, waveguides, negative refraction, etc. [1]. In phononic crystals (PnCs), the elastic properties are
periodic functions of position with a periodicity comparable to the wavelength of the corresponding
wave field [2]. The underlying mechanism for the formation of band gaps relies on the different
scattering of a mechanical wave at the interface between constituent phases with high contrast in
density and/or elastic constants. In the past few years, most studies consider PnCs consisting of two
solid components, solid-fluid or fluid-fluid components. Among these different patterns, cellular PnCs
with air or vacuum cylindrical holes embedded in a host material are more economical and practical,
as well as multi-functional. Compared with composite PnCs, cellular PnCs can be very light and
achieve high toughness, while reducing the fabrication cost. In this research we only consider the case
of cellular phononic band gap crystals.

Calculation of band structure for acoustic or elastic waves propagating in periodic composite
structures was first carried out by Sigalas et al. in 1992 [3] by using plane wave expansion method
(PWE), and the concept of PnCs was first conceived by Kushwaha in 1993 [4,5]. Although the PWE
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method is capable to calculate dispersion relation of mechanical waves, it has convergence and accuracy
problems in the case of fluid/solid system, especially for the case when the contrast of material
parameters between inclusions and the substrate is very high [2]. Later, various techniques have
been successfully introduced to calculate band structure of acoustic and elastic waves in fluid /solid
or vacuum/solid PnCs, such as the transfer matrix method (TMM) [6], multiple scattering theory
(MST) [7], finite-difference time-domain (FDTD) [8-10], Rayleigh method (RM) [11], and finite element
method (FEM) [12], etc.

The application of phononic band gap crystals highly depends on the width of the band gap
and the key issue is therefore to engineer the phononic band gap as wide as possible. A topology
optimization method provides an effective means for systematic and scientific approach of designing
phononic structures with an optimal band gap. Optimization of phononic band gap crystals was first
conducted by Sigmund and Jensen [13] based on finite element method (FEM) in combination with the
method of moving asymptotes (MMA). In the following, genetic algorithm (GA) and gradient-based
topology optimization, in conjunction with FEM or the fast plane wave expansion method (FPWE), are
developed to maximize the band gap sizes of phononic band gap crystals [14-20]. However, most of
the optimization work is conducted for the case of solid composite materials, and few studies focus
on the case of air/vacuum inclusions embedded in a host medium [16]. Dong et al. [17] conducted
a multi-objective optimization of 2D porous phononic crystals for maximizing band gap width and
minimizing mass of structure simultaneously by using non-dominated sorting-based genetic algorithm
IT (NSGA-II). To guarantee the self-support of cellular phononic crystals, an artificial geometrical
constraint is adapted.

It is apparent that current research in this area is insufficient and further systematic
investigation into the design of cellular phononic band gap crystals is necessary, especially for their
multi-functionalities. In order to take advantage of light-weight cellular phononic crystals, mass of
structure should be minimized or subjected to a certain constraint. In fact, both optimization results for
composite phononic crystals and the existing cellular results indicate that maximizing band gap tends
to be the isolation of solid material with high density and stiffness; however, transverse/shear wave is
not supported in air/vacuum. Thus, it is meaningful to make sure that the optimized phononic band
gap structures have continuous distribution of solid material to sustain static loads. In contrast with
simply adding a geometrical constraint to the optimized structures, it is more meaningful to consider
the additional functionality of phononic crystals, such as bulk or shear modulus, so that the resulting
structures could achieve appropriate stiffness for undergoing external forces. To the authors’ best
knowledge, no work has been reported yet to optimize the cellular phononic crystals with a stiffness
constraint and volume constraint simultaneously.

The purpose of this research is to maximize the gap size between two appointed bands for cellular
phononic crystals subject to bulk or shear modulus constraint with a given volume fraction. The rest
of the paper is organized as follows: In Section 2 we introduce the essential governing equations
and related theories of phononic crystals, along with the homogenization theory to calculate the
effective bulk or shear modulus of cellular structures. Then we formulate the optimization problem
into the mathematical equations and present the topology optimization algorithm used in this paper.
In Section 3, we discuss the numerical implementations of the optimization problem and the associated
sensitivity analysis. A number of numerical examples and optimized cellular phononic structures
are presented in Section 4 for out-of-plane waves, in-plane waves, and the coupled in-plane and
out-of-plane waves, respectively. This is followed by the conclusions.

2. Theory and Optimization Problem

2.1. Band Gap Analysis of Phononic Crystals

The governing equation of mechanic waves that propagate in a heterogeneous medium is given by:

p(r)u = VIA(r) + 2u(1)](V-u) = V x [u(r)V x u] )
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where A and p denote the Lame’s coefficients; p is the material density; u = {uy, uy, uZ}T is the
displacement vector, and r = (x, y) denotes the position vector. In this paper, we consider two
dimensional phononic crystals with square lattice and assume the propagation of elastic waves is
restricted to the x—y plane only. Noting that the wave field is independent of z i.e., du/dz = 0, Equation
(1) can be split into two equations which govern the in-plane longitudinal and transverse waves (which
is called in-plane wave mode), and one out-of-plane equation that governs the out-of-plane waves
(which is called out-of-plane wave mode) as:

62 X 0 0 X 0 0 0 ; -
o - oo et o ()] e
0? 0 ouy 0 P ou, p
oSt = 2 [V (1) (a”y + ;;)] t 3 [A () S+ (A () + 23 () a“yy] 3)
azuz 0 Ouy Fi Ouy
PN =ax[ﬂ (r) ax]+3y[u(r) ay] (4)

According to Bloch’s theorem, for periodic structures the displacement vector u(r) should satisfy
the form:
(1K) = u (1) ) (5)

where u(r) is a periodic function of r with the same periodicity to the structure. K = (ky, ky) is the
Bloch wave vector [21] By inserting Equation (5) into either Equations (2) and (3) or Equation (4), the
governing equations can be converted to two eigenvalue problems for in-plane and out-of-plane waves,
respectively. We could easily solve the problem by the finite-element method and both eigenvalue
problems can be written as:

(K (k) — w(k)2M) u=0 (6)

where eigenvectors u = ui(r). K and M are the stiffness matrix and mass matrix, respectively. It should
be noted that, due to the symmetry of the unit cell, the above eigenvalue equations only need to
be solved within the first Brillouin zone. Moreover, it has been verified that the searching area
can be further reduced to the wave vectors on the boundary of the irreducible Brillouin zone for
the calculation of band structures [22]. For a 2D phononic crystal with the square lattice shown in
Figure 1a, the boundary of the irreducible first Brillouin zone is sides of the triangle I-X-M-I' shown
in Figure 1b. In the following numerical examples, the wave vectors k = (ky, ky) are appointed with
11 equally-spaced points along each boundary and start from the point I' (0, 0), to X(7t/a, 0), then
M(mt/a, t/a), and finally come back to the point I'.

- d -

@) (b)

Figure 1. (a) Phononic crystals with 3 x 3 unit cells; and (b) irreducible first Brillouin zone (I'-X-M-T).

2.2. Static Effective Stiffness of Phononic Crystals

When cellular phononic crystals are considered as a component material for a device, the
periodic unit cell would be very small compared with the size of the structural body. Therefore,
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the static effective elasticity tensor of cellular phononic crystals can be calculated by homogenization
theory [23,24] in terms of the material distribution in the unit cell, which is stated as:

e = o] () e () (o)) 0

where E lI]J is homogenized elasticity tensor, [E] is the constitutive matrix at a given point, |Y| denotes

the area of the unit cell (), i, j =1, 2, 3 for two dimensional inhomogeneous structures, {86} are three
linear independent test strain fields as {e}} = {1,0,0}, {€3} = {0,1,0}, {3} = {0,0,1}, {si} are the
introduced strain fields, which are the solutions to the standard finite element equation and subject to
periodic boundary condition and the test strain fields {¢}}.

The static stiffness of cellular structures is usually described by bulk modulus k! or shear modulus
GH and can be expressed in terms of the components of effective elasticity tensor E{]?’ as:

1
o= 5 (Eff + Ef} + Ef + EJ)) ®)

G = E3} )

To design a stiffer cellular phononic band gap crystal, the best way is to maximize bulk or shear
modulus and the band gaps simultaneously. However, our numerical experiences show that it is
impossible to achieve two goals at the same time, since the optimal solutions to maximize bulk or
shear modulus and maximize phononic band gaps are in two opposite directions. An alternate way is
to make a compromise by adding a bulk or shear modulus constraint to the optimization problem of
maximizing band gaps, so that the resulting structures can possess a relatively big band gap while
also maintaining a higher stiffness. In the following examples, dimensionless stiffness constraints are
used instead of effective bulk or shear modulus. Specifically, x = x//xg and G = G"/G are used as
static effective bulk and shear modulus constraints, where xy and Gg are the bulk and shear moduli,
respectively, of the solid material.

For a cellular structure with a volume fraction V of solid material in the design domain, the
maximum value of bulk or shear modulus should satisfy the Hashin—-Shtrikman bounds for two-phase
materials [25]. The corresponding dimensionless upper bounds of stiffness are given as below:

VfGO
Kupper = (10)
(1 - Vf) Ko + Go
V Ko
Gupper = ! (11)

(1 — Vf) (Ko + ZGQ) + Ko

In the optimization of cellular phononic crystals, the stiffness constraint value should be not
greater than «ypper and Gypper, otherwise the optimization will tend to maximize the bulk or shear
modulus other than band gaps. Thus, the ratio of x/xypper and G/ Gypper should be carefully chosen as
the stiffness constraint. We will discuss this later in the numerical examples.

2.3. Optimization Problem

The goal of this paper is to design cellular phononic crystals with a desirable band gap by properly
rearranging the distribution of air holes and solid material subject to a given material volume and
certain stiffness. Considering the absence of the essential length scale in the governing equations,
here we choose to optimize the relative band gap size, which is characterized by the gap-midgap
ratio. To optimize the relative band gap size between the ' and (1 + 1) band for in-plane waves or
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out-of-plane waves, the optimization problem can be mathematically formulated with objective and
constraint functions as follows:

minwy, 41 (k) — maxw, (k)

—_— > 12
Maximize f (%) minwy 41 (k) + maxw, (k) 12)
Subject to : K =K% = Brypper 0r G = G* = BGupper (13)
N
VF = > % Ve Xe= xminorl (14)
e=1

where the objective function f(x,) denotes the gap-midgap ratio between the n'" and (1 + 1) bands
which is defined by the percentage in the following band diagrams; w;, w, are eigenfrequecies at
target bands; «* and G™* are static effective bulk and shear modulus constraint, and B is the ratio of
stiffness constraint over its upper bound value at a same volume. Obviously the magnitude of  is
located in the range between 0 and 1; V is the volume constraint; x, is the artificial design variable,
which denotes the material type (air or solid material) for each element.

2.4. Bi-Directional Evolutionary Structural Optimization (BESO)

Here, we employ the bi-directional evolutionary structural optimization (BESO) method, a very
efficient and effective topology algorithm in optimum material distribution problems for continuum
structures, to resolve the optimization problem defined by Equations (12)—(14). BESO is a further
developed version of evolutionary structural optimization (ESO), which was originally proposed by
Xie and Steven [26,27] in the early 1990s. The basic concept of ESO is to gradually remove low efficient
materials from the structure so that the rest part evolves to an optimum. BESO allows adding materials
to the most efficient regions as well as deleting insufficient ones [28,29]. In the present paper, we use
the new BESO method which is proposed by Huang and Xie and greatly improved the robustness and
computational efficiency of the original ESO and BESO methods [30-32]. It has also been demonstrated
that the current BESO method is well capable of the design of periodic microstructures for cellular
materials and composites, such as the photonic crystals [33-36].

The problem of maximizing the band gap size for phononic crystals is in essence how to arrange
the spatial distributions of the solid material and air within the unit cell. In other words, the topology
optimization problem can be transferred to alter the artificial design variable of each element after the
finite element discretization. In order to get the gradient information of object function with respect to
the design variables, it is necessary to interpolate the material properties between air and the solid
material. In the optimization of composite phononic crystals, which consisted of two solid materials, a
simple linear material interpolation scheme works very well [13]. However, artificial localized modes
are often encountered in low density regions for the case of optimization of cellular phononic crystals
due to the extremely high contrast of mass and stiffness between air and the solid material. To avoid
this problem, we apply a similar material interpolation scheme with penalization as in the studies
on the topology optimization of continuum structures for natural frequencies [37]. The interpolation
scheme is given as:

P (Xe) = XePo (15)

P
mm_lﬁﬁ;ﬁm@—ﬂ)mqa)m<%m<%<n (16)
min

where pg and E represent the density and Young’s modulus of solid material, respectively; p is the
penalty exponent; x. stands for a design variable, x, = x,;, denotes element ¢ is composed of air, and
xe = 1 means element e is composed of solid material. To avoid singularity in finite element analysis,
Xmin in the calculation is usually set to be a very small value that is slightly larger than 0. In the

following example, the value is chosen as x,;;;, =1 x 10~°. Current material interpolation scheme for
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different p with x,,,;, = 0.01 is plotted in Figure 2. It is clearly seen that when x, approaches the ends 0
or 1, the current model is same as the linear material interpolation case.
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Figure 2. Material interpolation scheme with x,,;,, = 0.01.

It should be pointed out that the discrete design variable x, is set to be xpi, or 1 only in the
traditional BESO method [32,37]. However, the optimization of phononic crystals is very sensitive
to the variation of design variable, so the change of design variable in each iteration is limited to
be Ax, = 0.1 to stabilize the optimization process. In other words, x. can take 11 discrete values, as
Xe € {Xmin,0.1,---,0.9,1}. Our numerical experience in the optimization of composite case shows that
the discrete scheme could also lead to a clear solid/void final topology.

3. Numerical Implementation and BESO Procedure

3.1. Reformulation of Objective Function

Current optimization problem stated in Equations (12)—(14) has multiple constraints, including a
stiffness constraint and a volume constraint. Like the optimization problem of continuum structures
with an additional displacement constraint using ESO method [38], the stiffness constraint can be
added by introducing a Lagrangian multiplier. The objective function can be modified for the bulk
modulus constraint to:

minw;y 11 (k) — maxw, (k)

. . . _ ok
Maximize : f(xe) = 2minwn+1 (k) + maxaw, (K) + A (k—x™) (17)

and for the shear modulus constraint to:
Or: £ (x0) = 2MinWni (k) —maxeon (k) o ox (18)

minwy 41 (k) + maxw, (k)

When the bulk or shear modulus is equal to the prescribed ones, the above equations are
equivalent to the original objective function defined in Equation (13). Otherwise, taking the bulk
modulus constraint case for example, if k¥ > x*, which means the constraint is already satisfied and A is
set to be 0; if ¥ < x¥*, which means the constraint is not satisfied yet and we need to maximize the bulk
modulus first, so A needs to be infinity. The case of shear modulus constraint is the same as that of bulk
modulus. The determination of Lagrangian multiplier will be discussed later. After this modification,
optimization of cellular phononic crystals with stiffness constraint can be solved as the standard band
gap optimization problem.
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3.2. Sensitivity Analysis

The gradient of objective function with respect to the change of design variable x, defined in
Equation (17) for bulk modulus constraint case can be calculated by:

ominw, 41 (k)
0Xe

Omaxwy, (k)

- minwnJrl (k) axg oK

of (xe) maxwy, (k)

x =4 +A— 19
0xe (minw,,41 (k) + maxw, (k) 0xe 19)
and for shear modulus constraint case by:
maxcoy (k) ominwy 1 (k) minco, ;1 (K) Odmaxwy (k)
of (xe) x, ox, oG
n= =4 - > +A— (20)
0xe (minwy,+1 (k) + maxw, (k)) 0xe

where the sensitivities of eigenfrequencies can be expressed by the following equation with the
assumption that eigenvectors are nomalized to the global mass matrix for a given wave vector k:

ow, 1 (K M
ox, anu(k)” <&x,2 “n 0xe u (k) 1)

where u(k), is the corresponding eigenvector; K and M are the elemental stiffness and mass matrix,
respectively.

According to the relations in Equations (8) and (9), the sensitivities of homogenized bulk or shear
modulus can be computed as:

ot 1 (OE]] N oEH N oEH N oER )
0x, 4\ Ox, 0x, 00X, 0Xe

oGH  OEH

0xe  0xe (23)

Using the adjoint varibale method [39], the sensitivity of the homogenized elasticity tensor with
respect to design variable can be derived as:

OE

L L) R e e

Considering the material interpolation scheme defined in Equation (16), the sensitivity of the
homogenized elasticity tensor can be written as:

oEH R . ; ; ‘ j
= T () 1) (1) - () o @

min

where E% is the elasticity tensor of solid material.

Up to now, the only unknown parameter in Equation (19) or Equation (20) is the
Lagrangian multiplier, which highly influences the relative ranking of the overall sensitivity of the
objective function.

3.3. Determination of the Lagrangian Multiplier

Before the calculation of the overall sensitivity of the objective function, the Lagrangian multiplier
A should be determined first. Here we introduce an intermediate parameter w in our program, which
is defined by:

A=—— (26)
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where w is a constant value which can vary from a extremely small value wp, e.g., 1029 to0 1, so the
resulting Lagrangian multiplier A can be located in the range of 0 to infinity.

Initially, the search for the proper value of w starts from w = 1 with a lower bound
Wiower = Wmin = 1020 and an upper bound wypper = Wmax = 1. Then, with the Lagrangian multiplier
computed by Equation (26), the sensitivity of objective function is calculated by Equation (19) or
Equation (20). Then, based on the ranking of the sensitivity the design variables are updated to
satisfy the volume fraction in the next iteration. The bulk or shear modulus in the next iteration can
be approximately estimated by the variation of bulk or shear modulus and the value in the current
iteration, ! or G, as:

. . dx
+1 L it
Kt~ + Ee ix. Ax, (27)
or aG
i+1 i
~ E A 2
G G'+ i, Xe (28)

where ;TK and g are computed by Equations (22) and (23). After that, the estimated bulk or shear
e e

modulus will be compared with the current bulk or shear modulus constraint. If x'*1 < x*, which
means the current constraint is not satisfied and current Lagrangian multiplier A is too small, we would

update w with a smaller value by:
W + Wiower

2

Meanwhile, the upper bound of wypper will be moved to w. If xit1 > x* which means the current
constraint is already satisfied, still we would update w, however, with a larger value by:

o= (29)

W + Wypper

=7

(30)
and the lower bound wjoyer Will be moved to w. The Lagrangian multiplier is updated at the same
time. This procedure will be repeated until the difference between wypper and wygyer is less than 1012,
Finally the appropriate Lagrangian multiplier is obtained after several iterations.

3.4. BESO Procedure

In the optimization of composite phononic band gap crystals, our numerical experiences show
that the filter scheme will lead to more reliable and steady evolution history. Therefore, we continue to
apply a filter by averaging the elemental sensitivity with its neighbor elements in the optimization of
cellular phononic crystals. Instead of averaging the overall sensitivity calculated by the Equation (19)
or Equation (20), the filter is separately applied to the sensitivity of gap-midgap ratio and homogenized
bulk or shear modulus since our numerical simulation indicates that filtering the sensitivity separately
could better avoid the checkerboard problem [40]. The filter scheme refers to [37].

The detailed optimization procedure using BESO method can be illustrated by the Figure 3.
We choose a simple or random unit cell as the initial design and discretize the design domain by a finite
element mesh. Then we define the objective volume fraction of the solid material V¥, evolutionary
ratio ER and penalty p in the material interpolation scheme. In the following step, we first conduct
finite element analysis for several discrete wave vectors k along the first Brillouin zone with Bloch
boundary conditions to get corresponding eigenvalues and eigenvectors to Equation (6). After this,
the sensitivities of gap-midgap ratio for each element are calculated and filtered. Then we use
homogenization method to get the effective bulk or shear modulus (k' or G') of current configuration.
Additionally, the sensitivities of homogenized parameters are calculated and filtered. Before the update
of the Lagrangian multiplier of the constraint, the target volume in the next iteration is defined as:

vitl _ yi

f: t(1—ER)  when Vi> Vi (31)
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where i denotes the iteration number. Once the final volume fraction V; is achieved, the volume
will be kept as a constant. At the same time, corresponding bulk modulus constraint x* or shear
modulus constraint G* at the target volume fraction in next iteration is computed by Equation (10)
or Equations (11) and (13) with a given constraint ratio 8. ER = 2%, Vf* =50% and B = 0.3 are used
throughout this paper, unless otherwise stated. Thereafter, the appropriate Lagrangian multiplier in
the next iteration is determined by the procedure illustrated in previous section. Then the overall
sensitivity of the objective function can finally be obtained.

Based on the relative ranking of the calculated overall sensitivity, a threshold of the sensitivity
number, aih, is determined by using the bi-section method so that the volume fraction in the next
iteration is equal to V}Jr ! The design variable of each element is modified by comparing its sensitivity

number !, with the threshold as:
w1 min(x% + Ax, 1), i.f oclei > oc%h (32)
max(x, — Ax,0), if a, <aj,

where Ax = 0.1 throughout the paper, which means BESO uses discrete design variables.

The above procedure is repeated until the convergence criteria are satisfied. It should be pointed
out that the stiffness constraint in the optimization process is not a constant value like volume
constraint, and would evolve with the volume fraction for the sake of stability of the evolutionary
history. Additionally, although discrete intermediate design variables are used during the optimization
process, the optimized design we obtained can naturally converge to an almost solid /void design due
to the adoption of the material interpolation scheme.

j Initial design \

Define material, BESO parameters, Bloch
boundary conditions, and FE mesh

l l

Finite element analysis Finite element analysis
of eigenfrequencies and of homogenized bulk or
eigenvectors shear modulus
Calculate and filter the Calculate and filter the
sensitivity sensitivity

Define target volume
and stiffness constraint
in the iteration

!

Update Lagrangian
multiplier of the
constriant

'

Construct a new design

__—Convergence —_ No
- Control __—

iYes
/ Optimized design

Figure 3. Flow chart of optimization procedure using BESO method.
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4. Results and Discussion

To demonstrate the capability of the proposed algorithm, this section will present a number
of band gap optimization results we obtained for the out-of-plane mode, in-plane mode, and the
combined mode of these two with bulk and shear modulus constraints, respectively. In the following
examples, we consider the design of a 2D cellular phononic crystal with square lattice. The objective is
to maximize the relative band gap size between two adjacent bands. All the numerical simulations are
conducted with a volume constraint V; = 50%.

Silicon is used as the solid material due to its popularity in the design of photonic crystals, which
are the electromagnetic analog of phononic crystals and have been extensively studied. The physical
properties of silicon are given as p = 2330 kg/m3, A = 85.502 GPa, and y = 72.835 GPa [17]. The unit
cell with dimensionless lattice length a = 1 is discretized into 64 x 64 linear four-node elements. All of
the evolutionary rates of volume fraction used in the BESO procedure are ER = 2%. The filter radius
for the sensitivity of band gap is 1,41 = v/2a/30 while for the sensitivity of homogenized bulk or shear
modulus is 1,2 = v/2a/40. The eigenfrequencies (w) in the band structures are normalized by wa/27C,
where C = 340 m/s denotes the wave speed in air.

4.1. Out-of-Plane Mode

4.1.1. Influence of Stiffness Constraint

As mentioned in Section 2.2, the value of stiffness constraint directly affects the final optimization
results of cellular phononic band gap crystals. To investigate the influence of different bulk and shear
modulus constraint on the optimized band gap size, we conduct a series of optimizations starting
from a same initial design with the constraint ratio 8 defined in Equation (13), changing from 0.1 to 0.7.
The relations of optimized relative band gaps and constraint ratio B are plotted in Figure 4 along with
the corresponding final topologies consisting of 3 x 3 unit cells. The optimized unit cell is shown in
the red dashed box. It can be clearly seen that the optimal relative band gaps size for both bulk and
shear modulus constraint case declines continuously with the increase of constraint ratio while the
shapes inside the unit cell does not vary a lot. The final relative band gap sizes with shear modulus
constraint are slightly bigger than those with bulk modulus constraint but the differences are quite
small compared with their net value.

The maximum relative band gap size we obtained is up to 144.41% with the shear modulus
constraint as B = 0.1, which breaks the record value in the literature [16,17]. This number decreases
dramatically by around 90% to 54.27% when the shear modulus constraint ratio S increases from
0.1 to 0.7. Meanwhile the corresponding topology with smaller shear modulus constraint tends to
have many tiny and slim connections, and these connections gradually disappear or become thicker
when the constraint ratio B¢ is growing.

The situation for bulk modulus constraint case is very similar. The maximum relative band gap
size with the bulk modulus constraint S, = 0.1 is 140.02% while the number drops to 55.41% as the
bulk modulus constraint increases to B, = 0.7. Compared with the topologies we obtain with a shear
modulus constraint, optimized structures in this group have different slim connections, while the main
shapes of the solid material in the unit cell remain in similar positions.

Figure 4 indicates that the increase of stiffness constraint ratio will lead to a significant drop of
optimized relative band gap size. As the bulk or shear modulus constraint gets bigger, the connections
in the corresponding resulting topologies become thicker, which are favorable for future manufacture.
To make a compromise between the band gap size and stiffness, the stiffness constraint ratio is set as
Bx or B = 0.3 for bulk and shear modulus constraint cases in the following examples.
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Figure 4. Optimized relative band gap against different constraint ratio with bulk and shear
modulus constraints.

As mentioned above, we adopt an evolutionary stiffness constraint in the optimization process.
As an illustration example, the evolution histories of effective bulk modulus and bulk modulus
constraint in each iteration step and the corresponding HS upper bound are plotted in Figure 5 for
the optimization case with constraint ratio x = 0.3. At the beginning, the effective bulk modulus is
almost equal to the HS upper bound value, which means BESO starts from an initial configuration that
is almost consisted of only solid materials. Based on the relation between the effective bulk modulus
and the corresponding constraint value, the whole process can be divided into two stages. At the first
stage, the bulk modulus constraints are far less than the effective bulk moduli calculated for the current
configurations, indicating in these iterations the Lagrangian multiplier is equal to 0 and the objective is
only to maximize the relative band gap size. It is observed that the increasing of the band gap in the
first stage leads to a dramatic drop of the effective bulk modulus which, once again, reveals that the
optimization trends for these two goals are opposite. At the second stage, the Lagrangian multiplier
begins to play an important role in the balance of the band gap optimization and the effective bulk
modulus optimization. It can be clearly seen that the effective bulk modulus keeps almost the same
value as the bulk modulus constraint in the following optimization.
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09r & —a— Effective bulk modulus
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Bulk modulus k
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Figure 5. Evolution histories of the effective bulk modulus, bulk modulus constraint and corresponding
HS upper bound in the optimization process with constraint ratio B, = 0.3.

The variation of the volume fraction, band gap size and topology of the unit cell for the same case
during the whole optimization process is presented in Figure 6. We start from a simple unit cell, with
centered and cornered holes, and the initial volume fraction V is approximately equal to 1, which is in
consistent with the initial effective bulk modulus. Initially the gap size is a negative value, indicating
that there is no band gap between the first and second band. When the volume fraction steadily drops
to the predefined constraint value 50%, the band gap size first gradually increases from a negative
value to 0, and then rapidly rises after the opening of the band gap. When the Lagrangian multiplier
begins to work, the band gap size experiences a fluctuating period and finally achieves its maximum
value after the volume fraction is fixed. Meanwhile, the unit cell evolves to an optimal state with
almost no grey elements. It takes less than 50 steps for this case to converge to an optimized structure.
Furthermore, the optimized configuration is similar to the result reported in the literature [16].
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Figure 6. Evolution histories of the relative band gap size, volume fraction and topology in the
optimization process with bulk modulus constraint 8, = 0.3.



Materials 2016, 9, 186 13 of 22

4.1.2. Out-of-Plane Results with Bulk Modulus Constraint g, = 0.3

All the optimized cellular phononic band gap crystals with bulk modulus constraint ; = 0.3
and their corresponding band structures for the first eight band gaps of the out-of-plane modes are
presented in Figure 7. The first band gap denotes the gap between the first and second band of the
diagram, while the second band gap means the gap between the second and the third band of the
diagram, and so on. As shown in the band structures, the optimized relative band gap sizes are
around 100%. From the perspective of topologies, the complexity is increasing as the target band gap
becomes higher. Compared with the optimization topologies of composite phononic crystals, which
indicates the heavy and stiff material tends to be isolated by the light and soft material, the solid
media also shows the trend to be isolated by air while still connected by thin structures. These slim
connections are required so as to support the propagation of the shear components of mechanical
waves; otherwise, only longitudinal waves could travel through the totally-isolated solid media.
If those slim connections are removed, the remaining topologies are almost the same as those of
composite phononic crystals [20].

Sigmund and Hougaard [41] have investigated the geometric properties of photonic crystals
with maximum band gaps and found that the number of inclusions (for transverse electric modes) or
subpartitions (for transverse magnetic modes) is interestingly equal to the band number at the lower
edge of the band gap. It is also observed that the rule in TE modes of photonic crystals holds for the
optimization results for out-of-plane mode of phononic crystals, except that the inclusions are linked
to each other by slim connections.
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Figure 7. Optimized topologies and corresponding band structures for out-of-plane mode with bulk
modulus constraint. The black and white colors represent silicon and air, respectively. (a) The first
band gap; (b) the second band gap; (c) the third band gap; (d) the fourth band gap; (e) the fifth band
gap; (f) the sixth band gap; (g) the seventh band gap; and (h) the eighth band gap.

4.1.3. Out-of-Plane Results with Shear Modulus Constraint S = 0.3

Figure 8 presents the optimized phononic band gap crystals with shear modulus constraint
Bc = 0.3 and their corresponding band structures for the first eight band gaps of the out-of-plane
modes. The optimized relative band gap sizes with shear modulus constraint are all above 106%,
which are larger than the bulk modulus constraint case. In addition, the normalized eigenfrequencies
at the lower edge of the gap in the optimized structures are smaller than their counterpart cases with
bulk modulus constraints, which indicates results with shear modulus constraints are more favorable
for low-frequency-related applications. In terms of optimized topologies, the distributions of solid
inclusions within the unit cell are basically akin to these with the bulk modulus constraint case. That
is to say the number of the solid parts in the optimized topologies is still equal to the band number.
However, the connections are different from those cases with bulk modulus constraint.
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Figure 8. Optimized topologies and corresponding band structures for out-of-plane mode with shear
modulus constraint. (a) The first band gap; (b) the second band gap; (c) the third band gap; (d) the
fourth band gap; (e) the fifth band gap; (f) the sixth band gap; (g) the seventh band gap; and (h) the

eighth band gap.

4.2. In-Plane Mode

It is more complex to optimize band gap for in plane mode of phononic crystals since both
longitudinal and transverse polarizations exist in this mode. This is comparable to the optimization
of a complete band gap between TE and TM mode in photonic crystals. Therefore, the resulting

optimized structures are more complicated than those for out-of-plane mode.

4.2.1. In-Plane Results with Bulk Modulus Constraint §, = 0.3

We successfully obtain three optimized topologies among the first six phononic band gap
crystals for in plane waves with bulk modulus constraint 8, = 0.3 as shown in Figure 9. Compared
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with results for out-of-plane waves, the relative band gap sizes obtained for in-plane waves are
smaller while the corresponding topologies are more complicated and have more delicate connections.
For example, the optimized structure for fifth band gap has many complicated connections and almost
no recognized solid circular or square areas. Moreover, there is no obvious pattern for the distributions
of solid material in the optimized structures in this case. Among these results, the third and sixth
phononic crystals with maximized band gap are relatively simple and similar to the first and second
configurations for out-of-plane waves, respectively.
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Figure 9. Optimized topologies and corresponding band structures for in-plane mode with bulk
modulus constraint. (a) The third band gap; (b) the fifth band gap; and (c) the sixth band gap.

4.2.2. In-Plane Results with Shear Modulus Constraint fg = 0.3

Optimization results with shear modulus constraint S = 0.3 for in-plane waves are presented in
Figure 10. Different from the cases of out-of-plane waves, optimized relative band gap sizes for in plane
waves with shear modulus constraint are slightly smaller than that with bulk modulus constraint.
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Figure 10. Optimized topologies and corresponding band structures for in-plane mode with shear
modulus constraint. (a) The third band gap; (b) the fifth band gap; and (c) the sixth band gap.

Compared with results with bulk modulus constraint, the optimized topologies are similar.
It is worthy to mention that a slight variation of connections could lead to dramatic change of the
outcome band gap size for instance the sixth band gap. Double-checking the resulting structures with
both constraints is recommended in practical application to ensure a larger band gap size.

5. Conclusions

This paper has systematically investigated the optimized topological design of phononic band gap
crystals subject to a volume constraint and a bulk or shear modulus constraint, respectively. The BESO
algorithm has been used to seek the optimal distribution of solid material within the square unit
cell. The static effective bulk or shear modulus is calculated by a homogenization theory to ensure
that the stiffness constraint is satisfied in spite of the variation of the topology in the optimization
process. Various optimization results are presented for out-of-plane and in-plane mode and the effects



Materials 2016, 9, 186 20 of 22

of the stiffness constraint on the topological design of the cellular phononic crystals are also discussed.
Numerical results demonstrated that all the optimized structures we obtained for cellular PnCs are
similar to these obtained for composite case [20], except that additional slim connections are added in
the cellular case, since they are essential to support the propagation of shear wave modes and to satisfy
the prescribed bulk or shear modulus constraints. It is also found that the optimal relative band gap
sizes dramatically decrease with the increase of stiffness constraint ratio while the slim connections in
the corresponding topologies become thicker, which indicates that these connections can be slightly
changed based on the manufacture precision on the cost of band gap size. Several optimized designs
we obtained have broken the maximum band gap size record in the literature. The main difference
between the final results with the bulk modulus constraint and that with the shear modulus constraint
relies on the position of the slim connections.
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Abbreviations

The following abbreviations are used in this manuscript:

PnCs Phononic crystals

FEM finite element method

PWE plane wave expansion method

T™MM transfer matrix method

MST the multiple scattering theory

FDTD finite-difference time-domain

RM Rayleigh method

MMA the method of moving asymptotes

GA genetic algorithm

FPWE fast plane wave expansion method

NSGA-II non-dominated sorting-based genetic algorithm II

ESO Evolutionary Structural Optimization

BESO Bi-directional Evolutionary Structural Optimization
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