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Abstract

Background: Linear mixed models (LMM) are a common approach to analyzing data from cluster randomized trials
(CRTs). Inference on parameters can be performed via Wald tests or likelihood ratio tests (LRT), but both approaches
may give incorrect Type I error rates in common finite sample settings. The impact of different combinations of cluster
size, number of clusters, intraclass correlation coefficient (ICC), and analysis approach on Type I error rates has not
been well studied. Reviews of published CRTs find that small sample sizes are not uncommon, so the performance of
different inferential approaches in these settings can guide data analysts to the best choices.

Methods: Using a random-intercept LMM stucture, we use simulations to study Type I error rates with the LRT and
Wald test with different degrees of freedom (DF) choices across different combinations of cluster size, number of
clusters, and ICC.

Results: Our simulations show that the LRT can be anti-conservative when the ICC is large and the number of
clusters is small, with the effect most pronouced when the cluster size is relatively large. Wald tests with the
between-within DF method or the Satterthwaite DF approximation maintain Type I error control at the stated level,
though they are conservative when the number of clusters, the cluster size, and the ICC are small.

Conclusions: Depending on the structure of the CRT, analysts should choose a hypothesis testing approach that will
maintain the appropriate Type I error rate for their data. Wald tests with the Satterthwaite DF approximation work well
in many circumstances, but in other cases the LRT may have Type I error rates closer to the nominal level.
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Background
In cluster-randomized trials (CRTs), also called group ran-
domized trials, subjects are organized in groups. These
groups, rather than the subjects directly, are randomized
to the trial interventions [1]. In these studies, outcomes
within a cluster – for example, patients within hospi-
tals or students within classrooms – are almost certainly
correlated with one another. This clustering complicates
data analysis because the common regression assumption
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that observations are independent is violated. When the
response variable of interest is continuous, linear mixed
models (LMMs), which require that observations are
independent only after conditioning on cluster member-
ship, are a common approach to the data analysis. CRTs
are a widely used experimental design (see for example
[2–4]), and LMMs are an attractive option for data anal-
ysis. Some reasons for this attractiveness are that LMMs
are robust to certain missing data mechanisms and can
flexibly accommodate nested levels of clustering and/or
varying cluster sizes [5].
Generalized linear mixed models (GLMMs) extend the

approach to non-Gaussian data, such as binary, count,
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or multinomial outcomes. Issues we discuss in this paper
may arise in these settings as well, though use of GLMMs
introduces additional issues such as the choice of mod-
eled distribution, link function, and the approximation of
an intracluster correlation coefficient (ICC) with the nat-
ural parameters of that distribution.We do not investigate
GLMMs in this article.
When fitting LMMs to CRT data, inference on parame-

ters depends on asymptotic results, and in settings where
the number of clusters is small they can generate Type
I error (TIE) rates well above or below the nominal
level [6]. All frequentist null hypothesis significance test-
ing (NHST) theory depends on tests having the nominal
size – a test with a nominal 5% error rate should pro-
duce false rejections 5% of the time. If not, data analysts
in a CRT could be led to inappropriate conclusions when
evaluating a treatment effect using NHST; for example,
producing too many false positives or false negatives.
Analysts evaluating associations using confidence inter-
vals rather than null hypothesis significance testing may
also be misled if asymptotic parameter distributions are
incorrect with small samples.
Unfortunately, small cluster counts are not uncommon

in the literature, because it is often more expensive to add
more clusters to a study than more individuals to a clus-
ter. Despite common heuristics such as ‘at least 30 units
at each level of analysis’ [7], CRTs often have as few as 20
clusters. For example, a review of 100 CRTs [8] found 37%
with fewer than 20 clusters and minimal reporting of any
small-sample corrections employed.
Some limited investigations of the problems with

(G)LMM small sample inference have been conducted.
Pinheiro and Bates [6] examined a very restricted param-
eter space, while Schluchter and Elashoff [9] reviewed the
issue from a slightly different angle, examining approaches
for longitudinal data with different covariance struc-
tures, which have different interpretations than a typical
CRT. Several studies [10–13] suggested improving small-
sample inference by applying the Bartlett correction [14],
also under a smaller set of parameters than we apply here.
However, as far as we are aware there is no simple way for
data analysts to implement the Bartlett correction in SAS
or R.
Other studies [15–17] examine issues around small

numbers of clusters, but include both random intercepts
and slopes, which may not be a structure that all CRTs uti-
lize. Closer to our setting in this article, Leyrat et al. [18]
evaluated the power and TIE rates of different degrees of
freedom (DF) choices for LMMs with Wald hypothesis
tests for CRT designs under various design factors. They
found both conservative and anti-conservative results,
depending on the DF method chosen. Kahan et al. [8]
reviewed small sample issues, but limited investigation to
a small set of parameters and methods. Johnson et al. [19]

examined LMM TIE rates, but only for Wald tests with
two DF choices, and did not break down their results by
design factors. In the GLMMcontext, for binary outcomes
only, Li and Redden [20] examined TIE rates under differ-
ent DF choices and found that the rates varied widely by
method and design factors.
The work discussed above either does not break down

the small-sample problems by design factor combinations
(the effect of the ICC may vary depending on the number
of clusters and cluster size, for example), does not com-
pare results to the likelihood ratio test, and/or examines a
limited set of data-generating parameters. Our work aims
to add to this literature by examining in more detail the
TIE control of several LMM inference approaches in a
variety of plausible CRT scenarios. We examine both like-
lihood ratio test and Wald test results, including different
DF choices for the latter.We also vary cluster size, number
of clusters, and intracluster correlation coefficient, look-
ing at how results vary under the different approaches.
We hope to provide enough detail to alert data analysts
to the situations that may lead to incorrect TIE rates with
LMMs, and give guidance onwhichmethods have the best
error control given those factors.

Methods
Weperformed aMonte Carlo simulation study to examine
the TIE control of different LMM inference approaches
under varying, plausible CRT circumstances. First, we
describe the statistical model in question and the diffi-
culties with small-sample inference, then we outline our
specific study design. For all data analysis in this arti-
cle, we used the SAS/STAT 15.1 (SAS Institute Inc., Cary,
NC) and R 3.6.0 (R Foundation for Statistical Computing)
software packages.

Model
We consider here a version of the linear mixed-effects
model of Laird and Ware [21]:

Yij = XT
ij β + ZT

ij bi + εij (1)

where Yij is a continuous response variable for individ-
ual j in cluster i, XT

ij are that individual’s covariates for
a vector of fixed effect regression parameters β , ZT

ij are
the cluster-level values for a vector of random effects bi
for cluster i, and εij is the residual error of the observa-
tion. In our case, matching common practice in CRTs, we
restricted the random-effects structure to include only a
random intercept term, so the term ZT

ij bi reduces to b0i.
We let εij ∼ N

(
0, σ 2) for all individuals, and cluster-level

variance b0i was distributed N
(
0, σ 2

b
)
, with b0i indepen-

dent of ε0i.We further assumed that cluster size is uniform
for all clusters, and that there are two treatment arms
with an equal number of clusters in each arm, modeled
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with an indicator variable xi ∈ {0, 1} for control or treat-
ment arm, with β1 being the treatment effect. Thus, for
the remainder of the article, our model is:

Yij = β0 + β1xi + b0i + εij (2)

Impact of clustering on inference
In a CRT, there are typically two assumed sources of vari-
ability in outcomes: between-cluster, denoted here as σ 2

b ,
and within-cluster, denoted as σ 2. The marginal variance
of yij = σ 2

b + σ 2. One way of quantifying the amount
of clustering is via the intra-cluster correlation coefficient
(ICC) ρ, defined as σ 2

b
σ 2
b +σ 2 , or the proportion of total vari-

ance due to the cluster-level variability. If one were to
incorrectly analyze the data using a linear model rather
than a linear mixed model, standard errors for the coeffi-
cient estimates would have to be adjusted, since observa-
tions are correlated in violation of the model assumptions.
An approximation of this adjustment, the design effect
[22], is a multiplier for the sampling variance of the treat-
ment effect estimator. It is defined as [ (n − 1)ρ + 1],
where n is the number of subjects per cluster. For exam-
ple, with 10 observations per cluster and an ICC of .01,
the design effect is 1.09, meaning that the treatment effect
coefficient standard errors would have to be multiplied
by roughly

√
1.09 ≈ 1.04 to account for clustering. How-

ever, with 100 observations per cluster and the same ICC,
the standard error multiplier increases to

√
2 ≈ 1.41, and

for 1000 observations per cluster it increases to
√
11 ≈

3.31, meaning that even a very small ICC can drasti-
cally change inferences when the cluster size is large. This
approximation demonstrates the necessity of accounting
for between-cluster variation in the data analysis, even if
the ICC is expected to be small.

Inference with LMM fixed effect estimators
Two ways of fitting a linear mixed model are by maxi-
mum likelihood (ML) and restricted maximum likelihood
(REML), and most major statistical software packages can
perform estimation by either method. Inference about β̂1
can be made using the likelihood ratio test (LRT) if fit-
ting via ML, or by a Wald test if fitting via REML. A third
test based on the maximum likelihood, the score test, is
rarely used in this setting and is not discussed here. The
LRT compares the log-likelihood of a model without β1
(�0) to a model that includes it (�1), and the test statistic
λ = −2(�0−�1) has a χ2

p distribution, asymptotically, with
degrees of freedom p the difference in parameter dimen-
sion between the two models. In our case, as in many
CRTs, there is one treatment effect parameter, so p = 1.
In general, the LRT is recommended over the Wald test,
as its asymptotic properties are superior [23]. Unfortu-
nately, the χ2 distribution may be a poor approximation

of the distribution of λ when the amount of information
in a sample, for example, cluster count, is small.
Alternatively, a Wald test statistic under the null

hypothesis H0 : β1 = 0 can be generated by dividing
the estimated treatment effect by its standard error: t∗ =
β̂1/SE(β̂1). This value can then be compared to a cen-
tral t distribution. Unfortunately, for many designs, it is
unclear what the appropriate degrees of freedom (DF) for
that distribution should be [24]. Choices include:

• Residual: N − p, where N is the total number of
observations and p is the number of fixed-effects
coefficients to be estimated in the model. In the CRT
design assumed here, p = 2. Since the number of
observations is usually much larger than the number
of parameters in the model, this will generate similar
results to the ‘t as z’ approach described below.

• Between-within: The residual DF are partitioned into
between-subject and within-subject groups,
equivalent in this case to a one-way ANOVA
decomposition, meaning DF = K − 2, where K is the
number of clusters.

• Satterthwaite approximation: This method,
generalizing the ideas of Satterthwaite [25], is quite
complex, but it essentially uses the variance of the β1
estimate in its calculation of the DF. For more detail,
see McCulloch et al. [26], Ch. 6.

• Kenward-Roger approximation: This method [27]
inflates the fixed and random effects variance-
covariance matrix, and calculates Satterthwaite DF
based on these inflated values. Under our model with
one treatment effect, it generates DF equivalent to
the Satterthwaite approximation.

• Infinite (‘t as z’): The statistic is compared to a
standard normal distribution, equivalent to a t
distribution with infinite DF.

Alternative inferential approaches
The Wald and likelihood ratio tests are not the only
options for generating confidence intervals and perform-
ing inference in CRTs. Bayesianmethods have been imple-
mented with mixed models [28, 29], but we do not include
Bayesian methods in this analysis. Alternatively, confi-
dence intervals for LMM fixed effects can be generated by
a parametric, semi-parametric, or non-parametric boot-
strap. All are computationally intensive and require care-
ful implementation due to the clustered nature of the
original sample, so we chose not to investigate those
approaches, though the parametric boostrap has been
recommended by some authors [30].

Data generation
We generated clustered, balanced data sets from the null
model
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yij = b0i + εij (3)

for clusters i = 1, 2, ...,K and individuals j = 1, 2, ...,N
within each cluster. The random intercept b0i for cluster
i was distributed ∼ N(0, σ 2

b ), and the residual error term
εij ∼ N(0, σ 2). b0i and εij were generated as indepen-
dent pseudorandom variates. We also generated values of
xij such that for clusters i = 1, ...K/2, xij = 0, and for
i = K/2 + 1, ...K , xij = 1. This variable represents the
treatment indicator, though it was not used in the data
generation, as there is no treatment effect under the null
hypothesis.
For each data set, we then fit the model shown in

equation (2) using SAS PROC MIXED and the lme4
and lmerTest packages in R. The coefficient of inter-
est in these fitted models, β̂1, represents the estimated
treatment effect.
We gathered p-values for the β̂1 coefficients using the

LRT and the Wald test using the various DF options. We
assessed the rejection rate under each test for the null
hypothesis that β1 = 0 with α = .05. Since the data-
generating mechanism had a true β1 value of zero, this
estimates the TIE rate for the nominal α = .05 level.
We performed our analysis on 10,000 simulated data

sets for all possible combinations of the following data-
generating parameters:

• total number of clusters K ∈ {10, 20, 40, 100}, divided
evenly among the two treatment arms

• subjects per cluster N ∈ {3, 10, 20, 50}
• σ 2

b ∈ {0.001, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5}
• σ 2 = 1

In preliminary simulations, we tested several different
magnitudes for σ 2

b and σ 2 that produced the same ICC,
and found that they generated the same Wald and LR test
statistics. Based on this, we simplified number of parame-
ter combinations to investigate by fixing σ 2 at 1 and only
varying σ 2

b .

Determining p-values
Both PROC MIXED and lme4 report β̂1 estimates, their
associated standard errors, and t∗ statistics. This allows
for easy testing of the β̂1 coefficient via a Wald test, fitting
with REML. The t∗ statistics generated were compared to
t distributions with three choices of DF: between-within,
Satterthwaite/Kenward-Roger, and residual, as described
earlier. We then collected the p-values and calculated TIE
rates under the three DF choices.
Both software packages also allow for model fitting

using ML, allowing for model comparison and p-value
determination for β̂1 via the LRT. First, a null model (4)
was fit, with the only fixed effect being an intercept term:

yij = β0 + b0i + εij (4)

Second, a model with an added fixed effect for xij, as
in model (2). The doubled difference in maximized log-
likelihood was compared to a χ2

1 distribution since there
was a one-parameter difference in model dimension. P-
values from the χ2

1 distribution were collected and TIE
rates calculated.

Results
Both software packages generated identical β̂1 estimates
and standard errors when fitting with REML, and iden-
tical differences in likelihoods when fitting with ML.
Reported results are from SAS. In addition, since the
Kenward-Roger and Satterthwaite approximations were
indistinguishable in this setting, they are both labeled as
“approximate.”
Results are displayed in Fig. 1. Under all approaches,

departures from the nominal α level were most pro-
nounced when the number of clusters is small.
When the number of observations per cluster is small,

and there is a relatively small ICC, the LRT demonstrated
appropriate TIE control. Regardless of the number of
observations per cluster, the LRT is anti-conservative as
the ICC rises. However, the anti-conservatism of the LRT
was most apparent with smaller ICC when the number of
observations per cluster was larger. Even with as many as
40 clusters and 50 observations per cluster, the LRT was
noticeably anti-conservative once the ICC rose above .1.
Worse, even when the ICC was very small (.01, .02), the
LRT was anti-conservative with as few as 20 clusters of 50
observations per cluster.
As for theWald tests, the between-within DF option led

to conservative TIE rates when the ICC was small and/or
the cluster size was small, but maintained the appropriate
TIE rate with large clusters or a large ICC. The resid-
ual DF choice was less conservative in the case of a small
ICC, but produced anti-conservative results as the ICC
increased, and was more anti-conservative when the clus-
ter size was large. Notably, depending on how the model is
fit, the default method for determining DF in SAS may be
‘containment’, which under this study design leads to SAS
assigning residual DF. Since this choice leads to the most
anti-conservative results, it may be a concern for SAS ana-
lysts. The Satterthwaite approximation for our simulation
estimated the DF as equal to the between-within DF in
some cases and to residual DF in other cases, depend-
ing on the data set. This is why the TIE rates labeled
“approximate” in Fig. 1 are bounded by those other two
options.
We also tested the effect of an ICC of .09 generated with

σ 2
b = 1 and σ 2 = 10 rather than the values discussed

above. The results did not differ notably, which suggests
that this pattern of TIE rate inflation with the LRT, as with
the Wald test, is insensitive to the absolute size of the σ 2

b
and σ 2 values, only their relative size.
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Fig. 1 Relationship between Type I error rate and design factors

Finally, given the balanced nature of our data and the
lack of other covariates, we could have used a t-test on the
cluster means of each treatment arm to perform a hypoth-
esis test. Using this approach, we achieved close to the
nominal .05 alpha level in all cases. However, since most
CRTs include covariates, a t-test would be inappropriate,
and hence these results are omitted from the plot. The
Wald test with the between-within DF choice is almost
equivalent to this t-test [31], the only difference being that
the LMM estimates two variances (σ̂ 2

b and σ̂ 2), while the
t-test only estimates their sum, leading to slighly different
inferences.

Conclusions
To our knowledge, the effect of different combina-
tions of design factors and analysis approach on Type
I error rates have not been examined comprehensively
in previous reports. Our results show that none of the
approaches meet the nominal alpha level in all cases
examined, and the departures from the nominal level are

directionally different based on the approach and data
structure. Hence, there is no one-size-fits-all recommen-
dation for data analysts in these small-sample cases.
The likelihood ratio test, based on an asymptotic χ2

distribution, does not perform well in these finite-sample
cases, especially when the clusters contain many observa-
tions. This extends other studies that found the LRT to
be anti-conservative [6, 32] in smaller explorations of the
possible parameter combinations.
Alternatively, with aWald test, some choices of DF, such

as between-within or the data-adaptive Satterthwaite, can
avoid anti-conservatism. However, a tradeoff exists, as
they are too conservative when the ICC, the number of
clusters, and/or cluster size is small.
After collecting our TIE rate results as outcomes, we for-

mally tested the interactions between our design factors,
using a three-way ANOVA within each analysis type and
breaking the 10,000 simulations of each condition into 10
sets of 1,000, giving 10 outcomes per condition. Most of
these three-way interactions were statistically significant,
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and given the strong patterns see in Fig. 1, we expect that
we could show significance of all the interactions if we
grew the number of simulations arbitrarily.
The results here suggest that data analysts should

choose an approach that best suits their data. For example,
if the ICC is expected to be small and the number of obser-
vations per cluster is small, the likelihood ratio test should
perform well. For cases where the number of observations
per cluster is large, a Wald test with the Satterthwaite DF
approximation is better, though it can be conservative in
some situations.
One perhaps unsatisfying conclusion is that analysts

may want to generate their own small simulation stud-
ies to evaluate different approaches before fitting their
final data models, since they will likely know the model
structure, number of clusters, and cluster size by that
point.
Finally, we caution analysts to be careful when using

default setting in software. For example, with Wald tests,
SAS PROCMIXEDmay default to the poorly-performing
residual DF choice, and the lmerTest package in R
defaults to the Satterthwaite approximation, whichmay be
too conservative in some cases.
It is unclear how aware data analysts may be about the

small-sample problems that may arise in making infer-
ence from mixed models. A review of linear mixed model
applications in education and social sciences [33] found
minimal reporting of estimation and inference methods
and assumptions, and that cluster sizes could be as low
as 2 and the number of clusters as low as 8. Our own
review, and that of Kahan et al. [8], confirmed that small
cluster counts are not unusual in biomedical settings as
well. Therefore, we hope this will provide analysts with
some recommendations of which approaches control TIE
at appropriate rates under different circumstances, and
we encourage more reporting of DF choices and analytic
methods in CRT publications.
Our results, while limited to models with one random

intercept, are in concordance with comparable LMM sim-
ulation studies with similar data-generating parameters
but including random slopes [15–17], though only Luke
[15] explored the same range of DF options considered
here.
Given that small sample sizes are not uncommon in

CRT literature, there is need for more investigation of
which methods control TIE in other contexts. One lim-
itation of our result is that we did not include any sce-
narios with repeated measures (for example, baseline,
post-treatment, and follow-up), which are common in
biomedical settings, and deserve similar scrutiny. Addi-
tionally, more parameters could have been added to the
simulations, such as unbalanced cluster sizes or varying
ICC by treatment arm. Previous simulation studies [34]
demonstrated that unbalanced cluster sizes can result in

inflated TIE rates. We suspect that the relatively good
performance of the approximate DF will persist in these
unbalanced cases.
Another potential avenue for exploration, following on

the work of Li and Redden [20], would be to examine
TIE rates under Wald tests and the LRT for GLMMs,
in particular binomial, Poisson, and negative binomial-
distributed outcomes, including various link functions.
Further, a generalized ICC has been derived [35] and val-
idated [36] for the negative binomial distribution, so the
analysis could be replicated in a straightforward way. Type
II errors may also be a concern for researchers, and inves-
tigating the role of different analytic methods on these
could be an area for future work. Finally, the impact of
these data/approach effects on statistical power should be
determined so that analysts can make appropriate sample
size calculations during the design phase of a CRT.
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